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Introduction

The study of boundary crossing probabilities of Lévy processes has applications in many fields, including ruin theory (see e.g. Rolski et al. [START_REF] Rolski | Stochastic Processes for Insurance and Finance[END_REF] and Asmussen [START_REF] Asmussen | Ruin Probabilities[END_REF]), queueing theory (see e.g. Borovkov [START_REF] Borovkov | Stochastic processes in queueing theory[END_REF] and Prabhu [START_REF] Prabhu | Insurance, queues[END_REF]), statistics (see e.g. Siegmund [START_REF] Siegmund | Sequential Analysis Test and Confidence Intervals[END_REF]) and mathematical finance (see e.g. Roberts and Shortland [START_REF] Roberts | [END_REF]).

As in many cases closed form expressions for (finite time) first passage probabilities are either not available or intractable, a good deal of the literature has been devoted to logarithmic or exact asymptotics for first passage probabilities, using different techniques. Martin-Löf [START_REF] Martin-Löf | Entropy estimates for the first passage time of a random ralk to a time dependent barrier[END_REF] and Collamore [START_REF] Collamore | Large deviations for first passage times[END_REF] derived large deviation results for first passage probabilities of a general class of processes. Employing two-dimensional renewal theory and asymptotic properties of ladder processes, respectively, Höglund [START_REF] Höglund | An asymptotic expression for the probability of ruin within finite time[END_REF] and von Bahr [START_REF] Von Bahr | Ruin probabilities expressed in terms of ladder height distributions[END_REF] obtained exact asymptotics for ruin probabilities of the classical risk process (see also Asmussen [START_REF] Asmussen | Ruin Probabilities[END_REF]). Bertoin and Doney [START_REF] Bertoin | Cramér's estimate for Lévy processes[END_REF] generalised the classical Cramér-Lundberg approximation (of the perpetual ruin probability of a classical risk process) to general Lévy processes.
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In this paper we obtain the exact asymptotics of the finite time ruin probability P (τ (x) ≤ t), where τ (x) = inf{t ≥ 0 : X(t) > x}, for a general Lévy process X(t) (X(0) = 0), if x and t jointly tend to infinity in fixed proportion, generalising Arfwedson [START_REF] Arfwedson | Research in collective risk theory[END_REF] and Höglund [START_REF] Höglund | An asymptotic expression for the probability of ruin within finite time[END_REF] who treated the case of a classical risk process. The proof is based on an embedding of the ladder process of X and a two-dimensional renewal theorem of Höglund [START_REF] Höglund | An asymptotic expression for the probability of ruin within finite time[END_REF].

The remainder of the paper is organized as follows. In Section 2 the main result is presented, and its proof is given in Section 3.

Main result

Let X be a Lévy process with non-monotone paths that satisfies E[e α0X (1) ] < ∞ for some α 0 > 0, (

and denote by τ (x) = inf{t ≥ 0 : X(t) > x} the first crossing time of x. We exclude the case that X is a compound Poisson process with non-positive infinitesimal drift, as this corresponds to the random walk case which has already been treated in the literature. The law of X is determined by its Laplace exponent ψ(θ) = log E[e θX (1) ] that is well defined on the maximal domain Θ = {θ ∈ R : ψ(θ) < ∞}. Restricted to the interior Θ o , the map θ → ψ(θ) is convex and differentiable, with derivative ψ ′ (θ). 1 

Moreover, ψ ′ (0+) = E[X(1)] if E[|X(1)|] < ∞.
By the strict convexity of ψ, it follows that ψ ′ is strictly increasing on (0, ∞) and we denote by Γ : ψ ′ (0, ∞) → (0, ∞) its right-inverse function.

Associated to the measure P is the exponential family of measures {P (c) : c ∈ Θ} defined by their Radon-Nikodym derivatives dP (c) 

dP Ft = exp (cX(t) -ψ(c)t) . (2.2)
It is well known that under this change of measure X is still a Lévy processes and its new Laplace exponent satisfies

ψ (c) (α) = ψ(α + c) -ψ(c). (2.3)
Related to X and its running supremum are the local time L of X at its supremum, its right-continuous inverse L -1 and the upcrossing ladder process H respectively. The Laplace exponent κ of the bivariate (possibly killed) subordinator (L -1 , H),

e -κ(α,β)t = E[e -αL -1 t -βHt 1 (L -1 t <∞) ], (2.4) 
is related to ψ via the Wiener-Hopf factorisation identity

u -ψ(θ) = kκ(u, -θ) κ(u, θ), u ≥ 0, θ ∈ Θ o , (2.5) 
for some constant k > 0 where κ is the Laplace exponent of the dual ladder process. Refer to Bertoin [4, Ch. VI] for further background on the fluctuation theory of Lévy processes. Bertoin and Doney [START_REF] Bertoin | Cramér's estimate for Lévy processes[END_REF] showed that, if the Cramér condition holds, that is γ > 0, where

γ := sup{θ ∈ Θ : ψ(θ) = 0}, (2.6) 
the Cramér-Lundberg approximation remains valid for a general Lévy process: lim

x→∞ e γx P [τ (x) < ∞] = C γ , (2.7) 
where C γ ≥ 0 is positive if and only if E[e γX (1) |X(1)|] < ∞ and is then given by

C γ = β γ /[γm γ ],
where

β γ = -log P [H 1 < ∞], m γ = E[e γH1 H 1 1 (H1<∞) ].
Further, Doob's optional stopping theorem implies the following bound:

e γx P (τ (x) < ∞) = E (γ) [e -γ(X(τ (x))-x) 1 (τ (x)<∞) ] ≤ 1. (2.8)
The result below concerns the asymptotics of the finite time ruin probability P (τ (x) ≤ t) when x, t jointly tend to infinity in fixed proportion. For a given proportion v the rate of decay is either equal to γvt or to ψ * (v)t, where ψ * is the convex conjugate of ψ:

ψ * (u) = sup α∈R (αu -ψ(α)).
We restrict ourselves to Lévy processes satisfying the following condition σ > 0 or the Lévy measure is non-lattice, (H)

where σ denotes the Gaussian coefficient of X. Recall that a measure is called non-lattice if its support is not contained in a set of the form {a + bh, h ∈ Z}, for some a, b > 0. Note that (H) is satisfied by any Lévy process whose Lévy measure has infinite mass. We write f ∼ g if lim x,t→∞,x=vt+o(t 1/2 ) f (x, t)/g(x, t) = 1.

Theorem 1 Assume that (H) holds. Suppose that 0 < ψ ′ (γ) < ∞ and that there exists a

Γ(v) ∈ Θ • such that ψ ′ (Γ(v)) = v. If x and t tend to infinity such that x = vt + o(t 1/2 ) then P (τ (x) ≤ t) ∼ C γ e -γx , if 0 < v < ψ ′ (γ), D v t -1/2 e -ψ * (v)t , if v > ψ ′ (γ),
with C 0 = 1 and D v given by

D v = -v log E[e -ηv L -1 1 1 (L -1 1 <∞) ] η v E[e Γ(v)H1-ηvL -1 1 H 1 1 (L -1 1 <∞) ] × 1 Γ(v) 2πψ ′′ (Γ(v)) ,
where

η v = ψ(Γ(v)).
Remark 1 (a) For a spectrally negative Lévy process the joint exponent of the ladder process is given by κ(α, β) = β + Φ(α) (α, β ≥ 0), where Φ(α) is the largest root of ψ(θ) = α, and thus

D v = D v := v ψ(Γ(v)) 2πψ ′′ (Γ(v)) , C γ ≡ 1.
(2.9) Indeed,

D v = D v × κ(η v , 0) Γ(v) ∂ ∂β κ(η v , β) |β=-Γ(v) exp{-κ(η v , -Γ(v))} = D v × 1 exp{-Φ(η v ) + Γ(v)} = D v since Φ(η v ) = Γ(v). (b) If X is spectrally positive, κ(α, β) = [α -ψ(-β)]/[ Φ(α) -β]
(see e.g. [4, Thm VII.4]), where Φ(α) is the largest root of ψ(-θ) = α and we find that

D v = Γ(v) + Γ(v) Γ(v) Γ(v) 1 2πψ ′′ (Γ(v)) , C γ = ψ ′ (0) ψ ′ (γ) ,
where Γ(v) = sup{θ : ψ(-θ) = ψ(Γ(v))}, recovering formulas that can be found in Arfwedson [START_REF] Arfwedson | Research in collective risk theory[END_REF] and Feller [START_REF] Feller | An introduction to probability theory and its applications[END_REF] respectively, for the case of a classical risk process.

Remark 2 Heuristically, in the case v > ψ ′ (γ), the asymptotics in Thm.

1 can be regarded as a consequence of the central limit theorem, that is, under the tilted measure P Γ(v) , asymptotically

τ (x) -x/v ω √ x
follows a standard normal distribution, where by (2.3) and choice of Γ(v),

ω 2 = Var (Γ(v)) [X 1 ] E (Γ(v)) [X 1 ] 3 = ψ (Γ(v))′′ (0) ψ (Γ(v))′ (0) 3 = ψ ′′ (Γ(v)) v 3 .
This explains why the asymptotics remain valid if x deviates o(x 1/2 ) = o(t 1/2 ) from the line vt.

In the boundary case v = ψ ′ (γ), in which case E (Γ(v)) [τ (x)] = t, the exact asymptotics of P (τ (x) ≤ t) may depend on the way in which x/t tends to v. Note that this case is excluded from Theorem 1.

Remark 3 In the case 0 < v < ψ ′ (γ), the asymptotics in Theorem 1 are a consequence of the law of large numbers. To see why this is the case, note that e γx P (τ (x) ≤ t) = e γx P (τ (x) < ∞) -e γx P (t < τ (x) < ∞), where the first term tends to C γ in view of (2.7), while for the second term the Markov property and (2.8) imply that e γx P (t < τ (x) < ∞) = x -∞ P (τ (x) > t, X(t) ∈ dy)e γy e γ(x-y) P (τ (xy) < ∞) ≤ x -∞ P (X(t) ∈ dy)e γy = P (γ) (X(t) ≤ x), which tends to 0 as t tends to infinity in view of the law of large numbers since E (γ) [X(t)] = tψ ′ (γ) > x. The proof below deals with the case that v > ψ ′ (γ).

Proof of Theorem 1

The idea of the proof is to lift asymptotic results that have been established for random walks by Höglund [START_REF] Höglund | An asymptotic expression for the probability of ruin within finite time[END_REF] and Arfwedson [START_REF] Arfwedson | Research in collective risk theory[END_REF] to the setting of Lévy processes by considering suitable random walks embedded in the Lévy process (more precisely, in its ladder process). We first briefly recall these results following the Höglund [START_REF] Höglund | An asymptotic expression for the probability of ruin within finite time[END_REF] formulation.
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Review of Höglund's random walk asymptotics

Let (S, R) = {(S i , R i ), i = 1, 2, . . .} be a (possibly killed) random walk starting from (0, 0) whose components S and R have non-negative increments, and consider the crossing probabilities

G a,b (x, y) = P (N (x) < ∞, S N (x) > x + a, R N (x) ≤ y + b), K a,b (x, y) = P (N (x) < ∞, S N (x) > x + a, R N (x) ≥ y + b),
where a ≥ 0, b ∈ R and N (x) = min{n : S n > x}. Let F denote the (possibly defective) distribution function of the increments of the random walk with joint Laplace transform φ and set F (u,v) (dx, dy) = e -ux-vy F (dx, dy)/φ(u, v).

Let V (ζ) = E ζ [(R 1 E ζ [S 1 ] -S 1 E ζ [R 1 ]) 2 ]/E ζ [S 1 ] 3 for ζ = (ξ, η) where E ζ denotes the expectation w.r.t. F ζ .
For our purposes it will suffice to consider random walks that satisfy the following non-lattice assumption (the analogue of the non-lattice assumption in one dimension):

The additive group spanned by the support of F contains R 2 + .

(G) Specialised to our setting Prop. 3.2 in [START_REF] Höglund | An asymptotic expression for the probability of ruin within finite time[END_REF] jointly with the remark given on p. 380 therein read as follows:

Proposition 1 Assume that (G) holds, and that there exists a ζ = (ξ, η)

with φ(ζ) = 1 such that v = E ζ [S 1 ]/E ζ [R 1 ]
, where φ is finite in a neighbourhood of ζ and (0, η). If x, y tend to infinity such that x = vy + o(y 1/2 ) > 0 then it holds that

G a,b (x, y) ∼ D(a, b)x -1/2 e xξ+yη if η > 0, K a,b (x, y) ∼ D(a, b)x -1/2 e xξ+yη if η < 0, for a ≥ 0, b ∈ R, where D(a, b) = C(a, b) • (2πV (ζ)) -1/2 , with V (ζ) > 0 and C(a, b) = 1 |η|E ζ [S 1 ] e bη ∞ a P ζ (S 1 ≥ x)e ξx dx.

Embedded random walk

Denote by e 1 , e 2 , . . . a sequence of independent exp(q) distributed random variables and by σ n = n i=1 e i , with σ 0 = 0, the corresponding partial sums, and consider the two-dimensional (killed) random walk {(S i , R i ), i = 1, 2 . . .} starting from (0, 0) with step-sizes distributed according to

F (q) (dt, dx) = P (H σ1 ∈ dx, L -1 σ1 ∈ dt)
, and write G (q) for the corresponding crossing probability

G (q) (x, y) = G 0,0 (x, y) = P (N (x) < ∞, R N (x) ≤ y).
Note that F (q) is a probability measure that is defective precisely if X drifts to -∞, with Laplace transform φ given by φ(u, v) = e -ut-vx F (q) (dt, dx) = q qκ(u, v) .

The key step in the proof is to derive bounds for P (τ (x) ≤ t) in terms of crossing probabilities involving the random walk (S, R):

Lemma 1 Let M, q > 0. For x, t > 0 it holds that G (q) (x, t) ≤ P (τ (x) ≤ t) ≤ G (q) (x, t + M )/h(0-, M ), (3.1) 
where h(0-, M ) = lim x↑0 h(x, M ), with h(x, t) := P (H σ1 > x, L -1 σ1 ≤ t). Proof: Let T (x) = inf{t ≥ 0 : H t > x} and note that τ (x) = L -1 T (x) . By applying the Markov property it follows that

P (τ (x) ≤ t) = P (T (x) < ∞, L -1 T (x) ≤ t) = ∞ n=1 P (σ n-1 ≤ T (x) < σ n , L -1 T (x) ≤ t) (3.2) = ∞ n=1 P (H σn-1 ≤ x, H σn > x, L -1 T (x) ≤ t) = ∞ n=1 P (H σn-1 ∈ dy, L -1 σn-1 ∈ ds) × P (H σ1 > x -y, L -1 T (x-y) ≤ t -s) (3.3) = ∞ n=0 F (q)⋆n ⋆ f (x, t) = (U ⋆ f )(x, t), (3.4) 
where U = ∞ n=0 F (q)⋆n , f (x, t) = P (H σ1 > x, L -1 T (x) ≤ t) and ⋆ denotes convolution. Following a similar reasoning it can be checked that G (q) (x, t) = U ⋆ h(x, t).

(3.5)
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In view of (3.4) and (3.5), the lower bound in (3.1) follows since

f (x, t) ≥ h(x, t),
taking note of the fact that H σ1 > x precisely if T (x) < σ 1 , while the upper bound in (3.1) follows by observing that for fixed M > 0,

h(x, t + M ) ≥ P (H σ1 > x, L -1 T (x) ≤ t, L -1 σ1 -L -1 T (x) ≤ M ) = P (H σ1 > x, L -1 T (x) ≤ t)P (L -1 σ1 ≤ M ) = f (x, t)h(0-, M ),
where we used the strong Markov property of L -1 and the lack of memory property of σ 1 . Applying Höglund's asymptotics in Proposition 1 yields the following result: Lemma 2 Let the assumptions of Proposition 1 hold true. If x, t → ∞ such that for v > ψ ′ (γ) we have x = vt + o(t 1/2 ) then

G (q) (x, t + M ) ∼ D q,M t -1/2 e -ψ * (v)t , M ≥ 0, where D q,M = v √ 2πψ ′′ (Γ(v)) C q,M with C q,M = e ψ(Γ(v))M κ(ψ(Γ(v)), 0) c v ψ(Γ(v))Γ(v) q q + κ(ψ(Γ(v)), 0)
,

where c v = E[e Γ(v)H1 -ψ(Γ(v))L -1 1 H 1 1 (L -1 1 <∞)
]. Lemma 2 is a consequence of the following auxiliary identities:

Lemma 3 Let u > γ, u ∈ Θ o . φ(z, -u) = 1 iff κ(z, -u) = 0 iff ψ(u) = z (3.6) ψ ′ (u) = E (u) [X(1)] = E (u) [H σ1 ] • (E (u) [L -1 σ1 ]) -1 (3.7) ψ ′′ (u) = E (u) [(H σ1 -ψ ′ (u)L -1 σ1 ) 2 ] • (E (u) [L -1 σ1 ]) -1 = ψ ′ (u)E (u) [(H σ1 -ψ ′ (u)L -1 σ1 ) 2 ] • (E (u) [H σ1 ]) -1 (3.8) ψ * (v) = vΓ(v) -ψ(Γ(v)) for v > 0 with Γ(v) ∈ Θ o . (3.9)
Proof: Eq (3.6): Note that for u, z > 0 it holds that κ(z, u) > 0. In view of the identity (2.5) the statement follows.

Proof: The assertion is a consequence of the following identity between measures on (0, ∞) 2 (which is itself a consequence of the Wiener-Hopf factorisation, see e.g. Bertoin [4, Cor VI.10])

P (X t ∈ dx)dt = t ∞ 0 P (L -1 u ∈ dt, H u ∈ dx)u -1 du. ( 3.11) 
Fix (y, v) ∈ (0, ∞) 2 in the support of µ X (dt, dx) = P (X t ∈ dx)dt and let B be an arbitrary open ball around (y, v). Then µ X (B) > 0; in view of the identity (3.11) it follows that there exists a set A with positive Lebesgue measure such that P ((L -1 u , H u ) ∈ B) > 0 for all u ∈ A and thus P ((L -1 σ1 , H σ1 ) ∈ B) > 0. Since B was arbitrary we conclude that (y, v) lies in the support of F (q) . To complete the proof we next verify that if a Lévy process X satisfies (H) then µ X satisfies (G). To this end, let X satisfy (H). Suppose first that its Lévy measure ν has infinite mass or σ > 0. Then P (X t = x) = 0 for any t > 0 and x ∈ R, according to Sato [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]Thm. 27.4 ]. Thus, the support of P (X t ∈ dx) is uncountable for any t > 0, so that µ X satisfies (G). If ν has finite mass then it is straightforward to verify that P (X t ∈ dx) is non-lattice for any t > 0 if ν is, and that then µ X satisfies (G).

Proof of Theorem 1: Suppose that v > ψ ′ (γ) (the case v < ψ ′ (γ) was shown in Remark 3). Writing l(t, x) = t 1/2 e ψ * (v)t P (τ (x) ≤ t), Lemmas 1, 2 and 3 imply that s = lim sup

x,t→∞,x=tv+o(t 1/2 ) l(t, x) ≤ D q,M /h(0-, M ), i = lim inf

x,t→∞,x=tv+o(t 1/2 ) l(t, x) ≥ D q,0 .

By definition of h and D q,M it directly follows that, as q → ∞, D q,0 → D v , D q,M → D v e ψ(Γ(v))M and h(0-, M ) = P (L -1 σ1 ≤ M ) → 1. Letting M ↓ 0 yields that s = i = D v , and the proof is complete.

For θ ∈ Θ\Θ o , ψ ′ (θ) is understood to be limη→θ,η∈Θo ψ ′ (η).
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Eq (3.7): Note that if u > γ then by the fact that ψ(0) = ψ(γ) = 0 and the strict convexity of ψ it follows that ψ(u) > 0. In view of (2.5) it follows then that κ(ψ(u), -u) = 0 for u ∈ Θ o , u > γ. Differentiating with respect to u shows that

(3.10) Also, note that

] and -u). Eq (3.8) follows as a matter of calculus, by differentiation of (3.10) with respect to u. Finally, Eq. (3.9) follows from the definition of ψ * .

Proof of Lemma 2 The proof follows by an application of Prop. 1 to

Note that, by (3.6) with u = Γ(v), φ(ζ) = 1, and that

and Eqs. (3.9), (3.7),(3.8) imply that ξx + ηt = -ψ * (v)t and

To complete the proof we are left to verify the form of the constants. The calculation of the C q,M = C(0, 0)e ηM goes as follows:

, in view of the definition (2.4) of κ. Combining all results completes the proof.

As final preparation for the proof of Theorem 1 we show that the nonlattice condition holds: Lemma 4 Suppose that (H) holds true. Then F (q) satisfies (G).