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An inverse probability weighted estimator for the bivariate distribution function under right censoring
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An inverse probability weighted estimator is proposed for the joint distribution function of bivariate random vectors under right censoring. The new estimator is based on the idea of transformation of bivariate survival functions and bivariate random vectors to univariate survival functions and univariate random variables. The estimator converges weakly to a zero-mean Gaussian process with an easily estimated covariance function. Numerical studies show that the new estimator is more efficient than some existing inverse probability weighted estimators.

Introduction

In some experiments each unit consists of a pair of components and life times for each component are recorded. We use (T (1) , T (2) ) to denote the pair of life times. Both times are subject to random right censoring at the observed censoring time (C (1) , C (2) ). Examples include twin studies, eye studies and matched pair studies, where censoring is due to units are removed from the study before failure has been observed. In such studies, the joint distribution of bivariate times need to be estimated. Nonparametric estimators of bivariate distributions under right censoring have been proposed by [START_REF] Campbell | Nonparametric bivariate estimation with randomly censored data[END_REF] ;Tsai et.al. (1986); [START_REF] Burke | Estimation of a bivariate distribution function under random censorship[END_REF]; [START_REF] Dabrowska | Kaplan-Meier estimate on the plane[END_REF]; [START_REF] Prentice | Covariance and survivor function estimation using censored multivariate failure time data[END_REF]; [START_REF] Lin | A simple nonparametric estimator of the bivariate survival function under univariate censoring[END_REF]; [START_REF] Van Der Laan | Efficient estimation in the bivariate censoring model and repairing NPMLE[END_REF]; [START_REF] Wang | Nonparametric estimators of the bivariate survival function under simplied censoring conditions[END_REF]; [START_REF] Akritas | Estimation of bivariate and marginal distributions with censored data[END_REF] and [START_REF] Prentice | Hazard-based nonparametric survivor function estimation[END_REF]. The Non-parametric MLE (MPMLE) in [START_REF] Campbell | Nonparametric bivariate estimation with randomly censored data[END_REF] is not unique and is computationally intractable. The repaired NPMLE in van der Laan (1996) deals with the nonuniqueness of NPMLE based on reduced data, but it is sensitive to the choice of bandwidth. The repaired NPMLE can be viewed as a special case of a class of estimators in [START_REF] Prentice | Hazard-based nonparametric survivor function estimation[END_REF]. [START_REF] Moodie | An adjustment to improve the bivariate survivor function repaired NPMLE[END_REF] improve the repaired NPMLE to make it more robust to the choice of bandwidth. [START_REF] Burke | Estimation of a bivariate distribution function under random censorship[END_REF] introduces two inverse probability weighted (IPW) estimators which do not depend on any smoothing parameter or bandwidth, required by the repaired NPMLE and kernel estimates in Tsai et.al. (1986); [START_REF] Akritas | Estimation of bivariate and marginal distributions with censored data[END_REF]. IPW estimators induce nonnegative probability mass and satisfy the monotonicity requirements of a distribution function.

Monotonicity of a bivariate distribution estimator is very important, since the non-monotone estimators [START_REF] Dabrowska | Kaplan-Meier estimate on the plane[END_REF][START_REF] Prentice | Covariance and survivor function estimation using censored multivariate failure time data[END_REF]) may result in negative conditional probabilities in application. Thus this paper focuses on IPW estimators and we propose a new IPW estimator of the bivariate distribution function in the presence of right censoring. The novelty of our method is the variable transformation, which enables us to transfer the bivariate estimation problem to a univariate estimation problem and prove in a simple way that the estimator converges weakly to a zero-mean Gaussian process with an easily estimated covariance function.

Numerical studies show that the new estimator performs more efficiently than the estimators in [START_REF] Burke | Estimation of a bivariate distribution function under random censorship[END_REF] and the covariance function estimator also performs remarkably well.

Preliminaries

Let (T (1) , T (2) ) be a pair of nonnegative random variables defined on a probability space (Ω, F, P ).

The bivariate cumulative distribution function and bivariate survival function of this random vector are

F (t 1 , t 2 ) = P (T (1) ≤ t 1 , T (2) ≤ t 2 ) and S(t 1 , t 2 ) = P (T (1) > t 1 , T (2) > t 2 ) re-
spectively. The pair of censoring times is (C (1) , C (2) ) which has survival function G(t 1 , t 2 ) = P (C (1) > t 1 , C (2) > t 2 ). For simplicity, throughout this paper we assume that S and G are continuous functions. When S and G are discrete our results also hold.

The observable random variables are given by (X (1) , X (2) ) and (δ (1) , δ (2) ) where

X (k) = min(T (k) , C (k) ) and δ (k) = I[T (k) ≤ C (k) ], k = 1, 2. Let H(t 1 , t 2 ) = P (X (1) > t 1 , X (2) > t 2 ) (1)
be the survival function of (X (1) , X (2) ).

Throughout this paper we assume that the following assumption holds.

(A): (T (1) , T (2) ) and (C (1) , C (2) ) are independent.

Under assumption (A) we have that

H(t 1 , t 2 ) = S(t 1 , t 2 )G(t 1 , t 2 ). Let F * (t 1 , t 2 ) = P (X (1) ≤ t 1 , δ (1) = 1, X (2) ≤ t 2 , δ (2) = 1
). Then it can be derived that

F * (t 1 , t 2 ) = t1 0 t2 0 G(v 1 -, v 2 -)F (dv 1 , dv 2 ). It follows immediately that F (t 1 , t 2 ) = t1 0 t2 0 1 G(v 1 -, v 2 -) F * (dv 1 , dv 2 ). ( 2 
)
Suppose that {(T

(1) i , T (2) 
i , C

i , C

(2) i ), i = 1, • • • , n} are i.i.d. samples of the random vector (T (1) , T (2) , C (1) , C (2) ). The observed data are {(X

(1) i , X (2) i , δ (1) i , δ (2) i ), i = 1, • • • , n} where X (k) i = min{T (k) i , C (k) i } and δ (k) i = I[T (k) i ≤ C (k) i ], k = 0, 1. Suppose that Ĝ(t 1 , t 2
) is an estimator of G(t 1 , t 2 ) based on the observed data. Then an IPW estimator for F (t 1 , t 2 ) is given by

F (t 1 , t 2 ) = t1 0 t2 0 F * n (dv 1 , dv 2 ) Ĝ(v 1 -, v 2 -) (3) 
where [START_REF] Campbell | Large sample properties of nonparametric bivariate estimators with censored data[END_REF], using (3), [START_REF] Burke | Estimation of a bivariate distribution function under random censorship[END_REF] constructs two IPW estimators. However, [START_REF] Burke | Estimation of a bivariate distribution function under random censorship[END_REF] does not derive their asymptotic distributions.

F * n (t 1 , t 2 ) = n i=1 I[X (1) i ≤ t 1 , δ (1) i = 1, X (2) i ≤ t 1 , δ (2) 
3 Variable transformation and methodology 3.1 Transformation of S(t 1 , t 2 ) and G(t 1 , t 2 ) to univariate functions

Define transformation from (t 1 , t 2 ) to (α, z) as α = t 2 /t 1 and z = t 2 1 + t 2 2 . Given θ ∈ [0, π/2], such that cos θ = 1/ √ 1 + α 2 or sin θ = 1/ √ 1 + α -2
, we have t 1 = z cos θ and t 2 = z sin θ.

Obviously (z, θ) is the polar coordinates of (t 1 , t 2 ). If (t 1 , t 2 ) is given, then α is fixed and S(t 1 , t 2 ) can be transformed to a univariate function, S(z|α), according to the following formula,

S(t 1 , t 2 ) = P (T (1) > t 1 , T (2) > t 2 ) = P min T (1) t 1 , T (2) t 2 > 1 = P   min    T (1) 1 + t 2 t 1 2 , T (2) 1 + t 2 t 1 -2    > t 2 1 + t 2 2   = P (Z(α) > z) := S(z|α), (4) 
where

Z(α) = min{T (1) √ 1 + α 2 , T (2) √ 1 + α -2 }.
The above transformation can be explained by Figure 1. Points p 1 : (T (1) , T (1) α) and p 2 :

(T (2) α -1 , T (2)
) correspond to vertical and horizontal projection of (T (1) , T (2) ) onto the line c:

v 2 = αv 1 . The value of Z(α)
is the minimum of the distances of these two points from the origin. Therefore S(z|α) = P (Z(α) > z) means the survival function of Z(α) on line c. Note 1) . Therefore the above transformation exists for all (t

that if t 1 = 0, t 2 > 0 then Z(α) = T (2) and if t 1 > 0, t 2 = 0 then Z(α) = T (
1 , t 2 ) ∈ [0, ∞) × [0, ∞). v 1 v ) , ( 2 1 t t ) , ( : ) 2 ( 1 ) 2 ( 2 T T - Ρ α ) , ( ) 2 ( ) 1 ( T T ) , ( : ) 1 ( ) 1 ( 1 α T T Ρ 1 2 t t = α 1 2 v v α = Figure 1: (T (2) α -1 , T (2)
) is obtained by horizontal projection; (T (1) , T (1) α) is obtained by vertical projection.

Similarly we have

G(t 1 , t 2 ) = P (C (1) > t 1 , C (2) > t 2 ) = P (Z ′ (α) > z) := G(z|α), (5) 
where

Z ′ (α) = min{C (1) √ 1 + α 2 , C (2) √ 1 + α -2 }.
Note that S(z|α) and G(z|α) are not conditional survival functions. They are univariate survival functions if α is fixed and they are bivariate functions if α is not fixed.

The IPW estimator based on transformation for censored data

In practice, due to the censorship of (T (1) , T (2) ) and (C (1) , C (2) ), the values of Z(α) and Z ′ (α)

may not be obtained. We can only obtain

X(1) = X (1) 1 + α 2 , X(2) = X (2) 1 + α -2 . (6) Let Z(α) = min{ X(1) , X(2) }, δ ′ (α) = (1 -δ (1) )I[ X(1) < X(2) ] + (1 -δ (2) )I[ X(1) > X(2) ] +(1 -min(δ (1) , δ (2) ))I[ X(1) = X(2) ]. (7) 
Let

H(z|α) = P ( Z(α) > z). (8) 
Then from ( 6), ( 7) and ( 1) we have

H(z|α) = P (X (1) > t 1 , X (2) > t 2 ) = H(t 1 , t 2 ). ( 9 
)
We also have Z(α) and δ ′ (α) are the censored value and censoring indicator for Z ′ (α), since if

δ ′ (α) = 1 then Z ′ (α) = Z(α) is observed and if δ ′ (α) = 0 then Z(α) = Z(α) < Z ′ (α) which means that Z ′ (α) is censored. Thus based on observations { Zi (α), δ ′ i (α), i = 1, • • • , n} obtained from transformation in (7), if we define N ′ (s|α) = n i=1 I[ Zi (α) ≤ s, δ ′ i (α) = 1]/n, H n (s|α) = n i=1 I[ Zi (α) > s]/n, (10) 
then the KM estimator for G(z|α

) = P (Z ′ (α) > z) is ĜKM (z|α) = s≤z 1 -∆ N ′ (s|α) Hn(s-|α) , where ∆ N ′ (s|α) = N ′ (s|α) -N ′ (s -|α). When α is fixed, ĜKM (z|α) is a univariate KM estimator.
Since G(t 1 , t 2 ) = G(z|α), ĜKM (z|α) must also be a consistent estimator of G(t 1 , t 2 ).

According to (3) and ĜKM (z|α), we can construct a monotone IPW estimator of F (t 1 , t 2 ),

F (t 1 , t 2 ) = t1 0 t2 0 F * n (dv 1 , dv 2 ) Ĝ(v 1 -, v 2 -) := t1 0 t2 0 F * n (dv 1 , dv 2 ) ĜKM (s -|α v ) where s = v 2 1 + v 2 2 , α v = v 2 /v 1 .
Note that the proposed IPW estimator can be written as

F (t 1 , t 2 ) = 1 n n i=1 I[X (1) i ≤ t 1 , X (2) i ≤ t 2 ]δ (1) i δ (2) i ĜKM X (1) i 2 + X (2) i 2 -|α i = 1 n n i=1 I[X (1) i ≤ t 1 , X (2) i ≤ t 2 ]δ (1) i δ (2) i ĜKM ( Zi (α i ) -|α i ) ,
where α i = X

(2)

i /X

(1) i and the second equality sign is due to

X (1) i 2 + X (2) i 2 = Zi (α i ).
We can see that the IPW estimator F (t 1 , t 2 ) can be calculated by summing up all probability mass on points (X

i , X

(2) 

i ) satisfying X (1) i ≤ t 1 , X (2) i ≤ t 2 and δ (1) i = 1, δ (2) 
i , δ

(1) i = 1, δ (2) i 
= 1). The probability mass on each doubly-observed point is 1/ n ĜKM ( Zi (α i ) -|α i ) , which can be estimated by the following steps.

(1) Calculate α i = X

(2)

i /X

(1)

i . (2) Project all {X (1) j , X (2) j , j = 1, • • • , n} vertically or horizontally on the line v 2 = α i v 1 and calculate the corresponding values { Zj (α i ), δ ′ j (α i ), j = 1, • • • , n}. (3) Calculate the univariate KM estimator ĜKM (z -|α i ) based on { Zj (α i ), δ ′ j (α i ), j = 1, • • • , n} and 1/ n ĜKM ( Zi (α i ) -|α i ) .

The large sample properties

Based on the following Lemma (representing ĜKM (z|α) and 1/ ĜKM (z|α) as sum of i.i.d. random variables) we can show the large sample properties for F (t 1 , t 2 ).

Lemma 3.1. Let H 0 (s|α) = P ( Z(α) ≤ s, δ ′ (α) = 1), H 0n (s|α) = n j=1 I[ Zj (α) ≤ s, δ ′ j (α) = 1]/n, (11) 
and ξ i (z|α) =

δ ′ i (α)I[ Zi (α)≤z] H( Zi (α)|α) - z 0 I[s≤ Zi (α)]
H 2 (s|α) dH 0 (s|α). Put ς n = n -3/4 (log n) 3/4 . Let τ be such that

(τ / √ 1 + α 2 , τ / √ 1 + α -2 ) > 0 and S(τ / √ 1 + α 2 , τ / √ 1 + α -2 ) > 0 for any α ∈ [0, ∞]. Then we have (1) ĜKM (z|α) = G(z|α) n n i=1 [1 -ξ i (z|α)] + R n (z, α) (2) 1 ĜKM (z|α) = 1 nG(z|α) n i=1 [1 + ξ i (z|α)] + R n (z, α),
and

sup z∈[0,τ ],α∈[0,∞] |R n (z, α)| = O(ς n ), a.s.. Proof. See appendix A.
The following theorem provides the asymptotic distribution of F (t 1 , t 2 ).

Theorem 3.1. Let

η i = I[X (1) i ≤ t 1 , X (2) i ≤ t 2 ]δ (1) i δ (2) i G( Zi (α i )|α i ) , µ i = t1 0 t2 0 [ξ i (s -|α v )] F * (dv 1 , dv 2 ) G(v 1 , v 2 ) . ( 12 
)
For any (t 1 , t 2 ) such that t 2 1 + t 2 2 < τ , where τ is given in Lemma 3.1, we have

√ n( F (t 1 , t 2 ) - F (t 1 , t 2 )) ⇒ N (0, σ 2 (t 1 , t 2 ))
, where σ 2 (t 1 , t 2 ) = V ar(η 1 ) + V ar(µ 1 ) + 2Cov(η 1 , µ 1 ).

Proof. See Appendix B.

Then it follows immediately that F (t 1 , t 2 ) converges to F (t 1 , t 2 ) in probability.

Let ηi =

I[(X (1) i ,X (2) 
i )≤(t1,t2)]δ

(1)

i δ (2) i ĜKM ( Zi (α i )|α i ) , ξi (z|α) = δ ′ i (α)I[ Zi (α)≤z]
Hn( Zi (α)|α) -

z 0 I[s≤ Zi (α)] H 2
n (s|α) dH 0n (s|α), and μi =

(t1,t2) (0,0) ξi (s -|α v ) F * n (dv1,dv2) ĜKM (s-|αv)
. We then obtain that Cov(η 1 , µ 1 ) := i ηi μi /n and V ar(µ 1 ) := i μ2

i /n are consistent estimators for Cov(η 1 , µ 1 ) and V ar(µ 1 ). In addition, according to

V ar(η 1 ) = t1 0 t2 0 F * (dv 1 , dv 2 ) G 2 (v 1 , v 2 ) -F (t 1 , t 2 ) 2 , a consistent estimator for V ar(η 1 ) is V ar(η 1 ) = t1 0 t2 0 F * n (dv 1 , dv 2 ) [ ĜKM (s -|α v )] 2 - t1 0 t2 0 F * n (dv 1 , dv 2 ) ĜKM (s -|α v ) 2 . Thus a consistent estimator for σ 2 (t 1 , t 2 ) is σ2 (t 1 , t 2 ) = V ar(η 1 ) + V ar(µ 1 ) + 2 Cov(η 1 , µ 1 ).

Simulation studies

In this section we study the properties of the proposed estimator via sets of 200 simulations under two different scenarios.

Scenario 1: We choose the well-known bivariate parametric model in [START_REF] Clayton | A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence[END_REF]. The joint distribution of (T (1) , T (2) ) is F (t 1 , t 2 ) = (F 1 (t 1 ) -φ + F 2 (t 2 ) -φ -1) -φ -1 with φ = 4. The marginal distributions F i (t i ), i = 1, 2 are specified as unit exponential and C (1) , C (2) are independent and identically distributed as exp(β). Simulation studies are carried out on different censoring percentages.

We compare the mean squared errors (MSE), 200 k=1 ( Fk -F ) 2 /200, of Burke's estimators, the estimator in [START_REF] Dabrowska | Kaplan-Meier estimate on the plane[END_REF] and our proposed estimator. For simplicity the mean estimates and empirical variances of Burke's estimators and Dabrowska's estimator are not provided.

Comparing the MSEs of the estimators in Table 1, we can see that the proposed estimator is more efficient (has smaller MSE) than Burke's estimators, at the tail of distribution functions and under high censoring. The proposed estimator is slightly less efficient than Dabrowska's estimator. The simulation also show that the variance estimators perform very well.

Scenario 2: Data are generated from, T (1) = 0.9τ 1 + 0.1τ 2 and T (2) = 0.2τ 1 + 0.8τ 2 , where τ 1 ∼ Gamma(3, 0.3) and τ 2 ∼ Gamma(2, 0.3). The distributions of independent censoring Table 1: Simulation studies: (a): theoretical survival probabilities, (b): empirical means of F (x, y), (c): empirical variances of F (x, y), (d): empirical means of variance estimates for F (x, y), (M): MSEs of our proposed estimator, (M1) and (M2): MSEs of Burke's two estimators, (M3): MSEs of the estimator in [START_REF] Dabrowska | Kaplan-Meier estimate on the plane[END_REF]. (i) β = 4.0 corresponds to 12% censoring for T (1) and T (2) respectively, (ii) β = 3.0 corresponds to 25% censoring, (iii) β = 1.0 corresponds to 50% censoring. (2) are both chosen to be exp(β). Such models arise in many reliability problems, for example in many systems which are composed of components, the system failure time can be expressed as a sum or a linear combination of component life times. Under this scenario the proposed estimator also performs much better than Burke's estimators but is slightly less efficient than Dabrowska's estimator. For simplicity the simulation results are not shown here.

n = 80 (x, y) (0.5, 0.5) (1.0, 0.5) (1.5, 0.5) (a) 0.3060 0.3834 0.3926 (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (b) 0.

Discussion

This paper proposed a new IPW estimator for bivariate distribution function under right censoring. Its large sample properties are proved and it is more efficient than some existing IPW estimators. Comparing the proposed IPW estimator with other estimators, such as NPMLE and repaired NPMLE, is left as a future research work.

The Kaplan-Meier estimate for univariate data is known to be uniformly consistent over the

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT ¡ ¢ £ ¤ - ¥ ¦ § © θ α - θ α = + ! θ " # $ % θ α & ' ( ) 0 1 2 θ α + 3 4 5 6 7 7 α = Figure 2: For all points (t 1 , t 2 ) (with polar coordinates (z i,α , θ)) in C i , the function H(t 1 , t 2 ) = H(z i,α |α = tan θ) = u i .
entire support of the censored data distribution. This guarantees the univariate Kaplan-Meier estimate is reliable over the entire support of the censored data distribution. Another future research work is to study the global consistency for the bivariate estimator.

A Proof of Lemma 3.1

The idea of proving Lemma 3.1 follows from [START_REF] Lo | The product-limit estimator and the bootstrap: some asymptotic representations[END_REF]. We first need the following lemma.

Lemma A.1. Following the definitions of H n (z|α) in ( 10), H 0n (z|α) in ( 11) and ς n = n -3/4 (log n) 3/4 , we have

sup α∈[0,∞] sup z∈[0,τ ] z 0 H -1 n (s|α) -H -1 (s|α) d H -1 0n (s|α) -H -1 0 (s|α) = O(ς n ) a.s. Proof. Let H n (t 1 , t 2 ) = n i=1 I[X (1) i > t 1 , X (2) 
i > t 1 ]/n. Obviously we have H n (t 1 , t 2 ) = H n (z|α), where z = t 2 1 + t 2 2 , α = t 2 /t 1 . We divide [0, 1] into subintervals [u i+1 , u i ], i = 0, • • • , k n , where k n = O( n/ log n) and the sequence 1 = u 0 > u 1 > • • • > u kn = 0 are such that |u i -u i-1 | ≤ O( log n/n), i = 1, • • • , k n . Let C i = {(v 1 , v 2 ) : such that H(v 1 , v 2 ) = u i }. Since H(v 1 , v 2 ) is continuous, C i is a continuous curve.
Given α, the line v 2 = αv 1 can be partitioned by points with polar coordinates (z i,α , θ = arctan α), i = 1, • • • , k n , where z i,α is such that H(z i,α |α) = u i . Note that (z i,α , θ) is the polar coordinates of the intersection point of line v 2 = αv 1 and C i . See Figure 2 for details.
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Following from the proof of Lemma 2 in [START_REF] Lo | The product-limit estimator and the bootstrap: some asymptotic representations[END_REF], we have that for any α ∈ [0, ∞],

z 0 H -1 n (s|α) -H -1 (s|α) d H -1 0n (s|α) -H -1 0 (s|α) ≤ k n sup 0≤z≤τ |H -1 n (s|α) -H -1 (s|α)| max 0≤i≤kn -1 |H 0n (z i+1,α |α) -H 0n (z i,α |α) -H 0 (z i+1,α |α) + H 0 (z i,α |α)| +2 max 0≤i≤kn-1 sup s∈[zi,α,zi+1,α] |H -1 n (s|α) -H -1 n (z i,α |α) -H -1 (s|α) + H -1 (z i,α |α)| := A(α) + B(α). (13) 
Now we prove sup α B(α

) = O(ς n ). We further partition [u i+1 , u i ] into subintervals [u i(j+1) , u ij ], j = 0, • • • , a n -1, such that |u i(j+1) -u ij | = O(n -3/4 (log n) 3/4 ) uniformly in i, j and a n = O(n 1/4 (log n) -1/4 ). Define C ij = {(v 1 , v 2 ) : such that H(v 1 , v 2 ) = u ij } and z ij,α is such that H(z ij,α |α) = u ij . Note that (z ij,α , θ) is the polar coordinates of the intersection point of line v 2 = αv 1 and C ij . Since sup s,α |H n (s|α) -H(s|α)| 2 = sup v1,v2 |H n (v 1 , v 2 ) -H(v 1 , v 2 )| 2 = O((log n)/n), similarly as
the results in [START_REF] Lo | The product-limit estimator and the bootstrap: some asymptotic representations[END_REF], we have that for a given value of α,

sup s∈[z i,α ,z i+1,α ] |H -1 n (s|α) -H -1 n (z i,α |α) -H -1 (s|α) + H -1 (z i,α |α)| ≤ ρ sup s∈[z i,α ,z i+1,α ] |H n (s|α) -H n (z i,α |α) -H(s|α) + H(z i,α |α)| + O log n n , a.s.,
where ρ is a constant and does not depend on α.

We partition [0, π/2] into subintervals 0 = θ 0 < θ 1 < • • • < θ bn = π/2 and let α l = tan θ l .

Let point p l,ij with coordinates (t 1,l,ij , t 2,l,ij ) be the intersection point of line v 2 = α l v 1 and curve C ij . A rectangle R l,ij is given by points p l,ij , p l+1,ij and points p * l,ij := (t 1,l,ij , t 2,l+1,ij ), p * l+1,ij := (t 1,l+1,ij , t 2,l,ij ). See Figure 3 for details. If b n is large enough, we can choose the sequence θ

l , l = 0, • • • , b n such that u i(j-1) > H(t 1,l+1,ij , t 2,l,ij ) > u ij u ij > H(t 1,l,ij , t 2,l+1,ij ) > u i(j+1) , ∀i, j, l, (14) 
which means that points p * l,ij and p * l+1,ij are between C i(j+1) and C i(j-1) . Thus any two points (t 1 , t 2 ) and (t . Lines v 2 = α l+1 v 1 and v 2 = α l v 1 intersect with C i at points p l+1,i and p l,i , which gives a rectangle R l,i . The two lines intersect with C ij at points p l+1,ij and p l,ij , which gives a rectangle R l,ij .

* 1 , t * 2 ) within the rectangle R l,ij are such that |H(t 1 , t 2 ) -H(t * 1 , t * 2 )| ≤ |u i(j+1) - u i(j-1) | = O(ς n ), uniformly in i, j, l. A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT 8 9 @ A B C D D θ α EF G = H I P Q R S + T U V W θ X + Y θ à b a - -c d e f g h i - p q r s t u v w xy + + d e f g h i j k + l m n o p q
With such partitions and following the results in [START_REF] Lo | The product-limit estimator and the bootstrap: some asymptotic representations[END_REF], we have 

  i = 1. In other words, A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT the estimator has positive probability mass only on doubly-observed points (X

Figure 3 :

 3 Figure 3: Partition. The lower three curves are C i-1(an-1) , C i , C i1 and the upper three curves are Ci(j-1) , C ij , C i(j+1) . Lines v 2 = α l+1 v 1 and v 2 = α l v 1 intersectwith C i at points p l+1,i and p l,i , which gives a rectangle R l,i . The two lines intersect with C ij at points p l+1,ij and p l,ij , which gives a rectangle R l,ij .

  ,α,zi+1,α] |H n (s|α) -H n (z i,α |α) -H(s|α) + H(z i,α |α)| + O |H n (z ij,α |α) -H n (z i,α |α) -H(z ij,α |α) + H(z i,α |α)| + O(ς n ), a.s..

  For points p := (t 1 , t 2 ), we denote H n (t 1 , t 2 ) and H(t 1 , t 2 ) as H n (p) and H(p) for simplicity.According to the monotonicity of H n (t 1 , t 2 ) and H(t 1 , t 2 ) we haveH n (p * l,ij ) ≤ H n (z ij,α |α) ≤ H n (p * l+1,ij ) and H(p * l,ij ) ≤ H(z ij,α |α) ≤ H(p * l+1,ij ), for all α ∈ [α l , α l+1 ]. Then we have sup α∈[α l ,α l+1 ] |H n (z ij,α |α) -H n (z i,α |α) -H(z ij,α |α) + H(z i,α |α)| ≤ min |H n (p * l+1,ij ) -H n (p * l,i ) -H(p * l,ij ) + H(p * l+1,i )|, |H n (p * l,ij ) -H n (p * l+1,i ) -H(p * l+1,ij ) + H(p * l,i )| ≤ min |H n (p * l+1,ij ) -H n (p * l,i ) -H(p * l+1,ij ) + H(p * l,i )|, |H n (p * l,ij ) -H n (p * l+1,i ) -H(p * l,ij ) + H(p * l+1,i )| + O(ς n ), a.s..

		(16)
	Using similar methods as that in Lo and Singh (1985), we can also prove	
	min |H n (p * l+1,ij ) -H n (p * l,i ) -H(p * l+1,ij ) + H(p * l,i )|,	
	|H n (p * l,ij ) -H n (p * l+1,i ) -H(p * l,ij ) + H(p * l+1,i )| = O(ς n ), a.s..	(17)
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From ( 15), ( 16) and ( 17), we have sup α |B(α)| = O(ς n ). Similarly we can prove sup α A(α) = O(ς n ). The lemma then follows from (13).

Proof of Lemma 3.1. We have log ĜKM (z|α) -log G(z|α)

Following from the proof of Theorem 1 in [START_REF] Lo | The product-limit estimator and the bootstrap: some asymptotic representations[END_REF] and Lemma A.1, we have

Now we show that sup

To see this note that for any value of α,

where * extends over all i such that Z(i) (α) ≤ z and δ ′

ǫ, for all large n a.s.. Then (20) follows using two term Taylor's expansion for log(1 + w) with

Following from ( 18), ( 19) and ( 20), the first result of the lemma is proved by using two term

Taylor's expansion for log ĜKMlog G and the second result of the lemma is proved by using two term Taylor's expansion for log ŵlog w with ŵ = 1/ ĜKM , w = 1/G.
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B Proof of Theorem 3.1

Proof. According to Lemma 3.1 we can write

,

i /X

(1)

i . For simplicity we use Zi to denote Zi (α i ). Then

From the definition of η i in (12), we have

Note that U n is a U-statistic. From [START_REF] Serfling | Approximation theorems of Mathematical Statistics[END_REF] and EU n = 0, we have

k , δ

k , δ

k ) + o(n -1 (log n) γ ), for some γ > 0.

We also obtain that for i = j, E(η i ξ j ( Zi

i , δ

i , δ

i ) = 0 and

k , δ

k , δ

k , δ

k , δ

k ]/n 2 = (n-1)µ k /n 2 . Therefore we have F (t 1 , t 2 )-F (t 1 , t 2 ) = 1 n n i=1 [η i -F (t 1 , t 2 )]+ 1 n n k=1 µ k +O(ς n ). It follows that √ n( F (t 1 , t 2 ) -F (t 1 , t 2 )) ⇒ N (0, σ 2 (t 1 , t 2 )) with σ 2 (t 1 , t 2 ) = V ar(η 1 ) + V ar(µ 1 ) + 2Cov(η 1 , µ 1 ).