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Cramér asymptotics for finite time first passage

probabilities of general Lévy processes

Zbigniew Palmowski∗ Martijn Pistorius†

April 26, 2009

Abstract
We derive the exact asymptotics of P (supu≤tX(u) > x) if x and

t tend to infinity with x/t constant, for a general Lévy process X
that admits exponential moments. The proof is based on a renewal
argument and a two-dimensional renewal theorem of Höglund [9].

1 Introduction

The study of boundary crossing probabilities of Lévy processes has appli-
cations in many fields, including ruin theory (see e.g. Rolski et al. [13]
and Asmussen [2]), queueing theory (see e.g. Borovkov [6] and Prabhu
[11]), statistics (see e.g. Siegmund [15]) and mathematical finance (see e.g.
Roberts and Shortland [12]).

As in many cases closed form expressions for (finite time) first passage
probabilities are either not available or intractable, a good deal of the liter-
ature has been devoted to logarithmic or exact asymptotics for first passage
probabilities, using different techniques. Martin-Löf [10] and Collamore [7]
derived large deviation results for first passage probabilities of a general
class of processes. Employing two-dimensional renewal theory and asymp-
totic properties of ladder processes, respectively, Höglund [9] and von Bahr
[3] obtained exact asymptotics for ruin probabilities of the classical risk
process (see also Asmussen [2]). Bertoin and Doney [5] generalised the clas-
sical Cramér-Lundberg approximation (of the perpetual ruin probability of
a classical risk process) to general Lévy processes.
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In this paper we obtain the exact asymptotics of the finite time ruin
probability P (τ(x) ≤ t), where τ(x) = inf{t ≥ 0 : X(t) > x}, for a general
Lévy process X(t) (X(0) = 0), if x and t jointly tend to infinity in fixed
proportion, generalising Arfwedson [1] and Höglund [9] who treated the case
of a classical risk process. The proof is based on an embedding of the ladder
process of X and a two-dimensional renewal theorem of Höglund [9].

The remainder of the paper is organized as follows. In Section 2 the
main result is presented, and its proof is given in Section 3.

2 Main result

Let X be a Lévy process with non-monotone paths that satisfies

E[eα0X(1)] < ∞ for some α0 > 0, (2.1)

and denote by τ(x) = inf{t ≥ 0 : X(t) > x} the first crossing time of x. We
exclude the case that X is a compound Poisson process with non-positive
infinitesimal drift, as this corresponds to the random walk case which has
already been treated in the literature.

The law of X is determined by its Laplace exponent ψ(θ) = logE[eθX(1)]
that is well defined on the maximal domain Θ = {θ ∈ R : ψ(θ) < ∞ }.
Restricted to the interior Θo, the map θ 7→ ψ(θ) is convex and differentiable,
with derivative ψ′(θ).1 Moreover, ψ′(0+) = E[X(1)] if E[|X(1)|] < ∞. By
the strict convexity of ψ, it follows that ψ′ is strictly increasing on (0,∞)
and we denote by Γ : ψ′(0,∞) → (0,∞) its right-inverse function.

Associated to the measure P is the exponential family of measures {P (c) :
c ∈ Θ} defined by their Radon-Nikodym derivatives

dP (c)

dP

∣∣∣∣∣
Ft

= exp (cX(t) − ψ(c)t) . (2.2)

It is well known that under this change of measure X is still a Lévy processes
and its new Laplace exponent satisfies

ψ(c)(α) = ψ(α + c) − ψ(c). (2.3)

Related to X and its running supremum are the local time L of X at
its supremum, its right-continuous inverse L−1 and the upcrossing ladder

1For θ ∈ Θ\Θo, ψ′(θ) is understood to be limη→θ,η∈Θo ψ′(η).
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process H respectively. The Laplace exponent κ of the bivariate (possibly
killed) subordinator (L−1,H),

e−κ(α,β)t = E[e−αL−1
t −βHt1(L−1

t <∞)], (2.4)

is related to ψ via the Wiener-Hopf factorisation identity

u − ψ(θ) = kκ(u,−θ)κ̂(u, θ), u ≥ 0, θ ∈ Θo, (2.5)

for some constant k > 0 where κ̂ is the Laplace exponent of the dual lad-
der process. Refer to Bertoin [4, Ch. VI] for further background on the
fluctuation theory of Lévy processes.

Bertoin and Doney [5] showed that, if the Cramér condition holds, that
is γ > 0, where

γ := sup{θ ∈ Θ : ψ(θ) = 0}, (2.6)

the Cramér-Lundberg approximation remains valid for a general Lévy pro-
cess:

lim
x→ ∞

eγxP [τ(x) < ∞] = Cγ , (2.7)

where Cγ ≥ 0 is positive if and only if E[eγX(1) |X(1)|] < ∞ and is then
given by Cγ = βγ/[γmγ ], where

βγ = − log P [H1 < ∞], mγ = E[eγH1H11(H1<∞)].

Further, Doob’s optional stopping theorem implies the following bound:

eγxP (τ(x) < ∞) = E(γ)[e−γ(X(τ(x))−x)1(τ(x)<∞)] ≤ 1. (2.8)

The result below concerns the asymptotics of the finite time ruin proba-
bility P (τ(x) ≤ t) when x, t jointly tend to infinity in fixed proportion. For
a given proportion v the rate of decay is either equal to γvt or to ψ∗(v)t,
where ψ∗ is the convex conjugate of ψ:

ψ∗(u) = sup
α∈R

(αu − ψ(α)).

We restrict ourselves to Lévy processes satisfying the following condition

σ > 0 or the Lévy measure is non-lattice, (H)

where σ denotes the Gaussian coefficient of X. Recall that a measure is
called non-lattice if its support is not contained in a set of the form {a +
bh, h ∈ Z}, for some a, b > 0. Note that (H) is satisfied by any Lévy process
whose Lévy measure has infinite mass.

We write f ∼ g if limx,t→ ∞,x=vt+o(t1/2) f(x, t)/g(x, t) = 1.

3
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Theorem 1 Assume that (H) holds. Suppose that 0 < ψ′(γ) < ∞ and that
there exists a Γ(v) ∈ Θ◦ such that ψ′(Γ(v)) = v. If x and t tend to infinity
such that x = vt+ o(t1/2) then

P (τ(x) ≤ t) ∼
{
Cγe−γx, if 0 < v < ψ′(γ),
Dvt

−1/2e−ψ∗(v)t, if v > ψ′(γ),

with C0 = 1 and Dv given by

Dv =
−v logE[e−ηvL

−1
1 1(L−1

1 <∞)]

ηvE[eΓ(v)H1 −ηvL
−1
1 H11(L−1

1 <∞)]
× 1

Γ(v)
√

2πψ′′(Γ(v))
,

where ηv = ψ(Γ(v)).

Remark 1 (a) For a spectrally negative Lévy process the joint exponent of
the ladder process is given by κ(α, β) = β + Φ(α) (α, β ≥ 0), where Φ(α) is
the largest root of ψ(θ) = α, and thus

Dv = Dv :=
v

ψ(Γ(v))
√

2πψ′′(Γ(v))
, Cγ ≡ 1. (2.9)

Indeed,

Dv = Dv × κ(ηv , 0)
Γ(v) ∂

∂βκ(ηv , β)|β=−Γ(v) exp{−κ(ηv ,−Γ(v))}

= Dv × 1
exp{−Φ(ηv) + Γ(v)} = Dv

since Φ(ηv) = Γ(v).
(b) If X is spectrally positive, κ(α, β) = [α−ψ(−β)]/[Φ̂(α) −β] (see e.g.

[4, Thm VII.4]), where Φ̂(α) is the largest root of ψ(−θ) = α and we find
that

Dv =
Γ(v) + Γ̃(v)
Γ(v)Γ̃(v)

1√
2πψ′′(Γ(v))

, Cγ =
ψ′(0)
ψ′(γ)

,

where Γ̃(v) = sup{θ : ψ(−θ) = ψ(Γ(v))}, recovering formulas that can be
found in Arfwedson [1] and Feller [8] respectively, for the case of a classical
risk process.

4
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Remark 2 Heuristically, in the case v > ψ′(γ), the asymptotics in Thm.
1 can be regarded as a consequence of the central limit theorem, that is,
under the tilted measure PΓ(v), asymptotically

τ(x) − x/v

ω
√
x

follows a standard normal distribution, where by (2.3) and choice of Γ(v),

ω2 =
Var(Γ(v))[X1](
E(Γ(v)) [X1]

)3 =
ψ(Γ(v))′′(0)

(
ψ(Γ(v))′(0)

)3 =
ψ′′(Γ(v))

v3
.

This explains why the asymptotics remain valid if x deviates o(x1/2) =
o(t1/2) from the line vt.

In the boundary case v = ψ′(γ), in which case E(Γ(v))[τ(x)] = t, the
exact asymptotics of P (τ(x) ≤ t) may depend on the way in which x/t
tends to v. Note that this case is excluded from Theorem 1.

Remark 3 In the case 0 < v < ψ′(γ), the asymptotics in Theorem 1 are a
consequence of the law of large numbers. To see why this is the case, note
that eγxP (τ(x) ≤ t) = eγxP (τ(x) < ∞) − eγxP (t < τ(x) < ∞), where the
first term tends to Cγ in view of (2.7), while for the second term the Markov
property and (2.8) imply that

eγxP (t < τ(x) < ∞)

=
∫ x

− ∞
P (τ(x) > t,X(t) ∈ dy)eγyeγ(x−y)P (τ(x − y) < ∞)

≤
∫ x

− ∞
P (X(t) ∈ dy)eγy = P (γ)(X(t) ≤ x),

which tends to 0 as t tends to infinity in view of the law of large numbers
since E(γ)[X(t)] = tψ′(γ) > x. The proof below deals with the case that
v > ψ′(γ).

3 Proof of Theorem 1

The idea of the proof is to lift asymptotic results that have been estab-
lished for random walks by Höglund [9] and Arfwedson [1] to the setting of
Lévy processes by considering suitable random walks embedded in the Lévy
process (more precisely, in its ladder process). We first briefly recall these
results following the Höglund [9] formulation.

5
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3.1 Review of Höglund’s random walk asymptotics

Let (S,R) = {(Si, Ri), i = 1, 2, . . .} be a (possibly killed) random walk start-
ing from (0, 0) whose components S and R have non-negative increments,
and consider the crossing probabilities

Ga,b(x, y) = P (N(x) < ∞, SN(x) > x+ a,RN(x) ≤ y + b),
Ka,b(x, y) = P (N(x) < ∞, SN(x) > x+ a,RN(x) ≥ y + b),

where a ≥ 0, b ∈ R andN(x) = min{n : Sn > x}. Let F denote the (possibly
defective) distribution function of the increments of the random walk with
joint Laplace transform φ and set F(u,v)(dx,dy) = e−ux−vyF (dx,dy)/φ(u, v).
Let

V (ζ) = Eζ [(R1Eζ [S1] − S1Eζ [R1])2]/Eζ [S1]3

for ζ = (ξ, η) where Eζ denotes the expectation w.r.t. Fζ .
For our purposes it will suffice to consider random walks that satisfy the

following non-lattice assumption (the analogue of the non-lattice assumption
in one dimension):

The additive group spanned by the support of F contains R2
+. (G)

Specialised to our setting Prop. 3.2 in Höglund (1990) jointly with the
remark given on p. 380 therein read as follows:

Proposition 1 Assume that (G) holds, and that there exists a ζ = (ξ, η)
with φ(ζ) = 1 such that v = Eζ [S1]/Eζ [R1], where φ is finite in a neighbour-
hood of ζ and (0, η). If x, y tend to infinity such that x = vy + o(y1/2) > 0
then it holds that

Ga,b(x, y) ∼ D(a, b)x−1/2exξ+yη if η > 0,

Ka,b(x, y) ∼ D(a, b)x−1/2exξ+yη if η < 0,

for a ≥ 0, b ∈ R, where D(a, b) = C(a, b) · (2πV (ζ))−1/2, with V (ζ) > 0 and

C(a, b) =
1

|η|Eζ [S1]
ebη

∫ ∞

a
Pζ(S1 ≥ x)eξxdx.

3.2 Embedded random walk

Denote by e1, e2, . . . a sequence of independent exp(q) distributed random
variables and by σn =

∑n
i=1 ei, with σ0 = 0, the corresponding partial sums,

6



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

and consider the two-dimensional (killed) random walk {(Si, Ri), i = 1, 2 . . .}
starting from (0, 0) with step-sizes distributed according to

F (q)(dt,dx) = P (Hσ1 ∈ dx,L−1
σ1

∈ dt),

and write G(q) for the corresponding crossing probability

G(q)(x, y) = G0,0(x, y) = P (N(x) < ∞, RN(x) ≤ y).

Note that F (q) is a probability measure that is defective precisely if X drifts
to − ∞, with Laplace transform φ given by

φ(u, v) =
∫∫

e−ut−vxF (q)(dt,dx) =
q

q − κ(u, v)
.

The key step in the proof is to derive bounds for P (τ(x) ≤ t) in terms
of crossing probabilities involving the random walk (S,R):

Lemma 1 Let M, q > 0. For x, t > 0 it holds that

G(q)(x, t) ≤ P (τ(x) ≤ t) ≤ G(q)(x, t+M)/h(0−,M), (3.1)

where h(0−,M) = limx↑0 h(x,M), with h(x, t) := P (Hσ1 > x,L−1
σ1

≤ t).

Proof: Let T (x) = inf{t ≥ 0 : Ht > x} and note that τ(x) = L−1
T (x). By

applying the Markov property it follows that

P (τ(x) ≤ t) = P (T (x) < ∞, L−1
T (x) ≤ t)

=
∞∑

n=1

P (σn−1 ≤ T (x) < σn, L
−1
T (x) ≤ t) (3.2)

=
∞∑

n=1

P (Hσn−1 ≤ x,Hσn > x,L−1
T (x) ≤ t)

=
∞∑

n=1

∫∫
P (Hσn−1 ∈ dy, L−1

σn−1
∈ ds)

× P (Hσ1 > x − y, L−1
T (x−y) ≤ t − s) (3.3)

=
∞∑

n=0

F (q)⋆n ⋆ f(x, t) = (U ⋆ f)(x, t), (3.4)

where U =
∑∞

n=0 F
(q)⋆n, f(x, t) = P (Hσ1 > x,L−1

T (x) ≤ t) and ⋆ denotes
convolution. Following a similar reasoning it can be checked that

G(q)(x, t) = U ⋆ h(x, t). (3.5)

7
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In view of (3.4) and (3.5), the lower bound in (3.1) follows since

f(x, t) ≥ h(x, t),

taking note of the fact that Hσ1 > x precisely if T (x) < σ1, while the upper
bound in (3.1) follows by observing that for fixed M > 0,

h(x, t+M) ≥ P (Hσ1 > x,L−1
T (x)

≤ t, L−1
σ1

− L−1
T (x)

≤ M)

= P (Hσ1 > x,L−1
T (x) ≤ t)P (L−1

σ1
≤ M)

= f(x, t)h(0−,M),

where we used the strong Markov property of L−1 and the lack of memory
property of σ1. �
Applying Höglund’s asymptotics in Proposition 1 yields the following result:

Lemma 2 Let the assumptions of Proposition 1 hold true. If x, t → ∞ such
that for v > ψ′(γ) we have x = vt+ o(t1/2) then

G(q)(x, t+M) ∼ Dq,M t
−1/2e−ψ∗(v)t, M ≥ 0,

where Dq,M = v√
2πψ′′(Γ(v))

Cq,M with

Cq,M = eψ(Γ(v))M κ(ψ(Γ(v)), 0)
cvψ(Γ(v))Γ(v)

q

q + κ(ψ(Γ(v)), 0)
,

where cv = E[eΓ(v)H1 −ψ(Γ(v))L−1
1 H11(L−1

1 <∞)].

Lemma 2 is a consequence of the following auxiliary identities:

Lemma 3 Let u > γ, u ∈ Θo.

φ(z,−u) = 1 iff κ(z,−u) = 0 iff ψ(u) = z (3.6)
ψ′(u) = E(u)[X(1)] = E(u)[Hσ1 ] · (E(u)[L−1

σ1
])−1 (3.7)

ψ′′(u) = E(u)[(Hσ1 − ψ′(u)L−1
σ1

)2] · (E(u)[L−1
σ1

])−1

= ψ′(u)E(u)[(Hσ1 − ψ′(u)L−1
σ1

)2] · (E(u)[Hσ1 ])
−1 (3.8)

ψ∗(v) = vΓ(v) − ψ(Γ(v)) for v > 0 with Γ(v) ∈ Θo. (3.9)

Proof: Eq (3.6): Note that for u, z > 0 it holds that κ̂(z, u) > 0. In view
of the identity (2.5) the statement follows.

8
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Eq (3.7): Note that if u > γ then by the fact that ψ(0) = ψ(γ) = 0 and
the strict convexity of ψ it follows that ψ(u) > 0. In view of (2.5) it follows
then that κ(ψ(u),−u) = 0 for u ∈ Θo, u > γ. Differentiating with respect
to u shows that

ψ′(u) = ∂2κ(ψ(u),−u)(∂1κ(ψ(u),−u))−1 . (3.10)

Also, note that E(u)[Hσ1 ] = q−1E(u)[H1], E(u)[L−1
σ1

] = q−1E(u)[L−1
1 ] and

E(u)[H1] = ∂2κ(ψ(u),−u), E(u)[L−1
1 ] = ∂1κ(ψ(u),−u).

Eq (3.8) follows as a matter of calculus, by differentiation of (3.10) with
respect to u. Finally, Eq. (3.9) follows from the definition of ψ∗. �

Proof of Lemma 2 The proof follows by an application of Prop. 1 to
G(q)(x, t+M) with

(S1, R1) = (Hσ1 , L
−1
σ1

) and ζ = (−Γ(v), ηv).

Note that, by (3.6) with u = Γ(v), φ(ζ) = 1, and that ηv = ψ(Γ(v)) > 0 if
v > ψ′(γ). For this choice of the parameters, Eζ [S1] = E(Γ(v))[Hσ1 ] = cv/q,
and Eqs. (3.9), (3.7),(3.8) imply that ξx+ ηt = −ψ∗(v)t and

V (ζ) = ψ′′(Γ(v))/ψ′(Γ(v)) = ψ′′(Γ(v))/v.

To complete the proof we are left to verify the form of the constants. The
calculation of the Cq,M = C(0, 0)eηM goes as follows:

Cq,M =
qeψ(Γ(v))M

ψ(Γ(v))cv

(∫ ∞

0
e−Γ(v)xE[eΓ(v)Hσ1 −ψ(Γ(v))L−1

σ1 1(x≤Hσ1<∞)]dx
)

=
qeψ(Γ(v))M

ψ(Γ(v))Γ(v)cv

(
1 − E[e−ψ(Γ(v))L−1

σ1 1(L−1
σ1
<∞)]

)

=
qeψ(Γ(v))M

ψ(Γ(v))Γ(v)cv

(
1 − q

q + κ(ψ(Γ(v)), 0)

)

=
qeψ(Γ(v))M

ψ(Γ(v))Γ(v)cv
κ(ψ(Γ(v)), 0)

q + κ(ψ(Γ(v)), 0)
,

in view of the definition (2.4) of κ. Combining all results completes the
proof. �

As final preparation for the proof of Theorem 1 we show that the non-
lattice condition holds:

Lemma 4 Suppose that (H) holds true. Then F (q) satisfies (G).

9
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Proof: The assertion is a consequence of the following identity between
measures on (0,∞)2 (which is itself a consequence of the Wiener-Hopf fac-
torisation, see e.g. Bertoin [4, Cor VI.10])

P (Xt ∈ dx)dt = t

∫ ∞

0
P (L−1

u ∈ dt,Hu ∈ dx)u−1du. (3.11)

Fix (y, v) ∈ (0,∞)2 in the support of µX(dt,dx) = P (Xt ∈ dx)dt and
let B be an arbitrary open ball around (y, v). Then µX(B) > 0; in view
of the identity (3.11) it follows that there exists a set A with positive
Lebesgue measure such that P ((L−1

u ,Hu) ∈ B) > 0 for all u ∈ A and
thus P ((L−1

σ1
,Hσ1) ∈ B) > 0. Since B was arbitrary we conclude that (y, v)

lies in the support of F (q). To complete the proof we next verify that if a
Lévy process X satisfies (H) then µX satisfies (G). To this end, let X satisfy
(H). Suppose first that its Lévy measure ν has infinite mass or σ > 0. Then
P (Xt = x) = 0 for any t > 0 and x ∈ R, according to Sato [14, Thm. 27.4
]. Thus, the support of P (Xt ∈ dx) is uncountable for any t > 0, so that
µX satisfies (G). If ν has finite mass then it is straightforward to verify that
P (Xt ∈ dx) is non-lattice for any t > 0 if ν is, and that then µX satisfies
(G). �

Proof of Theorem 1: Suppose that v > ψ′(γ) (the case v < ψ′(γ) was
shown in Remark 3). Writing l(t, x) = t1/2eψ

∗(v)tP (τ(x) ≤ t), Lemmas 1, 2
and 3 imply that

s = lim sup
x,t→ ∞,x=tv+o(t1/2)

l(t, x) ≤ Dq,M/h(0−,M),

i = lim inf
x,t→ ∞,x=tv+o(t1/2)

l(t, x) ≥ Dq,0.

By definition of h and Dq,M it directly follows that, as q → ∞,

Dq,0 → Dv , Dq,M → Dveψ(Γ(v))M and h(0−,M) = P (L−1
σ1

≤ M) → 1.

Letting M ↓ 0 yields that s = i = Dv , and the proof is complete. �
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