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Abstract—We introduce class register automata, a new (one-
way) automata model over finite and infinite words with multiple
data values. Our model combines (extended) register automata
and data automata. It has natural interpretations, e.g., as
concurrent communicating systems with an unbounded number
of processes. We show that class register automata capture an
existential monadic second-order logic that permits unrestricted
use of variables and comes with a predicate that relates two
successive positions with the same data value(s).

I. I NTRODUCTION

A recent research stream, motivated by models from XML
database theory, considers automata and logic fordata words
anddata trees, which are structures over an infinite alphabet
(see [28] for an overview). The alphabet is the cartesian
product of a finite supply oflabels and an infinite supply
of data values. While labels may represent, e.g., an XML
tag or reveal the type of an action that a system performs,
data values can be used to model time stamps, process
identities, or text contents in XML documents [5]. Actually,
structures with data enjoy a wide range of applications and
serve as behavioral models of timed [12], [18] and dynamic
communicating systems [7].

Of particular interest have been automata with mechanisms
that can test data values for equality. A first model has
been introduced by Kaminski and Francez [22]. Their register
automata (named finite-memory automata in the original
contribution) are one-way devices that scan a word from left
to right. In addition to a finite-state control, they are equipped
with finitely many registers, which can store data values from
the input tape and compare them with values that are read
later. Many more models followed, among them alternating
automata [15], [25] and two-way devices with pebbles [27].

In search of the “right” automata class, these models were
compared to (fragments of) monadic second-order (MSO)
logic extended by a binary relation to check two word po-
sitions for data equality. MSO logic is a commonly accepted
yardstick for the expressive power of an automaton in view
of the Büchi-Elgot-Trakhtenbrot Theorem, which states that
finite automata and MSO logic over words are expressively
equivalent [14], [16], [30]. In the presence of data values,
however, translations from logic to automata are difficult,
especially when the target model is a one-way device. In
particular, none of the known one-way automata captures an
expressive unrestricted first-order logic (we present one in
this paper). In fact, a characterization of register automata
in terms of MSO logic requires a restriction of the equality
predicate [11]. In the seminal paper [6], Bojańczyk et al.

restrict first-order logic to two variables, which then allows
for an effective translation intodata automata. Data automata
were later shown to be equivalent to class memory automata,
introduced and studied in [3]. They have a decidable empti-
ness problem, which implies that satisfiability of two-variable
first-order logic is decidable, too. Deciding logical theories is
actually one application of translations from logic to automata
over data words (e.g., [6], [15], [17], [25]), but the logics
considered inevitably have limited expressive power.

In [4], Bojańczyk and Lasota take a different approach. In-
stead of restricting the logic, they consider (extended) XPath,
which has an undecidable satisfiability problem. The authors
introduce class automata, a generalization of data automata
that captures XPath. Though their emptiness is undecidable,
class automata prove useful for partial satisfiability checking
as well as exploring the limits of XPath.

Our contribution: In the present paper, we follow the
route of [4] and consider a natural unrestricted existential
MSO (EMSO) logic over data words. In particular, an unlim-
ited number of variables is permitted. Our logic is suitable
to express interesting properties of dynamic communicating
systems. It is strictly more expressive than the two-variable
logic from [6] and at least incomparable with extended
XPath [4]. Like the latter, EMSO logic has an undecidable
satisfiability problem. Our main result states that, nonetheless,
every EMSO formula can be compiled into a new automata
model, which we call class register automaton. This model
unifies register automata [22] and class memory automata [3],
and it uses the element of guessing a data value [17], [23].

A class register automaton is a one-way device. Like a class
memory automaton, it can access certain configurations in the
past. However, we extend the notion of a configuration, which
is no longer a simple state but composed of a stateand a
register assignment. This has meaningful interpretations, such
as “read current state of a process” or “send process identity
from one to another process”, and is in the spirit of (bottom-
up) tree automata, graph acceptors [29], communicating finite-
state machines [13], or nested-word automata [1], where more
than one resource (state, channel, stack, etc.) can be accessed
at a time. Our effective translation from logic to class register
automata exploits the graph structure of a data word and is
based on Hanf’s locality theorem [21], but it makes explicit
use of data values. To some extent, class register automata are
a “minimal” one-way model to capture EMSO logic. Indeed,
dropping just one feature such as registers or guessing data
values makes the model at least incomparable with the logic.



Our automata have various potential applications. First,
they may provide a framework for synthesizing system design
models from logical specifications. Second, they are usefulin
the realm of satisfiability checking, as they come with the
notion of abstract configurations that allows for the definition
of a finitely branching infinite transition system. The transition
system, in turn, can be explored to find models of the original
formula, e.g., on the basis of well-quasi-orderings [17]. Third,
using combinatorial arguments, one can use class register
automata to show that certain properties are not definable in
EMSO logic. Finally, our automaton is a canonical unification
of existing concepts that have been studied separately. Thus,
it provides insight into their combined expressive power.

Though there are a few recent studies of words with
multiple data values [2], [4], [10], [24], most prior works
relating logic and automata restrict to words with one data
value. However, a message-passing system with an unbounded
number of processes requires actions with two values, each
modeling a process identity. Our class register automata and
logic actually extend to words with multiple data values. We
provide a generic framework that captures known automata
models over one-dimensional data words as well as models
for communicating systems with dynamic process creation.
In particular, our results generalize those from [8], [9] toa
dynamic setting with unbounded process creation.

Outline: The remainder of the paper is structured as
follows. Section II introduces data words and their logics.In
Section III, we define our new automata model. Section IV
states our main result: every EMSO formula can be effectively
translated into a class register automaton. In Section V, we
compare the expressive power of our formalisms with that
of known concepts. An extension of our main result to
infinite data words is discussed in Section VI. We conclude
in Section VII.

II. DATA WORDS AND LOGIC

Let N = {0, 1, 2, . . .} denote the set of natural numbers.
Form ∈ N, we denote by[m] the set{1, . . . ,m}. A boolean
formula over a (possibly infinite) setA of atomsis a finite
object generated by the grammarβ ::= true | false | a ∈ A |
¬β | β ∨ β | β ∧ β. It is calledpositive if it does not make
use of¬. For an assignment of truth values to elements of
A, a boolean formula is evaluated to true or false as usual.
Throughout the paper, the binary symbol∼= will be used to
denote isomorphism of two structures. Moreover,|A| ∈ N ∪
{∞} denotes the size of a setA.

A. Data words

We fix a an infinite setD of data values. Note thatD
can be any infinite set. For examples, however, we usually
chooseD = N. In a data word, every position will carry
m ≥ 0 data values. It will also carry alabel from a non-
empty finite alphabetΣ. Thus, adata wordis a finite sequence
over Σ × Dm (over Σ if m = 0). Given data wordw =
(a1, d1) . . . (an, dn) with di = (d1i , . . . , d

m
i ), we letℓ(i) refer

to labelai ∈ Σ anddk(i) to data valuedki ∈ D.

Classical words without data come with natural relations on
word positions such as+1 and< for the (direct, respectively)
successors. In the context of data words with one data value
(i.e., m = 1), it is natural to consider also an equivalence
relation∼ for positions with identical data values [6], [27].
As, in the present paper, we deal with multiple data values,
we generalize this notion of equivalence. For example, we
may wish to relate(a, d11, d

2
1) and(b, d12, d

2
2) such that the data

valuesd11 andd22 coincide and the other two are different. One
such relation is defined by atype, which is a boolean formula
over { ‘ℓ(i) = a’ , ‘dk(i) = dl(j)’ | a ∈ Σ, i, j ∈ {1, 2},
andk, l ∈ [m]}. For our example, we would choose the type
ℓ(1) = a ∧ ℓ(2) = b ∧ d1(1) = d2(2) ∧ ¬(d2(1) = d1(2)).
Both, automata and logic, will be parametrized by a signature.
It controls the access to word positions, which is restricted to
positions satisfying a given type.

Let us determine the relations induced by a type. Assume
w = w1 . . . wn is a data word of lengthn. We first define
when a pair(i, j) ∈ {1, . . . , n}2 is a model of typeσ. We
let (i, j) |=w σ if the two-letter wordwiwj ∈ (Σ × Dm)2

satisfies the formulaσ in the expected manner (note that we
might havej < i). For instance, letw be the data word in
Figure 1. Givenσ = (ℓ(1) = a ∧ ℓ(2) = b ∧ d1(1) = d1(2)),
we have(1, 8) |=w σ, (2, 7) |=w σ, etc. Next, we define
binary relations≺w

σ ⊆ {1, . . . , n}2 and⊏
w
σ ⊆ {1, . . . , n}2.

Consider, fori, j ∈ {1, . . . , n}, the following conditions:

(1) i < j and (i, j) |=w σ

(2) {i < k < j | (i, k) |=w σ or (k, j) |=w σ} = ∅

(3) |{i′ < i | (i′, j) |=w σ}| = |{j′ < j | (i, j′) |=w σ}|

We let i ≺w
σ j iff (1) and (2) hold, and we leti ⊏w

σ j iff (1)
and (3) hold. Roughly speaking,i ≺w

σ j means thati and j
are closest positions to satisfyσ, andi ⊏w

σ j states thati and
j are both theN -th position to satisfyσ, for someN ∈ N.
Both relations have natural interpretations in specific settings.
In particular,⊏w

σ can be used to model channel systems with
unbounded buffers and a first-in first-out policy.

We fix a signature S, which is a finite subset of the
collection{≺σ , ⊏τ | σ, τ are types such thatτ uses neither
¬ nor ∨} of relation symbols. For ⊳ ∈ S and data wordw,
⊳

w is then a relation as defined above. Note that, for every
position i of w, there is at most onej such thati ⊳w j,
and at most onej such thatj ⊳w i. Thus, we can represent
⊳

w and (⊳w)−1 as partial functions and setnextw
⊳
(i) = j if

i ⊳w j, andprevw
⊳
(i) = j if j ⊳

w i. Whenw is clear from
the context, we might omit the indexw and write, e.g.,≺σ

andprev
⊳

instead of≺w
σ andprevw

⊳
.

Example 1 Typical and recurrent examples of types include
+1 := true and ∼k := (dk(1) = dk(2)) where k ∈ [m].
We will write ≺k

∼ instead of≺∼k and, whenm = 1, ≺∼

instead of≺1
∼. We use these abbreviations for both relation

symbols and their interpretations in words. According to our
definition,≺+1 relates a positioni with its direct successor
i+ 1. Moreover, we havei ≺k

∼ j iff j is the next position on
the right of i that has the samek-th data value asi.
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Automata and logic for data words have been well studied
in the presence of one single data value (m = 1) and with
signatureS1+1,∼ = {≺+1 , ≺∼} [3], [6]. Here, and in the
following, we adopt the convention that the upper index of
a signature denotes the numberm of data values. Figure 1
depicts a data word overΣ = {a, b} and D = N as well
as the relations≺+1 and ≺∼ imposed byS1+1,∼. It also
illustrates the relation⊏σ with σ = (ℓ(1) = a ∧ ℓ(2) = b).

a a a a b b b b

1 4 5 7 7 5 4 1

a a a a b b b b

≺∼

≺+1

⊏σ

Fig. 1. A data word and its binary relations forS1
+1,∼

∪ {⊏σ}

Example 2 We will develop a framework for message-
passing systems with dynamic process creation. Each process
is uniquely identified and addressed by means of an identity
from D = N. Process c ∈ N can execute an action
f(c, d), which forks a new process with identityd. This action
is eventually followed byn(d, c), indicating that d is new
(created byc) and begins its execution. Once processesc and
d have been created, they can exchange a message. Whenc

executes!(c, d), it sends a message through an unbounded
first-in first-out channelc→ d. Processd may later execute
?(d, c) to receive the message. In our framework of data
words, elements fromΣdyn = {f, n , ! , ?} reveal the nature
of an action, which requires two identities so that we choose
m = 2. When a process performs an action, we want to
allow it to access the current state of (i) its own, (ii) the
spawning process if a new-action is executed, and (iii) the
sending process if a receive is executed (message contents
are encoded in states). To this aim, we define a signature
S
2
dyn = {≺proc , ≺fork , ⊏msg}. Hereby, proc = (d1(1) =
d1(2)) requires that two positions coincide in the first data
value, i.e., in the identity of the executing process. Moreover,
we setmsg = (ℓ(1) = ! ∧ ℓ(2) = ? ∧ d1(1) = d2(2) ∧
d2(1) = d1(2)). Finally, let fork = (ℓ(1) = f ∧ ℓ(2) =
n ∧ d1(1) = d2(2) ∧ d2(1) = d1(2)). An example data
word isw = uv with u = n(2, 2) f(2, 3) n(3, 2) f(2, 1) n(1, 2)
and v = !(2, 3) ?(3, 2) !(1, 3) !(1, 3)?(3, 1) ?(3, 1). Note that
n(2, 2) is executed by some root process2, which was not
spawned by some other process. The relations induced byS

2
dyn

are illustrated in Figure 2. Horizontal arrows reflect≺proc,
vertical arrows either≺fork or ⊏msg, depending on the labels.
We also have6 ≺msg 7, but neither8 6≺msg 10 nor 9 6≺msg 11.

n f n f n ! ? ! ! ? ?
2 2 3 2 1 2 3 1 1 3 3
2 3 2 1 2 3 2 3 3 1 1

{{1, 2}}

n f

n

f !

n

?

! !

? ?
≺fork

≺proc ⊏msg ⊏msg

Fig. 2. Data word and its relations forS2
dyn

Graph abstraction: Note that the graph from Figure 2 does
not resemble a word anymore, as the direct successor relation
on word positions is abandoned. Actually, we can see data
words from a different angle. A signatureS determines a class
of data graphsG with (Σ×Dm)-labeled nodes andS-labeled
edges. A data graph is contained inG if it can be “squeezed”
into a wordw such that nodes that are connected by a⊳-
labeled edge turn into word positions that are related by⊳

w.
In other words, we consider directed acyclic graphs such that
at least one linearization (extension to a total order) matches
the requirements imposed by the signature.

One principal proof technique in this paper will rely
on a graph abstraction with labelings from afinite set
where data values are classified into equivalence classes.
Let Part(m) be the set of all partitions of[m]. With data
word w of length n, we associate the (node- and edge-
labeled) graphGraph

S
(w) = ({1, . . . , n}, (⊳w)⊳∈S, λ, ν)

where λ : {1, . . . , n} → Σ maps each positioni to ℓ(i)
and ν : {1, . . . , n} → Part(m) maps i to {{l ∈ [m] |
dk(i) = dl(i)} | k ∈ [m]}. Thus, K ∈ ν(i) contains
indices with the same data value at positioni. We say that
data wordsu and v are (S-)equivalent, written u ≈S v, if
Graph

S
(u) ∼= Graph

S
(v), i.e., they induce the same graph

up to isomorphism. Those words cannot be distinguished by
logics as defined in the next subsection. For a setL of data
words, we let[L]S denote the set of words that are equivalent
to some word inL.

Figures 1 and 2 depict the graphs of two words wrt.S
1
+1,∼∪

{⊏σ} andS2dyn. In the first one, every node/position is actually
equipped with an additional labeling{{1}}, which is omitted.
Also, in Figure 2, we omit the labelings{{1}, {2}}, indicating
that the two data values are different.

B. Logic for data words

We consider a monadic second-order logic to specify
properties of data words. Apart from equality of data values
at some given position, it provides binary predicates for
the relation symbols⊳ ∈ S. Let us fix infinite supplies
of first-order variables{x, y, . . .} and second-order variables
{X,Y, . . .}.

The set MSO(S) of monadic second-order formulasis
given by the grammar

ϕ ::= ℓ(x) = a | dk(x) = dl(x) | x⊳ y | x = y | x ∈ X |

¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃X ϕ
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wherea ∈ Σ, k, l ∈ [m], ⊳ ∈ S, x andy are first-order vari-
ables, andX is a second-order variable. Important fragments
of MSO(S) are FO(S), the set of first-order formulas, which
do not use any second-order quantifier, and EMSO(S), the set
of formulas of the form∃X1 . . .∃Xn ϕ with ϕ ∈ FO(S).

The models of an MSO formula are data words. First-
order variables are interpreted as word positions and second-
order variables as sets of positions. Formulaℓ(x) = a holds
in data wordw if position x carries ana, and formula
dk(x) = dl(x) holds if, at positionx, the k-th and thel-
th data value coincide. Data values of distinct positions can
only be compared viax ⊳ y, which is satisfied ifx ⊳

w y. The
atomic formulasx = y andx ∈ X as well as quantification
and boolean connectives are interpreted as expected. Note that
a formula cannot distinguish between data wordsu andv such
thatGraph

S
(u) ∼= Graph

S
(v).

In the case of one data value (m = 1), we will also refer
to the logic EMSO2(S1+1,∼ ∪ {< , ≺∗

∼}) that was considered
in [6] and restricts EMSO logic to two first-order variables.
The predicate< is interpreted as the strict linear order on
word positions and≺∗

∼ as the reflexive transitive closure of
≺∼. We shall later see that this logic is strictly less expressive
than EMSO(S1+1,∼).

A sentenceis a formula without free variables. The lan-
guage defined by sentenceϕ, i.e., the set of its models, is
denoted byL(ϕ). By MSO(S), EMSO(S), etc., we refer to
the corresponding language classes.

Example 3 We pursue Example 2 and considerΣdyn with
signatureS2dyn. Recall that we wish to model systems where an
unbounded number of processes communicate via message-
passing through unbounded first-in first-out channels. Obvi-
ously, not every data word represents an execution of such a
model. Therefore, we identifywell formeddata words, which
have to satisfyϕ1 ∧ ϕ2 ∧ ϕ3 ∈ FO(S2dyn) as given below.
First, we require that there is exactly one initial process:

ϕ1 = ∃x

(

ℓ(x) = n ∧ d1(x) = d2(x)
∧ ∀y (d1(y) = d2(y) → x = y)

)

Next, we assume that every fork is followed by a correspond-
ing new-action, the first action of a process is a new-event,
and every new process was forked by some other process:
ϕ2 =

∀x





ℓ(x) = f → ∃y (x ≺fork y)
∧ ℓ(x) = n ↔ ¬∃y (y ≺proc x)
∧ ℓ(x) = n →

(

d1(x) = d2(x) ∨ ∃y (y ≺fork x)
)





Finally, every send should be followed by a receive, and a
receive has to be preceded by a send action:

ϕ3 = ∀x
(

ℓ(x) ∈ { ! , ? } → ∃y (x ⊏msg y ∨ y ⊏msg x)
)

The latter formula ensures that, for everyc, d ∈ N, there
are as many symbols!(c, d) as ?(d, c), theN -th send symbol
being matched with theN -th receive symbol. We call a data
word overΣdyn andS2dyn well formedif it satisfiesϕ1 ∧ ϕ2 ∧
ϕ3. Figure 2 depicts a well formed data word.

When we restrict to well formed words (which are actually
dynamic message sequence charts), our logic corresponds to
that from [26]. Note that, if we replaced⊏msg with ≺msg,
ϕ3 would guarantee that the projection of a word onto
sends and receives through channelc→ d is of the form
(!(c, d) ?(d, c))∗, modeling thatc→ d has buffer size one. In
the terminology of [20], which considers systems with a fixed
number of processes, those words are existentially1-bounded.

A last FO(S2dyn)-formula (which is not satisfied by all well
formed words) specifies that a processc, after forking a new
processd, shall wait for a message fromd:

∀x1, y1

(

x1 ≺fork y1
→ ∃x2, y2 (y1 ≺proc y2 ∧ x1 ≺proc x2 ⊏msg y2)

)

Such a property is generally not expressible within a two-
variable logic (cf. proof of Lemma 4).

III. C LASS REGISTER AUTOMATA

Next, we define class register automata, a non-deterministic
one-way automata model that captures EMSO logic. It com-
bines register automata [22], class memory automata [3], and
the element of guessing data values from [17], [19], [23] in
a natural way. When processing a data word, data values
from the current position can be stored in registers. The
automaton reads the data word from left to right but can look
back on certain states and register contents from the past.
Positions that can be accessed in this way are determined by
the signatureS. Their register entries can be compared with
one another, or with current values from the input. Moreover,
when taking a transition, registers can be updated by eithera
current value, an old register entry, or a guessed value.

Definition 1 A class register automaton(over S) is a tuple
A = (Q,R,∆, (F⊳)⊳∈S

, G) whereQ is a finite set ofstates,
R is a finite set ofregisters, theF⊳ ⊆ Q are sets oflocal final
states, andG is the global acceptance condition:a boolean
formula over{ ‘q ≤ N ’ | q ∈ Q andN ∈ N}. Moreover,∆
is a set of transitionsof the form

(p, g)
a

−→ (q, f) .

Here,p : S⇀ Q is a partial mapping representing the source
states. Moreover,g is a guard, i.e., a boolean formula over
{ ‘θ1 = θ2’ | θ1, θ2 ∈ [m] ∪ (dom(p) × R)} to perform
comparisons of values that are are currently read and those
that are stored in registers. Finally,a ∈ Σ is the current
label, q ∈ Q is the target state, andf is a partial mapping
R ⇀ {guess} ∪ [m] ∪ (dom(p)×R) to update registers.

In the following, we writep⊳ instead ofp(⊳). Transition
(p, g)

a
−→ (q, f) can be executed at positioni of a data word

if the state at positionprev
⊳
(i) is p⊳ (for all ⊳ ∈ dom(p))

and, for a register check(⊳1, r1) = (⊳2, r2), the entry of
registerr1 at prev

⊳1
(i) equals that ofr2 at prev

⊳2
(i). The

automaton then reads the labela together with a tuple of data
values that also passes the test given byg, and goes toq.
Moreover, registerr obtains a new value according tof(r).
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Let us be more precise. A configuration ofA is a pair(q, ρ)
whereq ∈ Q is the current state andρ : R ⇀ D is a partial
mapping denoting the current register contents. Ifρ(r) is
undefined, then there is no entry inr. Letw = w1 . . . wn be a
data word andξ = (q1, ρ1) . . . (qn, ρn) be a sequence of con-
figurations. Fori ∈ {1, . . . , n}, let val i((⊳, r)) = ρprev

⊳
(i)(r)

(which might be undefined) andval i(k) = dk(i). We callξ a
run of A on w if, for every positioni ∈ {1, . . . , n}, there is

a transition(pi, gi)
ℓ(i)
−→ (qi, fi) such that the following hold:

(1) dom(pi) = {⊳ ∈ S | prev
⊳
(i) is defined}

(2) for all ⊳ ∈ dom(pi) : (pi)⊳ = qprev
⊳
(i)

(3) gi is evaluated to true on the basis of its atomic subfor-
mulas, whereθ1 = θ2 is true iff val i(θ1) = val i(θ2) ∈ D

(4) for all r ∈ R :







ρi(r) ∈ D if fi(r) = guess

ρi(r) undefined iffi(r) undefined
ρi(r) = val i(fi(r)) otherwise

Runξ is accepting ifqi ∈ F⊳ for all i ∈ {1, . . . , n} and⊳ ∈ S

such thatnext⊳(i) is undefined. Moreover, we require that
the global conditionG is met. Hereby, an atomic constraint
q ≤ N is satisfied byξ if |{i ∈ {1 . . . , n} | qi = q}| ≤ N .
The languageL(A) ⊆ (Σ × Dm)∗ of A is defined in the
obvious manner. The corresponding language class is denoted
by CRAg(S) (the index g indicates that the automata are
allowed to guess data values).

Note that our acceptance conditions are inspired by
Björklund and Schwentick [3], who also distinguish between
local and global acceptance. Local final states can be moti-
vated as follows. When data values model process identities,
a ≺∼-maximal position of a data word is the last position
of some process and must give rise to a local final state.
Moreover, in the context ofS2dyn, a sending position that does
not lead to a local final state inF⊏msg

requires a matching
receive event. Thus, local final states can be used to model
“communication requests”. The global acceptance condition
of class register automata is more general than that of [3]
to cope with all possible signatures. However, in the special
case ofS1+1,∼, there is some global control in terms of≺+1.
Therefore, we could perform some counting up to a finite
threshold and restrict, like [3], to a set of global final states.

Indeed, we obtain the model from [3], which was defined
for S1+1,∼, as a special case of our class register automata.

Definition 2 A class memory automatonis a class register
automaton where, in all transitions(p, g)

a
−→ (q, f), the

update mappingf is undefined everywhere.

In a class memory automaton, registers are never updated
and, therefore, meaningless. The languages recognized by
class memory automata are collected inCMA(S).

Remark 1 In [3], the semantics of class memory automata
is described in terms of an infinite transition system where a
configuration keeps track of “active” current states that need
to be memorized. We can adapt this to class register automata.

When we group configurations into equivalence classes (wrt.
bijective renaming of data values), this allows us to construct
a finitely branching emptiness-equivalent transition system
with a computable successor function (cf. [17], [19]).

As an intermediary model, we consider non-guessing class
register automata, which do not allow us to guess a data value.
Formally, we require that, for every update functionf and
registerr ∈ dom(f), we havef(r) 6= guess. We denote by
CRA(S) the corresponding language class.

Our model captures register automata [22] as well. Let
S
m
+1 = {≺+1}. A register automatonis a non-guessing class

register automaton overSm+1. For m = 1, many equivalent
definitions of register automata can be found in the literature.
Our definition is actually closer to [15].

Example 4 Class register automata overΣdyn andS
2
dyn sub-

sume the dynamic communicating automata from [7] and
are suitable to model phenomena that occur in real-life
programming languages: the mechanism of passing process
identities, via message exchange or process creation. Updates
of the form f(r) = (≺fork, r

′) and f(r) = (⊏msg, r
′)

correspond to passing a process identity to the updating
process. Moreover, when a process wants to receive a message
from the process whose identity is stored in registerr, a
corresponding transition of the class register automaton is
guarded by(≺proc, r) = (⊏msg, r0) where we assume that
every process keeps its identity in some registerr0.

Example 5 SupposeΣ = {a, b} and D = N. We pursue
Example 1 and build a non-guessing class register automa-
ton over S1+1,∼ for L = [{(a, 1) . . . (a, n)(b, n) . . . (b, 1) |
n ≥ 1}]S1

+1,∼
(e.g., the data word from Figure 1 is inL).

Table 3 presents a non-guessing class register automaton
and an accepting run on(a, 8)(a, 5)(b, 5)(b, 8) ∈ L. The
automaton uses two states,q1 and q2. Stateq1 is assigned to
positions labeled witha (first phase),q2 to all other positions
(second phase). Moreover, the automaton is equipped with two
registers,r1 andr2. During the first phase,r1 always contains
the data value of the current position, andr2 the data value
of the direct predecessor (unless we deal with the very first
position, where the contents is undefined, denoted⊥). These
invariants are ensured by transitions 1 and 2. In the second
phase, at positionn + i, the value ofr2 is recovered from
n− i+ 1 (by the update functionf ) and determines the next
data value to read (by means of guardg). Finally, we set
F≺∼

= {q2}, F≺+1 = {q2}, andG = ¬(q1 ≤ 0).

By an easy pumping argument, one can show that the
languageL from Example 5 cannot be recognized by any
class memory automaton overS1+1,∼ (see proof of Lemma 4).
Next, we will see that non-guessing class register automata,
though more expressive than class memory automata, are not
yet enough to capture EMSO logic. Assumem = 2 and
considerS2∼ = {≺1

∼ , ≺
2
∼}, which allows us to compare the

first and second data values of two positions, respectively (cf.
Example 1).
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Transitions Run

source (p) guard (g) input q update (f ) input state r1 r2

≺∼ ≺+1

1 (a, d) q1 r1 := d (a, 8) q1 8 ⊥

2 q1 (a, d) q1
r1 := d

r2 := (≺+1, r1)
(a, 5) q1 5 8

3 q1 q1 d = (≺+1, r1) (b, d) q2 r2 := (≺∼, r2) (b, 5) q2 ⊥ 8

4 q1 q2 d = (≺+1, r2) (b, d) q2 r2 := (≺∼, r2) (b, 8) q2 ⊥ ⊥

Fig. 3. A non-guessing class register automaton overS1
+1,∼

and a run

Lemma 1 FO(S2∼) 6⊆ CRA(S2∼)

Proof: We determine a formulaϕ ∈ FO(S1+1,∼) and
show, by contradiction, that every non-guessing class register
automaton capturingL = L(ϕ) will necessarily accept a data
word outsideL. Roughly speaking,L consists of words where
every position belongs to a pattern that is depicted in Figure 4
and captured by the formulapattern(x1, . . . , x4) = x1 ≺1

∼

x3 ∧ x1 ≺2
∼ x4 ∧ x2 ≺2

∼ x3 ∧ x2 ≺1
∼ x4. With this, ϕ =

∀x∃x1, . . . , x4 (x ∈ {x1, . . . , x4} ∧ pattern(x1, . . . , x4)) ∈
FO(S2∼) is the formula for L. Suppose that there is a
non-guessing class register automatonA recognizing L.
We build a data wordw = (a, d1) . . . (a, dn) ∈ L with
n ∈ 4N and {d11, . . . , d

1
n} ∩ {d21, . . . , d

2
n} = ∅ by nesting

disjoint patterns as depicted in Figure 4: we first create
i1, . . . , i4, then addj1, . . . , j4; the next pattern is to be
inserted atn1, . . . , n4, etc. If we choosen large enough,
then there are an accepting runξ = (q1, ρ1) . . . (qn, ρn)
of A on w (with transition ti = (pi, gi)

a
−→ (qi, fi) at po-

sition i) and positionsi1, . . . , i4, j1, . . . , j4 of w such that
j1 < i1, i1, . . . , i4 and j1, . . . , j4 form two (disjoint) pat-
terns, andti4 = tj4 . Now, consider the data wordw′

that we obtain fromw when we swap the second data
values of positionsi1 and j1. Thus, the data part ofw′ is
d1 . . . dj1−1 (d

1
j1
, d2i1) dj1+1 . . . di1−1 (d

1
i1
, d2j1) di1+1 . . . dn.

Note thatw′ 6∈ L. However, applying transitionst1, . . . , tn
still yields an accepting runξ′ = (q1, ρ

′
1) . . . (qn, ρ

′
n) of A on

w′. For i ∈ {1, . . . , n}, ρ′i is then given as follows:

ρ′i(r) =























d2i1 if ρi(r) = d2j1 and i ∈ {j1, j3}

d2j1 if ρi(r) = d2i1 and i ∈ {i1, i3}

d1i1 if ρi(r) = d1j1 and i = j4

d1j1 if ρi(r) = d1i1 and i = i4
ρi(r) otherwise

One can verify thatξ′ is indeed an accepting run onw′.

j1 j2 j3 j4i1 i2 i3 i4n1 n2 n3 n4

≺1
∼

≺2
∼

Fig. 4. Nested patterns

The proof of Lemma 1 can be easily adapted to show
FO(S2dyn) 6⊆ CRA(S2dyn). It reveals that non-guessing class
register automata can in general not detect cycles. However,
according to Hanf’s normal form, this very property is needed
to capture FO logic over graphs of bounded degree [21]. In
the next section, we show that class register automata, which
are equipped with the possibility of spontaneously guessing
data values and storing them in registers, indeed capture FO
and, as they are closed under projection, also EMSO logic.

Closure under projection is meant in the following sense.
Let Γ be a non-empty finite alphabet. GivenS, we define
another signatureSΓ for the alphabetΣ×Γ: in every typeσ,
replace atomic formulasℓ(i) = a by

∨

M∈Γ ℓ(i) = (a,M).
For C ∈ {CRAg,CRA,CMA}, we say thatC(S) is closed
under projectionif, for every alphabetΓ and languageL ⊆
((Σ × Γ) × Dm)∗, L ∈ C(SΓ) implies projΣ(L) ∈ C(S).
Hereby, the projection operatorprojΣ just removes theΓ
component while keeping the data values.

As projection preserves the graph structure of a data word,
we obtain the following lemma.

Lemma 2 For every signatureS, CRAg(S), CRA(S), and
CMA(S) are closed under union, intersection, and projection.

In general, class register automata, non-guessing class
register automata, and class memory automata are not closed
under complementation. To show this, one can rely on the
non-complementability result of [9].

IV. FROM LOGIC TO AUTOMATA

In this section, we solve the synthesis problem for
EMSO(S)-specifications. We first state the result and give a
sketch of the proof. It is based on a class register automaton
that is able to detect local patterns of a data word. This
automaton is then detailed in a dedicated subsection.

A. The main result

Our main result states that every EMSO(S)-sentence is
equivalent to some class register automaton.

Theorem 1 For all signatures S, we haveEMSO(S) ⊆
CRAg(S). An automaton can be computed effectively and in
elementary time.

Classical procedures that translate formulas into automata
follow an inductive approach, use two-way mechanisms and
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tools such as pebbles, or rely on reductions to existing
translations. There is no obvious way to apply any of these
techniques to prove our theorem. We therefore proceed dif-
ferently, in two steps, following an idea from [9]. We first
transform the first-order kernel of the formula at hand into
a normal form due to Hanf [21]. According to that normal
form, satisfaction of a first-order formula wrt. data wordw
only depends on the local patterns (called spheres) that occur
in GraphS(w), and on how often they occur, counted up
to a threshold that can be computed from the formula. The
size of a sphere is bounded by a radius that also depends
on the formula. We can indeed apply Hanf’s Theorem, as
the structures that we consider havebounded degree: every
node/word position has at most|S| incoming and at most|S|
outgoing edges. In a second step, we transform the formula
in normal form into a class register automaton.

Let us be more precise and letw = w1 . . . wn be a data
word. Giveni, j ∈ {1 . . . , n}, we denote bydistwS (i, j) the
distance fromi to j, i.e., the minimal length of a path from
i to j in the (undirected) graph({1, . . . , n},

⋃

⊳∈S
⊳

w ∪
(⊳w)−1). In particular,distwS (i, i) = 0 and distwS (i, j) =
distw

S
(j, i) = 1 if i ⊳w j for some⊳ ∈ S. For a position

i ∈ {1, . . . , n} and a radiusB ∈ N, the B-sphere of
w around i is the substructure ofGraphS(w) induced by
{j ∈ {1, . . . , n} | distw

S
(i, j) ≤ B}. In addition, it contains

the distinguished elementi as a constant, calledsphere center.
Let B-Sphw

S (i) denote theB-sphere ofw around i, and
let B-Spheres

S
denote the set ofB-spheres that arise from

data words. In the following, we do not distinguish between
isomorphic structures so thatB-Spheres

S
is a finite set.

The 2-sphere of the data word from Figure 2 around its
second position is depicted in Figure 5 (omitting labelingsof
the form{{1}, {2}}). Its center is framed by a rectangle.

{{1, 2}}

n f

n

f

n

!

?
≺fork

≺proc

⊏msg

Fig. 5. 2-Sphw

S
(2) for data wordw from Figure 2

Theorem 2 (cf. [21]) Let ϕ ∈ FO(S). One can compute
B ∈ N and a boolean formulaβ over {‘S ≤ N ’ | S ∈
B-SpheresS andN ∈ N} such thatL(ϕ) is the set of data
words that satisfyβ. Here, we say thatw = w1 . . . wn satisfies
atomS ≤ N iff |{i ∈ {1, . . . , n} | B-Sphw

S
(i) ∼= S}| ≤ N .

Proof: A simple but crucial observation is that there ex-
ists a first-order sentence that is equivalent toϕ but talks about
Graph

S
(w) rather thanw. We simply writeλ(x) = a instead

of ℓ(x) = a, and
∨

η∈P ν(x) = η instead ofdk(x) = dl(x)
whereP ⊆ Part(m) is the set of partitions of[m] such that
k and l occur in the same set. As MSO(S)-formulas cannot
distinguish between data words that induce the same graph,
we can apply the effective construction from [21] to obtain
the boolean formulaβ in normal form.

Theorem 2 advises us to build a class register automaton
that, when reading a positioni of data wordw, outputs the
sphere ofw aroundi. This is the main difficulty in the proof
of Theorem 1, as spheres have to be computed “in one go”,
i.e., reading the word from left to right, while accessing only
certain configurations from the past. Using the normal form,
the sphere automaton can then readily be translated into the
final class register automaton.

Proposition 1 Let B ∈ N. One can effectively construct a
class register automatonAB = (Q,R,∆, (F⊳)⊳∈S

, G) over
S and a mappingπ : Q → B-SpheresS such thatL(AB) =
(Σ × Dm)∗ and, for every data wordw = w1 . . . wn, every
accepting run(q1, ρ1) . . . (qn, ρn) of AB on w, and every
position i ∈ {1, . . . , n}, we haveπ(qi) ∼= B-Sphw

S (i).

The construction of the sphere automaton is given in the
next subsection. Let us first show how we can use it, together
with Theorem 2, to derive a class register automaton from a
sentenceϕ = ∃X1 . . . ∃Xh ψ ∈ EMSO(S) with ψ ∈ FO(S)
(we also assumeh ≥ 1). Note that Hanf’s Theorem applies to
first-order formulas only. To cope with second-order variables,
let us extendΣ to a new alphabetΣ×Γ whereΓ = 2{1,...,h}.
Recall that we obtain a new signatureSΓ when we replace,
in every typeσ, formulasℓ(i) = a by

∨

M∈Γ ℓ(i) = (a,M).
To obtain fromψ a corresponding formulaψΓ ∈ FO(SΓ), we
replaceℓ(x) = a with

∨

M∈Γ ℓ(x) = (a,M) and, moreover,
x ∈ Xj with

∨

a∈Σ,M∈Γ ℓ(x) = (a,M ∪ {j}). Consider
the radiusB ∈ N and the normal formβΓ for ψΓ due to
Theorem 2. LetAB = (Q,R,∆, (F⊳)⊳∈S

, G) be the class
register automaton overSΓ from Proposition 1 andπ be the
associated mapping. We turn the global acceptance condition
of AB into G′ = G ∧ β′

Γ whereβ′
Γ is obtained fromβΓ by

replacing every atomS ≤ N with π−1(S) ≤ N (which can
be expressed as a suitable boolean formula). We now hold
A′

B, a class register automaton satisfyingL(A′
B) = L(ψΓ).

Finally, we exploit closure under projection (Lemma 2) to
obtain a class register automaton overS that recognizes
L(ϕ) = projΣ(L(ψΓ)).

B. The sphere automaton

It remains to prove Proposition 1, which amounts to con-
structingAB = (Q,R,∆, (F⊳)⊳∈S

, G), together withπ :
Q→ B-SpheresS. The idea is that, at each positioni in the
data wordw at hand,AB guesses theB-sphereS of w around
i. To verify that the guess is correct, i.e.,S ∼= B-Sphw

S
(i),

S is passed to each position that is connected toi by an
edge inGraph

S
(w). That new position locally checks label

and data equalities imposed byS, then also forwardsS to its
neighbors, and so on. Thus, at any time, several local patterns
have to be validated simultaneously so that a stateq ∈ Q

is actually aset of spheres. In fact, we considerextended
spheresE = (S, α, col ) whereS = (U, (⊳E)⊳∈S, λ, ν, γ) is
a sphere (with universeU and sphere centerγ), α ∈ U is
the active node, and col is a color from a finite set, which
will be specified later. The active nodeα indicates the current
context, i.e., it corresponds to the position currently read.
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Let B-eSpheresS denote the set of extended spheres.
As we do not distinguish between isomorphic structures,
B-eSpheresS is finite. ForE = (S, α, col ) ∈ B-eSpheresS,
S = (U, (⊳E)⊳∈S, λ, ν, γ), and j ∈ U , we let E[j] refer
to the extended sphere(S, j, col ) where the active nodeα
has been replaced withj. Now suppose that the stateq of
AB that is reached after reading positioni of data wordw
containsE = (S, α, col ). Roughly speaking, this means that
the neighborhood ofi in w shall look like the neighborhood
of α in S. Thus, if S containsj′ such thatα ⊳

E j′, then
we must findi′ such thati ⊳w i′ in the data word. Local
final states will guarantee thati′ indeed exists. Moreover, the
state assigned toi′ in a run ofAB will contain the new proof
obligationE[j′] and so forth. Similarly, an edge in (the graph
of) w has to be present in spheres, unless it is beyond their
scope, which is limited byB. All this is reflected below, in
conditions T2–T6 of a transition.

We are still facing two major difficulties. Severalisomor-
phic spheres have to be verified simultaneously, i.e., a state
must be allowed to include isomorphic spheres in different
contexts. A solution to this problem is provided by the addi-
tional coloringcol . It makes sure that centers of overlapping
isomorphic spheres with different colors refer to distinctnodes
in the input word. To put it differently, for a given position
i in data wordw, there may be several positionsi′ such
that distw

S
(i, i′) ≤ 2B + 1 andB-Sphw

S
(i) ∼= B-Sphw

S
(i′).

Fortunately, the number of such positionsi′ is bounded by
(|S| + 1) · maxSize2 wheremaxSize ≤ |S|B+1 + 1 is the
maximal number of nodes in a sphere. As a consequence, the
coloringcol of an extended sphere can be restricted to the set
{1, . . . , (|S|+ 1) ·maxSize2 + 1}.

Implementing these ideas alone would do without registers
and yield a class memory automaton. But this cannot work
due to Lemma 1. Indeed, a faithful simulation of cycles
in spheres has to make use of data values. They need to
be anticipated, stored in registers, and locally compared
with current data values from the input word. To this aim,
we introduce a register(E, k) for every extended sphere
E and k ∈ [m]. To get the idea behind this definition,
consider a run(q1, ρ1) . . . (qn, ρn) of AB on data word
w = (a1, d1) . . . (an, dn). Pick a positioni of w and suppose
thatE = (U, (⊳E)⊳∈S, λ, ν, γ, α, col) ∈ qi. If α is minimal
in E, then there is no pending requirement to check. Now, as
α shall correspond to the current positioni of w, we write, for
everyk ∈ [m], dki into register(E, k) (first case of condition
T8 below). For all j ∈ U \ {α}, on the other hand, we
anticipate data values and store them in(E[j], k) (second
case of T8). They will be forwarded (third case of T8) and
checked later against both the guesses made at other minimal
nodes ofE (guardg3 of T7) and the actual data values in
w (guardg2). This procedure makes sure that the values that
we carry along within an accepting run agree with the actual
data values ofw. Now, asprev

⊳
and next⊳ are monotone

wrt. positions with identical labels and data values (Fact 1in
the appendix), two identical cycles cannot be “merged” into
one larger one, unlike in non-guessing class register automata

where different parts may act erroneously on the assumption
of inconsistent data values (cf. Lemma 1). As a consequence,
spheres are correctly simulated by the input word.

Let us formalizeAB = (Q,R,∆, (F⊳)⊳∈S
, G) and the

mappingπ : Q → B-SpheresS, following the above ideas.
The set of registers isR = B-eSpheresS × [m]. A state from
Q is a non-empty setq ⊆ B-eSpheresS such that
(i) there is a uniqueE = (U, (⊳E)⊳∈S, λ, ν, γ, α, col) ∈ q

such thatγ = α (we setπ(q) = (U, (⊳E)⊳∈S, λ, ν, γ)
to obtain the mapping required by Proposition 1),

(ii) there area ∈ Σ andη ∈ Part(m) such that, for allE =
(. . . , λ, ν, . . .) ∈ q, we haveλ(α) = a and ν(α) = η

(we let label (q) = a anddata(q) = η), and

(iii) for every (S, α, col ), (S, α′, col) ∈ q, we haveα = α′.
Before we turn to the transitions, we introduce some

notation. Below,E will always denote(S, α, col ) with S =
(U, (⊳E)⊳∈S, λ, ν, γ); in particular, α refers to the active
node of E. The partial mappingprevE

⊳
and the distance

distE(j, j′) of j andj′ in E are defined in the obvious man-
ner. Forj ∈ U , we also settype−(j) = {⊳ ∈ S | prevE

⊳
(j)

is defined}. Let us fix, for allE ∈ B-eSpheres
S

such that
type−(α) 6= ∅, some arbitrary⊳E ∈ type−(α). Finally, for
state q and k1, k2 ∈ [m], we write k1 ∼q k2 if there is
K ∈ data(q) such that{k1, k2} ⊆ K.

We have a transition(p, g)
a

−→ (q, f) iff the following
hold:
T1 label (q) = a

T2 for all ⊳ ∈ S, E ∈ q :

⊳ 6∈ dom(p) =⇒ prevE
⊳
(α) is undefined

T3 for all ⊳ ∈ dom(p), E ∈ q, j ∈ U :

j ⊳E α ⇐⇒ E[j] ∈ p⊳

T4 for all ⊳ ∈ dom(p), E ∈ p⊳, j ∈ U :

α⊳
E j ⇐⇒ E[j] ∈ q

T5 for all ⊳ ∈ dom(p), E ∈ q :

prevE
⊳
(α) undefined=⇒ distE(γ, α) = B

T6 for all ⊳ ∈ dom(p), E ∈ p⊳:

nextE
⊳
(α) undefined=⇒ distE(γ, α) = B

T7 g = g1 ∧ g2 ∧ g3 where

– g1 =
∧

k1,k2∈[m]
k1 ∼q k2

k1 = k2 ∧
∧

k1,k2∈[m]
k1 6∼q k2

¬ (k1 = k2)

– g2 =
∧

k∈[m] E ∈ q

⊳∈type
−(α)

k = (⊳, (E, k))

– g3 =
∧

k∈[m] E ∈ q j ∈U

⊳1,⊳2∈type
−(α)

(⊳1, (E[j], k)) = (⊳2, (E[j], k))

8



T8 for all k ∈ [m] andE ∈ B-eSpheresS: f((E, k)) =














k if E ∈ q and type−(α) = ∅
guess if ∃j 6= α : E[j] ∈ q and type−(j) = ∅
(⊳E[j], (E, k)) if ∃j ∈ U : E[j] ∈ q and type−(j) 6= ∅
undefined otherwise

Note thatf is well-defined.

The acceptance conditions areG = true and, for every
⊳ ∈ S, F⊳ = {q ∈ Q | for all E ∈ q, nextE

⊳
(α) is undefined}.

In the appendix, we show that the overall construction is
correct:AB accepts every data word and, in every accepting
run (q1, ρ1) . . . (qn, ρn) on some data wordw, π(qi) is the
B-sphere ofw aroundi.

We will see in Section V that the reverse translation, from
automata to logic, fails in general. When there are no data
values, however, we have expressive equivalence of EMSO
logic and class register automata (which, in that case, reduce
to class memory automata). The translation from automata to
logic follows the standard approach. The following theorem
is a proper generalization of the main result of [9].

Theorem 3 Supposem = 0. For every signatureS, we have
CMA(S) = EMSO(S).

V. M ORE EXPRESSIVENESS RESULTS

In this section, we compare our logic and automata with
existing notions for data words wrt. their expressive power.

A. Comparison with class automata

Let us consider class automata [4], which have been shown
to capture all (extended) XPath queries. Class automata area
smooth (undecidable) extension of data automata and, there-
fore, of class memory automata. A class automaton is suitable
to work over words (even trees) with multiple data values. It
consists in a pair(A,B) whereA is a non-deterministic letter-
to-letter transducer from the label alphabetΣ to some working
alphabetΓ, andB is a finite automaton overΓ× {0, 1}m. A
data word(a1, d1) . . . (an, dn) ∈ Σ× {0, 1}m is accepted if,
for input a1 . . . an, there is some outputu1 . . . un ∈ Γ∗ of
A such that, for alld ∈ D, the word(u1, b1) . . . (un, bn) ∈
(Γ × {0, 1}m)∗ is accepted byB. Hereby,bki = 1 iff dki = d.

We will show that, form = 2, class automata capture
neither EMSO logic nor non-guessing class register automata.
Note that class automata do not depend on a signature. To
allow for a fair comparison, we choose the simple signature
S
2
+1,∼ = {≺+1 ,≺1

∼ ,≺
2
∼}.

Lemma 3 There isL ∈ EMSO(S2+1,∼)∩CRA(S2+1,∼) such
that L cannot be recognized by any class automaton.

Proof: Let Σ = {a} andD = N. Using an argument
from [4], one can show that there is no class automaton that
recognizesL = [{(a, 1, 1) . . . (a, n, n)(a, 1, 1) . . . (a, n, n) |
n ≥ 1}]S2

+1,∼
. It is, however, easy to define an EMSO(S2+1,∼)-

sentence forL. We restrict to the construction of a non-
guessing class register automaton, which is very similar tothe

automaton from Example 5. Here, we will need four registers,
rk1 andrk2 for k = 1, 2. The crucial difference is in the second
phase, where we encounter a data value for the second time.
We henceforth require that, at positionn + i, the k-th data
valuedkn+i is contained in registerrk1 at prev≺k

∼

(n+ i) = i.
The valuedkn+i is henceforth stored inrk1 and has to coincide,
at positionn + i + 1, with the contents ofrk2 at position
prev≺k

∼

(n+ i+ 1) = i+ 1.

B. A hierarchy over one-dimensional data words

Next, we consider classical formalisms related toS
1
+1,∼.

Lemma 4 We have the inclusions depicted in Figure 6. Here,
−→ means ‘strictly included’,99K means ‘included’, and699K
means ‘not included’.

The proof of Lemma 4 can be found in the appendix. Note
that MSO(S1+1,∼) 6⊆ CRAg(S1+1,∼) is shown using some
combinatorial argument, which provides a general method
to prove that a property is not definable in EMSO logic.
The remaining (strict) inclusions are left open. In particular,
we do not know if CRAg(S1+1,∼) ⊆ MSO(S1+1,∼). For
certain signatures, however, this is definitely not the case.
Trivially, we haveMSO(S1+1) $ CRA(S1+1), as MSO(S1+1)
cannot reason about data values. It also holdsCRA(S2dyn) 6⊆
MSO(S2dyn): For u = !(1, 2) !(1, 2) and v = !(1, 2) !(1, 3),
we haveGraphS2

dyn
(u) = GraphS2

dyn
(v) so that logic cannot

distinguish betweenu andv. A non-guessing class register au-
tomaton, on the other hand, may acceptu without acceptingv
(and vice versa). Note thatCRAg(S2dyn) ⊆ MSO(S2dyn) might
hold when we restrict to well formed words (cf. Example 3).
This would allow us to recover, in MSO(S2dyn), the positions,
in which some data value occurs and is potentially stored.

EMSO2(S1+1,∼ ∪ {< ,≺∗
∼})

CRA(S1+1)

CMA(S1+1,∼)

EMSO(S1+1,∼) CRA(S1+1,∼)

MSO(S1+1,∼) CRAg(S1+1,∼)6

[3], [6]
=

[3]

Fig. 6. A hierarchy of automata and logics over one-dimensional data words

VI. I NFINITE DATA WORDS

In the realm of reactive systems, it is appropriate to consider
infinite data words, i.e., sequences from the set(Σ×Dm)ω.
Note that all the notions that we introduced in Section II carry
over to the new domain. In particular, a formula from MSO(S)
is interpreted over an infinite wordw without modifying
the definition. However, its fragment EMSO(S) now appears

9



limited. In terms ofS2dyn, one cannot express ‘some process
sends infinitely many messages during an execution’, as can
be shown using Hanf’s Theorem. We therefore introduce
a first-order quantifier∃∞. Formula∃∞xϕ is satisfied by
w = w1w2 . . . ∈ (Σ × Dm)ω if there are infinitely many
positionsi ≥ 1 such thatϕ is satisfied whenx is interpreted
asi. We obtain the logics FO∞(S) and EMSO∞(S) as well as
the language classEMSO∞(S). Now, a translation from logic
into automata requires an extension of class register automata.
We define anω-class register automaton(overS) to be a tuple
A = (Q,R,∆, (F⊳)⊳∈S

, G) whereQ,R,∆, (F⊳)⊳∈S
are as

in class register automata, andG is henceforth a boolean
formula over{ ‘q = ∞’ | q ∈ Q} ∪ { ‘q ≤ N ’ | q ∈ Q

andN ∈ N}. Infnite runs(q1, ρ1)(q2, ρ2) . . . and satisfaction
of the new global acceptance condition are defined as one
would expect. In particular, atomq = ∞ is satisfied if
|{i ≥ 1 | qi = q}| = ∞. The class of languages recognized
by ω-class register automata is denoted byω-CRAg(S).
Theorems 1 and 3 extend to infinite words.

Theorem 4 For all S, we haveEMSO∞(S) ⊆ ω-CRAg(S).
The size of the automaton is elementary in the size of the
formula. Ifm = 0, thenω-CRAg(S) ⊆ EMSO∞(S).

Proof: The crucial observation is that Proposition 1 still
holds. We actually take the same automatonAB and run it on
infinite words. The argument that makes the construction work
relies on the fact that thepast of any word position is finite
(see appendix). Moreover, it was shown in [8] that Theorem 2
has a counterpart for formulas with infinity quantifier. Thus,
for ϕ ∈ FO∞(S), there areB ∈ N and a boolean formula
β over {‘S = ∞’ , ‘S ≤ N ’ | S ∈ B-SpheresS andN ∈
N} such thatL(ϕ) is the set of data words that satisfyβ.
With this, the constructions from Section IV-A can be adapted
to translate an EMSO∞(S)-sentence into anω-class register
automaton overS.

We remark that the proof of Theorem 4 is not effective.
Unlike the proof of Theorem 1, it does not rely on Hanf’s
effective construction for first-order logic without infinity-
quantifier. We do not know if there is an effective alternative.

VII. C ONCLUSION

We provided a general framework for the specification and
implementation of data-word languages. In particular, this
constitutes a first step towards a logically motivated automata
theory for dynamic message-passing systems. In light of this,
it would be desirable to synthesize “more practical” automata
from (necessarily restricted) logical specifications. Forex-
ample, the element of guessing process identities and the
occurrence of deadlocks should be avoided. A good starting
point for the study of restricted specification languages may
be temporal logics [15], [24].

Apart from the questions that we mentioned in Section V,
we leave open if we can synthesize an automaton overS

1
+1,∼

for the logics EMSO({≺+1,∼}) (x ∼ y meaningd1(x) =
d1(y)) and EMSO(S1+1,∼ ∪ {<}). It is not even clear whether
the latter is strictly more expressive than EMSO(S1+1,∼).
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APPENDIX

A. CORRECTNESS OF SPHERE AUTOMATON

We will show that the class register automatonAB =
(Q,R,∆, (F⊳)⊳∈S

, G) over S and the mappingπ : Q →
B-SpheresS are correct in the sense of Proposition 1:
L(AB) = (Σ × Dm)∗ and, for every data wordw =
w1 . . . wn, every accepting run(q1, ρ1) . . . (qn, ρn) of AB on
w, and every positioni ∈ {1, . . . , n}, π(qi) ∼= B-Sphw

S
(i).

Every data word is accepted: Let us first showL(AB) =
(Σ × Dm)∗, i.e., that every data word is accepted byAB .
Let w = (a1, d1) . . . (an, dn) ∈ (Σ × Dm)∗ be any data
word and letGraphS(w) = ({1, . . . , n}, (⊳w)⊳∈S, λ̂, ν̂) be
its associated graph. We have to showw ∈ L(AB). A key
issue is the assignment of colors to word positions inw such
that overlapping spheres can be verified simultaneously. Let
i, i′ ∈ {1, . . . , n}. We say thati andi′ have aB-overlapin w
if both B-Sphw

S (i)
∼= B-Sphw

S (i
′) anddistwS (i, i

′) ≤ 2B+1.

Claim 1 There is a mappingΦ : {1, . . . , n} → {1, . . . , (|S|+
1) ·maxSize2 +1} such thatΦ(i) 6= Φ(i′) wheneveri and i′

have aB-overlap.

Proof: We obtainΦ as a coloring of the undirected graph
({1, . . . , n},Arcs) where two nodes are connected iff they are
distinct and have aB-overlap. The graph has degree at most
(|S|+1)·maxSize2 so that it can be((|S|+1)·maxSize2+1)-
colored by some mappingΦ, i.e.,Φ(i) 6= Φ(i′) if there is an
edge betweeni and i′.

We now define a sequenceξ = (q1, ρ1) . . . (qn, ρn) of
configurations ofAB and show thatξ is an accepting run
of AB on w. Let i ∈ {1, . . . , n}. We set

qi = { (B-Sphw
S
(ic), i,Φ(ic)) |

ic ∈ {1, . . . , n} such thatdistwS (ic, i) ≤ B } .

SupposeE = (S, α, col ), S = (U, (⊳E)⊳∈S, λ, ν, γ), and
k ∈ [m]. We defineρi((E, k)) as follows. If there areic, i′ ∈
{1, . . . , n} such thatdistw

S
(ic, i) ≤ B, distw

S
(ic, i

′) ≤ B,
(S, α) ∼= (B-Sphw

S (ic), i
′), and col = Φ(ic), then we set

ρi((E, k)) = dki′ . Otherwise, we letρi((E, k)) be undefined.
Note thatρi((E, k)) is well defined, as there is at most one
pair ic, i′ satisfying the above properties.

Let us check thatqi is a valid state. SupposeE =
(S, α, col ) ∈ qi and E′ = (E′, α′, col ′) ∈ qi with S =
(U, (⊳E)⊳∈S, λ, ν, γ) andS′ = (U ′, (⊳E′

)⊳∈S, λ
′, ν′, γ′).

(i) Assume γ = α and γ′ = α′. Then, (S, γ) ∼=
(B-Sphw

S
(i), i) and (S′, γ′) ∼= (B-Sphw

S
(i), i). Thus,

(S, γ) ∼= (S′, γ′). Moreover,col = col ′ = Φ(i).

(ii) Clearly, we haveλ(α) = λ′(α′) andν(α) = ν′(α′).

(iii) SupposeS ∼= S′ (S = S′, for simplicity) and col =
col ′. According to the definition ofqi, there are positions
i1, i2 of w such thatdistwS (i, i1) ≤ B, distwS (i, i2) ≤ B,
(S, α) ∼= (B-Sphw

S
(i1), i), (S, α′) ∼= (B-Sphw

S
(i2), i),

and col = Φ(i1) = Φ(i2). We have(B-Sphw
S
(i1), i) ∼=

(B-Sphw
S (i2), i). As i1 andi2 have aB-overlap, we also

have, by Claim 1,i1 = i2. We deduceα = α′.

Next, we define a tupleti = (pi, gi)
ai−→ (qi, fi) for all

i ∈ {1, . . . , n}. We let (pi)⊳ = qprevw
⊳
(i) (which might be

undefined). Moreover, letgi and fi be uniquely given by
conditions T7 and T8 where we replaceq with qi. Before we
check that conditions (1)–(4) of a run are satisfied, we verify
thatti is indeed a transition. In the following, we letE always
refer toE = (S, α, col) with S = (U, (⊳E)⊳∈S, λ, ν, γ).

T1 Obviously, we havelabel (qi) = ai.

T2 Let⊳ ∈ S\dom(pi) (which implies thatprevw
⊳
(i) is un-

defined) andE ∈ qi. We have(S, α) ∼= (B-Sphw
S
(ic), i)

for some ic with distw
S
(ic, i) ≤ B. As prevw

⊳
(i) is

undefined, we conclude thatprevE
⊳
(α) is undefined, too.

T3 Let ⊳ ∈ dom(pi), E ∈ qi, j ∈ U , andi⊳ = prevw
⊳
(i).

Supposej⊳Eα. We need to showE[j] ∈ qi⊳ . AsE ∈ qi,
there is ic ∈ {1, . . . , n} such thatdistw

S
(ic, i) ≤ B,

(S, α) ∼= (B-Sphw
S
(ic), i), and col = Φ(ic). Since

distE(γ, j) ≤ B implies distwS (ic, i⊳) ≤ B, and since
(S, j) ∼= (B-Sphw

S
(ic), i⊳) andcol = Φ(ic), we deduce

E[j] = (S, j, col ) ∈ qi⊳ .

Conversely, supposeE[j] ∈ qi⊳ . We shall showj⊳E α.
There are positionsic, i′c ∈ {1, . . . , n} such that we
have distw

S
(ic, i) ≤ B, distw

S
(i′c, i⊳) ≤ B, (S, α) ∼=

(B-Sphw
S (ic), i), (S, j) ∼= (B-Sphw

S (i
′
c), i⊳), andcol =

Φ(ic) = Φ(i′c). Note thatic andi′c have aB-overlap. By
Claim 1, ic = i′c. As, then,(S, j) ∼= (B-Sphw

S
(i′c), i⊳),

(S, α) ∼= (B-Sphw
S (i

′
c), i), and i⊳ ⊳

w i, we can deduce
j ⊳E α.

T4 is shown similarly to T3.

T5 Let ⊳ ∈ dom(pi) and E ∈ qi such thatprevE
⊳
(α)

is undefined. There isic ∈ {1, . . . , n} such that
distwS (ic, i) ≤ B and (S, α) ∼= (B-Sphw

S (ic), i). Now,
supposedistE(γ, α) < B. But then, we also have
distwS (ic, i) < B and prevE

⊳
(α) is defined, a contradic-

tion. We deduce thatdistE(γ, α) = B.

T6 is shown similarly to T5.

T7 and T8 are immediate.

So far, we know thatti is a transition. Now, let us check the
run conditions.

(1) and (2) are readily verified.

(3) Consider guardgi = g1 ∧ g2 ∧ g3. We first check
subformulag1. For k1, k2 ∈ [m], by the definition of
∼qi and Graph

S
(w), k1 ∼qi k2 iff dk1

i = dk2

i . Now,
considerg2 and an atomic subformulak = (⊳, (E, k))
wherek ∈ [m], E ∈ q, and⊳ ∈ type−(α). Set i⊳ =
prevw

⊳
(i), which must indeed exist (by T2). AsE ∈ qi,

there is ic ∈ {1, . . . , n} such thatdistwS (ic, i) ≤ B,
(S, α) ∼= (B-Sphw

S (ic), i), andcol = Φ(ic). This implies
distw

S
(ic, i⊳) ≤ B, and we obtainρi⊳((E, k)) = dki so

thatg2 also holds. Finally, we have to checkg3. Consider
its subformula(⊳1, (E[j], k)) = (⊳2, (E[j], k)) where
k ∈ [m], E ∈ qi, j ∈ U , and⊳1,⊳2 ∈ type−(α). Let
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i1 = prevw
⊳1

(i) and i2 = prevw
⊳2

(i) (they both exist).
Moreover, letj1 = prevE

⊳1
(α) and j2 = prevE

⊳2
(α). As

E ∈ qi, there isic ∈ {1, . . . , n} such thatdistwS (ic, i) ≤
B, (S, α) ∼= (B-Sphw

S (ic), i), and col = Φ(ic). Due to
the isomorphism, there is a uniquei′ ∈ {1, . . . , n} such
that distwS (ic, i

′) ≤ B and (S, j) ∼= (B-Sphw
S (ic), i

′).
Moreover, we have(S, j1) ∼= (B-Sphw

S
(ic), i1) and

(S, j2) ∼= (B-Sphw
S
(ic), i2). In particular,distw

S
(ic, i1) ≤

B and distwS (ic, i2) ≤ B. We deduceρi1((E[j], k)) =
ρi2((E[j], k)) = dki′ . Thus,g3 is satisfied.

(4) Let (E, k) ∈ R. We distinguish four cases.

If E ∈ qi and type−(α) = ∅, then fi((E, k)) = k.
We have to showρi((E, k)) = dki . As E ∈ qi, there is
ic ∈ {1, . . . , n} such thatdistwS (ic, i) ≤ B, (S, α) ∼=
(B-Sphw

S
(ic), i), and col = Φ(ic). This immediately

implies ρi((E, k)) = dki .

If there is j ∈ U such thatj 6= α, E[j] ∈ qi, and
type−(j) = ∅, thenfi((E, k)) = guess. We have to show
ρi((E, k)) ∈ D. As E[j] ∈ qi, there isic ∈ {1, . . . , n}
such thatdistw

S
(ic, i) ≤ B, (S, j) ∼= (B-Sphw

S
(ic), i),

and col = Φ(ic). Thus, there is a unique positioni′ ∈
{1, . . . , n} such thatdistw

S
(ic, i

′) ≤ B and (S, α) ∼=
(B-Sphw

S
(ic), i

′). We deduceρi((E, k)) ∈ D.

If there is j ∈ U such that E[j] ∈ qi, and
type−(j) 6= ∅, then we havefi((E, k)) = (⊳, (E, k))
with ⊳ = ⊳E[j]. SinceE[j] ∈ qi, there is a position
ic ∈ {1, . . . , n} such thatdistw

S
(ic, i) ≤ B, (S, j) ∼=

(B-Sphw
S (ic), i), andcol = Φ(ic). Moreover, there is a

uniquei′ ∈ {1, . . . , n} such thatdistw
S
(ic, i

′) ≤ B and
(S, α) ∼= (B-Sphw

S
(ic), i

′). As j⊳ = prevE
⊳
(j) is defined,

i⊳ = prevw
⊳
(i) is defined, too. Note that(S, j⊳) ∼=

(B-Sphw
S
(ic), i⊳) and distw

S
(ic, i⊳) ≤ B. We obtain

ρi((E, k)) = dki′ = ρi⊳((E, k)).

If there is noj ∈ U such thatE[j] ∈ qi, thenfi((E, k))
is undefined. Therefore,ρi((E, k)) should be undefined,
too. Suppose, towards a contradiction, thatρi((E, k)) ∈
D. Then, there areic, i′ ∈ {1, . . . , n} such that we
have distwS (ic, i) ≤ B, distwS (ic, i

′) ≤ B, (S, α) ∼=
(B-Sphw

S
(ic), i

′), and col = Φ(ic), But then, there is
a uniquej ∈ U such that(S, j) ∼= (B-Sphw

S (ic), i) so
thatE[j] ∈ qi, which is a contradiction.

We conclude thatξ is a run. Let us quickly verify that it
is accepting. Trivially,G = true is satisfied. Now suppose
⊳ ∈ S and consider any positioni ∈ {1, . . . , n} such that
nextw

⊳
(i) is undefined. We have to show thatqi is contained

in F⊳, i.e.,nextE
⊳
(α) is undefined for allE ∈ qi. So suppose

E ∈ qi. There isic ∈ {1, . . . , n} such thatdistwS (ic, i) ≤
B and (S, α) ∼= (B-Sphw

S
(ic), i). As nextw

⊳
(i) is undefined,

nextE
⊳
(α) must be undefined, too.

Every run keeps track of spheres: In this part of the
proof, we show that we can infer, from every accepting run
of AB on data wordw, the spheres that occur inGraph

S
(w).

Let w = (a1, d1) . . . (an, dn) ∈ (Σ×Dm)∗ be a data word
and GraphS(w) = ({1, . . . , n}, (⊳w)⊳∈S, λ̂, ν̂) its graph.

Supposeξ = (q1, ρ1) . . . (qn, ρn) is an accepting run of
AB on w with corresponding transitionst1, . . . , tn where
(pi, gi)

ai−→ (qi, fi).

The following claim states that an arbitrarily long path of
an extended sphereE that starts in its active node is faithfully
simulated byw. It will turn out to be crucial that, hereby, the
data values in registers of the form(E[j], k) are invariant
during that simulation.

Claim 2 Let i ∈ {1, . . . , n}, e ≥ 0, andE = (S, α, col ) ∈
qi with S = (U, (⊳E)⊳∈S, λ, ν, γ). Suppose there are
j0, . . . , je ∈ U and ⊳1 . . . ,⊳e ∈ S such thatα = j0 and,
for all z ∈ {0, . . . , e − 1}, jz ⊳

E
z+1 jz+1 or jz+1 ⊳

E
z+1 jz.

Then, there is a unique sequencei = i0, . . . , ie ∈ {1, . . . , n}
such that the following hold:

• for each z ∈ {0, . . . , e − 1}, jz ⊳
E
z+1 jz+1 implies

iz ⊳
w
z+1 iz+1 and jz+1 ⊳

E
z+1 jz implies iz+1 ⊳

w
z+1 iz

• for eachz ∈ {0, . . . , e}, we haveE[jz] ∈ qiz , λ(jz) =
aiz , andν(jz) = ν̂(iz)

• for eachz ∈ {1, . . . , e}, k ∈ [m], and j ∈ U , we have
ρi0((E[j], k)) = ρiz ((E[j], k))

• for each z ∈ {0, . . . , e} and k ∈ [m], we have that
ρiz ((E[jz ], k)) = dkiz

Proof: We proceed by induction one. Supposee = 0.
By T1 and guardg1 of T7, λ(α) = ai and ν(α) =
ν̂(i). Let k ∈ [m] and supposetype−(α) 6= ∅. Then,
fi((E, k)) = (⊳, (E, k)) where we let⊳ = ⊳E . Thus,
ρi((E, k)) = ρprevw

⊳
(i)((E, k)). By guardg2 of T7, we have

ρi((E, k)) = dki . If type−(α) = ∅, thenρi((E, k)) = dki is
due to the updatefi((E, k)) = k (T8).

So lete ≥ 0, j0, . . . , je, je+1 ∈ U , and⊳1, . . . ,⊳e,⊳e+1 ∈
S such thatα = j0 and, for everyz ∈ {0, . . . , e}, jz ⊳

E
z+1

jz+1 or jz+1 ⊳
E
z+1 jz . Let i0, . . . , ie ∈ {1, . . . , n} be the

unique corresponding sequence with the required properties.
We consider two cases:

• Assume je ⊳
E
e+1 je+1. Then, qie 6∈ F⊳e+1 so that

nextw
⊳e+1

(ie) is defined. We setie+1 = nextw
⊳e+1

(ie).
Due to T4, we haveE[je+1] ∈ qie+1 . By T1 and guard
g1 of T7, we obtainλ(je+1) = aie+1 , and ν(je+1) =
ν̂(ie+1).
Let k ∈ [m] andj ∈ U . Due to condition T8,E[je+1] ∈
qie+1 implies thatfie+1((E[j], k)) = (⊳, (E[j], k)) for
some⊳ ∈ S. Due to guardg3 of condition T7, we
have ρprevw

⊳
(ie+1)((E[j], k)) = ρie((E[j], k)). We can

now deduceρie((E[j], k)) = ρie+1((E[j], k)).
Finally, let k ∈ [m]. We havefie+1((E[je+1], k)) =
(⊳, (E[je+1], k)) where we let⊳ = ⊳E[je+1]. Thus,
ρie+1((E[je+1], k)) = ρprevw

⊳
(ie+1)((E[je+1], k)). By

guardg2 of T7, we obtainρie+1((E[je+1], k)) = dkie+1
.

• Assumeje+1 ⊳
E
e+1 je. By T2, ⊳e+1 ∈ dom(pi). Thus,

there is (a unique)ie+1 such thatie+1 ⊳
w
e+1 ie.

By T3, we haveE[je+1] ∈ qie+1 . Moreover,λ(je+1) =
aie+1 , andν(je+1) = ν̂(ie+1).
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Let k ∈ [m] and j ∈ U . By condition T8,E[je] ∈
qie implies fie((E[j], k)) = (⊳, (E[j], k)) for some
⊳ ∈ S. Due to guardg3 of condition T7, we have
ρprevw

⊳
(ie)((E[j], k)) = ρie+1((E[j], k)). We deduce

ρie((E[j], k)) = ρie+1((E[j], k)).
Finally, let k ∈ [m]. We distinguish two cases. Sup-
pose type−(je+1) 6= ∅. Then, fie+1((E[je+1], k)) =
(⊳, (E[je+1], k)) where we let⊳ = ⊳E[je+1]. Thus,
ρie+1((E[je+1], k)) = ρprevw

⊳
(ie+1)((E[je+1], k)). By

guard g2 of T7, we haveρie+1((E[je+1], k)) = dkie+1
.

If type−(je+1) = ∅, thenρie+1((E[je+1], k)) = dkie+1
is

due to the updatefie+1((E[je+1], k)) = k (T8).

This concludes the proof of Claim 2.
By means of Claim 2, we will show that spheres that are

contained in states indeed occur in a data word. It will be
used in combination with the following simple monotonicity
fact, which follows easily from the definitions.

Fact 1 Let i1, i2, i′1, i
′
2 ∈ {1, . . . , n} and ⊳ ∈ S such that

i1 ⊳
w i2, i′1 ⊳

w i′2, λ̂(i1) = λ̂(i′1), λ̂(i2) = λ̂(i′2), di1 = di′1 ,
and di2 = di′2 . Then,i1 < i′1 iff i2 < i′2.

Next, we show that a sphere correctly simulatesw and vice
versa, which concludes the correctness proof forAB.

For i ∈ {1, . . . , n}, we letEi = (Si, αi, col i) with Si :=
(Ui, (⊳

Ei)⊳∈S, λi, νi, γi) be the unique extended sphere from
qi such thatγi = αi. In particular,Si = π(qi).

Claim 3 For all i ∈ {1, . . . , n}, we haveB-Sphw
S (i)

∼= Si.

Proof: For e ∈ {0, . . . , B}, let e-Si denote thee-sphere
of (Ui, (⊳

Ei)⊳∈S, λi, νi) aroundγi, which is defined in the
canonical manner. We show, by induction, the following more
general statement:

For everye ∈ {0, . . . , B}, there is an isomorphismh :
e-Sphw

S (i) → e-Si such that, for eachi′ ∈ {1, . . . , n}
with distw

S
(i, i′) ≤ e, we haveEi[h(i

′)] ∈ qi′ .
(*)

We easily verify that (*) holds fore = 0. Now suppose there
is an isomorphismh : e-Sphw

S
(i) → e-Si with e < B. We

extend the domain ofh to elementsi′ with distwS (i, i
′) = e+1

as follows. Leti1, i2 ∈ {1, . . . , n} such thatdistwS (i, i1) = e

anddistw
S
(i, i2) = e + 1. Let ⊳ ∈ S. We distinguish several

cases:

• Supposei1 ⊳
w i2. Since distw

S
(i, i1) < B, we have

distwS (γi, h(i1)) < B. By T6, there isj2 ∈ Ui such
that h(i1) ⊳

Ei j2. SinceEi[h(i1)] ∈ qi1 , we obtain,
by T1, T4, and T7,λi(j2) = ai2 , νi(j2) = ν̂(i2), and
Ei[j2] ∈ qi2 .

• Supposei2⊳w i1. Similarly, due todistwS (i, i1) < B and
T5, there isj2 ∈ Ui such thatj2 ⊳Ei h(i1). Using T1,
T3, and T7, we obtainλi(j2) = ai2 , νi(j2) = ν̂(i2), and
Ei[j2] ∈ qi2 .

We set h̄(i2) = j2 and h̄(i′) = h(i′) for all positions i′

in e-Sphw
S
(i). In doing so, we extend the domain ofh to

elements with distancee+1 from i. Note that this extension

h̄ : (e + 1)-Sphw
S (i) → (e + 1)-Si is well-defined, i.e.,j2 is

uniquely determined byi2 and does not depend on the choice
of i1 or ⊳: if, for i2, we obtained distinct elementsj2 and
j′2, thenEi[j2] ∈ qi2 andEi[j

′
2] ∈ qi2 , which contradicts the

definition of a state.

We show that we obtain a homomorphism̄h : (e +
1)-Sphw

S (i) → (e + 1)-Si. Let i1, i2 ∈ {1, . . . , n} such that
distwS (i, i1) = distwS (i, i2) = e + 1. Moreover, let⊳ ∈ S.
Supposei1 ⊳w i2 (the casei2 ⊳w i1 is symmetric). We have
Ei[h̄(i1)] ∈ qi1 and Ei[h̄(i2)] ∈ qi2 . By T3 (or T4), this
implies h̄(i1)⊳Ei h̄(i2).

Next, we show that̄h is surjective. Letj1, j2 ∈ Ui and
⊳ ∈ S such thatdistEi(γi, j1) = e, distEi(γi, j1) = e + 1,
andj1⊳Ei j2 (the casej2⊳Ei j1 is similar). We haveEi[j1] ∈
qh−1(j1). By T4 andqh−1(j1) 6∈ F⊳, there isi2 ∈ {1, . . . , n}
such thatdistw

S
(i, i2) = e+1, h−1(j1)⊳

wi2, andEi[j2] ∈ qi2 .
We deduce that̄h is surjective.

i2

i1

i
(1)
1

i
(2)
1

i

...

...

Ei[j1]

Ei[j1]

Ei[j1]

Ei[j1]

Ei

Ei

Ei

Fig. 7. h̄ is injective

Let us show that̄h is injective. Let i1, i2 ∈ {1, . . . , n}
such thatdistwS (i, i1) = distwS (i, i2) = e + 1. Assumei1 6=
i2. We show that, then,̄h(i1) 6= h̄(i2). Let j1 = h̄(i1) and
j2 = h̄(i2). Assume, towards a contradiction, thatj1 = j2.
Furthermore, assumei1 < i2 (the other case is symmetric).
In Ei, there are paths fromj1 to α and fromα to j1 that
are simulated, inw, by paths fromi2 to i and from i to
i1, respectively. By Claim 2 and Fact 1, we can simulate
these paths ofEi arbitrarily often inw. This yields an infinite
descending chain. . . < i

(2)
1 < i

(1)
1 < i1 < i2 such that

E[j1] ∈ q
i
(l)
1

anddki2 = dki1 = dki(l)1
for all l ≥ 1 andk ∈ [m].

But this is a contradiction, as every word position has only
finitely many smaller positions. The procedure is illustrated
in Figure 7.

Finally, we show that̄h : (e+ 1)-Sphw
S (i) → (e+ 1)-Si is

actually an isomorphism. Letj1, j2 ∈ Ui and⊳ ∈ S such that
distEi(γ, j1) = distEi(γ, j2) = e+1 andj1⊳Ei j2. We show
that this implies̄h−1(j1) ⊳

w h̄−1(j2). Set i1 = h̄−1(j1) and
i2 = h̄−1(i2). Assume, towards a contradiction, thati1 6⊳w

i2. We havej1 6= j2, Ei[j1] ∈ qi1 , andEi[j2] ∈ qi2 . Due to
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⊳
w

⊳
w

i2

i
(1)
2

i1

i
(2)
2

i
(1)
1

i
(2)
1

i

...

...

Ei[j2]

Ei[j2]

Ei[j1]

Ei[j2]

Ei[j1]

Ei[j1]

Ei

Ei

Ei

Fig. 8. h̄
−1 is a homomorphism

the definition of the set of states ofAB , this impliesi1 6= i2.
Supposenextw

⊳
(i1) < i2 (the other case is similar). Again,

by Claim 2 and Fact 1, we can build an infinite descending
chain . . . < i

(2)
1 < i

(1)
1 < i1 < i2 such thatE[j1] ∈ q

i
(l)
1

for
all l ≥ 1 (cf. Figure 8). This is a contradiction.

B. PROOF OFLEMMA 4

We sketch the proof ideas. Note thatEMSO(S1+1,∼) ⊆
CRAg(S1+1,∼) is due to Theorem 1.

CMA(S1+1,∼) $ EMSO(S1+1,∼) : Consider a class mem-
ory automatonA. As A is completely state-based and does
not make use of any register, it is standard to define a sentence
ψ ∈ EMSO(S1+1,∼) such thatL(ψ) = L(A). It remains
to show strictness of the inclusion. SupposeΣ = {a} and
D = N, and letL = [{(a, 1) . . . (a, n)(a, n) . . . (a, 1) | n ≥
1}]S1

+1,∼
. Towards a contradiction, supposeL is recognized by

class memory automatonA. As A has no access to registers,
a run of A on (a, 1) . . . (a, n)(a, n) . . . (a, 1) is actually a
sequence of statesq1 . . . q2n. If n is large enough, there are
positions1 ≤ i < j ≤ n such thatqi = qj . Now, we can
simply exchange the data values at positionsi andj without
affecting acceptance. More precisely,q1 . . . q2n is also an
accepting run on the data word(a, 1) . . . (a, i−1)(a, j)(a, i+
1) . . . (a, j−1)(a, i)(a, j+1) . . . (a, n)(a, n) . . . (a, 1), which
is not contained inL, a contradiction. On the other hand,
L is the conjunctionϕ1 ∧ ϕ2 of the following FO(S1+1,∼)-
sentences:

• ϕ1 = ∃x true ∧ ∀x∃=1y (x ≺∼ y ∨ y ≺∼ x)

• ϕ2 = ∀x, y




x ≺+1 y ∧ ¬(x ≺∼ y)

→ ∃x′, y′
(

y ≺∼ y′ ≺+1 x
′ ∧ x ≺∼ x′

∨ y′ ≺+1 x
′ ≺∼ x ∧ y′ ≺∼ y

)





The first formula expresses that the word has positive length
and each∼ equivalence class has size two. The second

formula ensures the well-nested structure of a data word so
that it complies with Figure 1.

CMA(S1+1,∼) $ CRA(S1+1,∼) : Consider the language
L from the previous paragraph. It is not inCMA(S1+1,∼).
However, Example 5 demonstrates that there is a non-guessing
class register automaton recognizingL (in the transition
function, we just replaceb with a).

CRA(S1+1,∼) ⊆ MSO(S1+1,∼) : To construct a formula
that simulates an automaton, one basically follows stan-
dard techniques, i.e., second-order variables are used to
encode an assignment of positions to transitions, which
is then checked for being an accepting run. To simulate
register contents, we extend a technique from [27]. Let
us describe how a non-guessing class register automaton
A = (Q,R,∆, (F⊳)⊳∈S

, G) overS1+1,∼ is translated into an
MSO(S1+1,∼)-sentenceϕ such thatL(ϕ) = L(A). As usual,
we assume a second-order variableXδ for every transition
δ ∈ ∆. The formulaϕ will be of the form∃(Xδ)δ (ψ1 ∧ψ2).
Here, ψ1 ∈ FO(S1+1,∼) checks whether (i) each position
i is contained in exactly one setXδ, meaning thatδ is
the transition that is executed ati, (ii) condition (2) in the
definition of a run is met, (iii) the (potential) run is accepting,
i.e., state setsF⊳ andG are respected. It remains to define
ψ2 ∈ MSO(S1+1,∼) to check property (3). This can be done
by means of formulasψg(x), one for each atomic guard
g ∈ { θ1 = θ2 | θ1, θ2 ∈ [m]∪(S1+1,∼ × R)}. We restrict here
to g = ((⊳, r) = (⊳′, r′)). Formulaψg(x) checks if the con-
tents ofr at positionprev

⊳
(x) equals that ofr′ at prev

⊳′(x).
It will be of the form∃X ∃Y ∃(Xr)r∈R (Yr)r∈R χg. The idea
is that the positions inX andY describe pathsx1 ⊳1 x2 ⊳2

. . . ⊳n−1 xn ⊳ x and y1 ⊳
′
1 y2 ⊳

′
2 . . . ⊳′

p−1 yp ⊳
′ x,

respectively, such thatx1 ≺∗
∼ y1 or y1 ≺∗

∼ x1. Thus, the
data value atx1 equals that ofy1. We suppose that every
position xi is contained in precisely one setXri meaning
that registerri is updated by the contents ofri−1 at position
xi−1. More precisely, we require that, for alli ∈ {2, . . . , n},
there is a transitionδ with register-update mappingf such that
xi ∈ Xδ and f(ri) = (⊳i−1, ri−1). The last update should
concernr, i.e., we requirexn ∈ Xr. We assume analogous
properties for the other path and variablesYr. Indeed,χg can
be defined as an FO(S1+1,∼)-formula andψg(x) holds iff the
register contents ofr and r′ coincide at positionsprev

⊳
(x)

andprev
⊳′(x), respectively.

MSO(S1+1,∼) 6⊆ CRAg(S1+1,∼) : We encodegrids into
data words. A grid is a graph that is uniquely given by
its height i and width j meaning that it hasi rows andj
columns that are connected by an horizontal and a vertical
immediate successor relation. Nodes are labeled by elements
from Σ = {a, b, c}. We encode an(i, j)-grid as the data word
(a11, 1) . . . (ai1, i)(a12, 1) . . . (ai2, i) . . . . . . (a1j , 1) . . . (aij , i)
whereakl ∈ Σ is the labeling of the grid node(k, l). Each
subword (a1k, 1) . . . (aik, i) constitutes a column. Then,
moving down in the grid corresponds to a≺+1-step in the
data word, moving right corresponds to a≺∼-step. These
steps are FO(S1+1,∼)-definable.
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Consider the setL of grids of the formH1.C.H2 where
C is a single column ofc-labeled nodes, andH1 and H2

are grids with labels from{a, b} such that the sets of
different column words (over{a, b}) in H1 andH2 coincide.
We know thatL is MSO definable in the signature of a
grid. Therefore, the encodingL of L into data words is
MSO(S1+1,∼)-definable. Using an argument from [29], we
show thatL 6∈ CRAg(S1+1,∼). First observe that the number
of distinct sets of columns words over{a, b} of lengthn is
22

n

. Suppose, towards a contradiction, that there is a class
register automatonA = (Q,R,∆, (F⊳)⊳∈S

, G) such that
L(A) = L. Without loss of generality, we assume thatG is
given in terms of a simple set of global final states. In a run
of A on the data-word encoding of gridH1.C.H2 of heightn,
all the information thatA has aboutH1 must be encoded in
then configurations that are taken while reading thec-labeled
positions. The number of tuples ofn configurations thatA
can distinguish is bounded by

N = |Q|n · 2(|R|·n)2 · (n+ 1)|R|·n .

Here, the second factor is an upper bound on the number
of equivalence classes on the set{1, . . . , |R| · n}, which
captures guessed values, and the third factor is the number of
assignments of registers ton+1 data values. The(n+ 1)-th
element actually indicates that the value was guessed and is
not contained in{1, . . . , n}. Now, asQ andR are fixed,N
does not grow sufficiently fast so thatA will accept a data
word outsideL.
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