
HAL Id: hal-00558683
https://hal.science/hal-00558683

Preprint submitted on 23 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extensional Collapse Situations I: non-termination and
unrecoverable errors

Antonio Bucciarelli

To cite this version:
Antonio Bucciarelli. Extensional Collapse Situations I: non-termination and unrecoverable errors.
2010. �hal-00558683�

https://hal.science/hal-00558683
https://hal.archives-ouvertes.fr


Extensional collapse situations I:

non-termination and unrecoverable errors

Antonio Bucciarelli

PPS, UMR 7126 CNRS and Université Paris Diderot, France

Abstract. We consider a simple model of higher order, functional com-
putations over the booleans. Then, we enrich the model in order to en-
compass non-termination and unrecoverable errors, taken separately or
jointly. We show that the models so defined form a lattice when ordered
by the extensional collapse situation relation, introduced in order to com-
pare models with respect to the amount of “intensional information” that
they provide on computation. The proofs are carried out by exhibiting
suitable applied λ-calculi, and by exploiting the fundamental lemma of
logical relations.

1 Introduction

Properties of programs are often considered as split in two categories: the ex-

tensional properties and the intensional ones. Typical intensional properties are
those concerning complexity issues, while typical extensional ones are those con-
cerning input-output, observable, behaviours. This dichotomy originated from
recursion theory: a predicate P(M) on Turing Machines is extensional if, when-
ever it holds for a T.M. M , it holds for all the T.M. computing the same function
as M . Otherwise, P is intensional. So, for instance, whether the computation on
0 takes more or less than 100 steps is an intensional property, while undefinedness
on 0 is an extensional one.

It is the intended meaning of a T.M., namely the underlying partial recursive
function, which determines the frontier between what is (to be considered as)
extensional and what is (to be considered as) intensional.

Therefore, a tentative definition of the notion of extensional property could
be the following: a property of programs is extensional if the fact whether or not
a program P enjoys it does affect the denotation of P ; it is intensional otherwise.

Stated this way, being extensional or intensional is a matter of the intended
meaning of programs, and, as such, it is a relative notion1.

The following examples, written in a call by name simply typed λ-calculus
with constants, illustrate this claim:

1 The very same happens for the dichotomy “function vs algorithm”, which could be
misleadingly considered as an absolute one. For instance, the well-known parallel-or
“function” is an algorithm relatively to the model S of total objects, and a function
relatively to the model C of partial objects, defined below.



Example 1. The terms:
(1) λx:bool. true

(2) λx:bool. if x then true else true

get the same interpretation in a model where the type of booleans is in-
terpreted by the set {tt, ff}, and higher types by the corresponding function
space in Set; they get different interpretations in a model that accommodates
non-terminating computations, denoted by a suitable element ⊥.

Otherwise stated, strictness is an intensional property relatively to the very
simple, set-theoretical model, an extensional one relatively to a more sophisti-
cated one, based on partial orders.

The linguistic feature that forces strictness to be taken into account exten-
sionally is anything allowing for non-termination (e.g. fixpoint operators).

Example 2. Similarly, the terms:
(3) λx:bool. Ω
(4) λx:bool. if x then Ω else Ω
where Ω is any diverging term, get the same interpretation in the model of

non-termination introduced above; they get different interpretations in a model
that accommodates also errors, denoted by suitable element ⊤.

More examples could be provided, concerning for instance the property of lin-
earity, or the evaluation-order dependency, but they go beyond the semantic
analysis that we propose in the present work.

Hence, the frontier between extensional and intensional properties is deter-
mined essentially by the model we refer to. Nevertheless, certain features of pro-
grams have to be taken into account extensionally by all models, namely those
features that affect the operational behaviour of terms (for instance, strictness
in a language allowing for non-termination).

By the way, a fully abstract model is one that keeps implicit (i.e. intensional)
all the properties that can be kept implicit.

It appears that the models of simply typed λ-calculi may be classified with
respect to the amount of information on programs that they provide explicitly,
i.e. extensionally.

In this paper, we propose a way of performing this classification, and show
how it works on some very basic models of higher order computation over the
booleans.

The basic tool used for the classification is the notion of extensional collapse
situation. An extensional collapse situation is given by two models2, and a binary
pre-logical relation between them which is a partial surjective function, at all
types. In this case, the small model, i.e. the target of the surjective function, can
be considered as what is left of the big one when some kind of computational
behaviour (in this paper, we focus on non-termination and errors) is forbidden.

Elements of the big model may be mapped onto the same element of the
small one by the surjection: this is the case, for instance, of the interpretations

2 The models considered in this paper are families of sets indexed by simple types,
usually called type frames.
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Fig. 1. Extensional collapse situations. We write M →E N the fact that M,
N and the logical relation E determine an extensional collapse situation. When
E at ground types is a canonical surjection, clear from the context, we write
M → N .

of the terms (1) and (2) above, when passing from the partially ordered model
to the simple set-theoretic one. They may also “vanish”, since the surjection is
partial: this is the case of the interpretation of (3) in the aprtially ordered model,
the non-total constantly undefined function.

In order to prove that a given pair of modelsM,N , determines an extensional
collapse situation, we follow the following pattern:

– define a simply typed λ-calculus ΛN , such that N is fully complete w.r.t.
ΛN (i.e. such that all elements of N , at all types, are definable by closed
ΛN -terms),

– show that M is a model of ΛN ,
– use the fundamental lemma of logical relations (Lemma 6) to exhibit a suit-

able pre-logical relation, induced by ΛN , and conclude.

An interesting by-product, which is an immediate corollary of the fundamen-
tal lemma of logical relations, is that the ΛN -theory of M is included in that of
N .

We consider the following models:

– S: the full type hierarchy over the set {tt, ff}. Its elements are “higher order
boolean circuits”.

– C: the standard model of monotonic3 functions over the partial order ⊥<
tt, ff .

– E : the dual of C, i.e. the model of monotonic function over the partial order
tt, ff < ⊤, modelling unrecoverable errors in the absence of non-termination.

– L: the model of monotonic functions over the lattice ⊤ < tt, ff < ⊤, mod-
elling non-termination and errors.

We focus on the extensional collapse situations represented in Figure 1. The λ-

3 In the general case, the morphisms of the standard model are the Scott continu-
ous functions. Focusing on finite domains, the monotonic functions and the Scott
continuous ones coincide.



calculi used for proving that those are actually extensional collapse situations are
ΛS , whose constants are true, false and if, and ΛC , the parallel extension of
finitary PCF, due to Plotkin [13]. It is not necessary to introduce a language ΛE ,
in order to deal with the model E4: we prove instead that E and C are logically

isomorphic 5, and conclude since extensional collapse situations do compose.

The existence of an extensional collapse situation between two models M
and N witnesses the fact that the target of the collapse is obtained by forgetting
one (or more) computational aspect(s) that are explicitly taken into account in
the source.

Let us consider, for instance, the collapse of C over S, described in [5]: unsur-
prisingly, at the ground type bool the surjection is the partial identity, undefined
on ⊥.

At first-order types, a monotonic funcion f ∈ Cσ is surjected onto the boolean
circuit c ∈ Sσ exactly when it provides the same value as c on total tuples
(i.e. on tuples not containing ⊥). Hence, f can be considered as an algorithm
implementing c.

We have already seen in Example 1 that there exist two implementations of
the constantly tt function from Sbool to Sbool, namely the strict and the non-strict
constantly tt functions from Cbool to Cbool.

To go a little further, let us consider the n-ary disjunction orn, of type
bool → . . . → bool
︸ ︷︷ ︸

n times

→ bool, yielding the result tt whenever at least one of the

arguments is tt and ff if all the arguments are ff .

They can be implemented in several ways, ranging from the most lazy (and
parallel) algorithm yielding the result tt whenever at least one of the arguments
is tt, to the most eager one, yielding the result tt whenever all the argument are
different from ⊥, and at least one of them is tt.

In the case n = 2, this gives four different implementations of the disjunction,
which are usually named, from the laziest to the most eager, parallel-or, left-
or,right-or and strict-or.

In the general case, it is not difficult to realise that the algorithms implement-
ing orn form a lattice whose size grows exponentially in n. The laziest algorithm,
is the bottom, and the most eager is the top of the lattice.

Summing up, and generalising, we have that for all types σ, and all boolean
functionals f ∈ Sσ, the set of implementations of f is a sub cpo of Cσ, called the
totality class of f , which is a lattice.

Hence, the model S is obtained by collapsing C via the totality relation; in
the same way C is obtained by collapsing L via the “error-freedom” relation,
which, at ground type, is the partial identity function, undefined on ⊤.

4 ΛE could be defined as the dual of ΛC with respect to the inversion of ⊥ and ⊤.
5 i.e. that they form an extensional collapse situation in either way.



1.1 Related works

In the literature, a model of the simply typed λ-calculus is called extensional if
all its elements, at all types, are invariant with respect to the logical relation
defined as the identity at ground types6.

When a model is not extensional, its extensional collapse is performed by
eliminating the non-invariant elements. The result is an extensional model.

This pattern has been followed , for instance, for game models [1,10], or
models obtained by sequentiality relations [14,11].

Sometimes, the resulting extensional model happens to have been defined
and studied independently: those are instances of what we call here extensional
collapse situation.

Examples7 of this kind are:

– sequential algorithms collapsing on strongly stable functions [6].
– the relational model collapsing on Scott-continuous functions (between com-

plete lattices) [7].

Nevertheless, extensional collapse situations as defined in the present paper cover
a broader landscape than these extensional collapses. The essential difference
is that the extensional collapse of a model is, by definition, unique, whereas
different extensional collapse situations may concern a given model (as it is the
case of the lattice model L, which collapses over C, E , and S). Even choosing two
particular models M and N , there can be more than one extensional collapse
situation between them. For instance, an extensional collapse situation between
S and C has already been showed in [5], using the totality logical relation. The
use of the language ΛS and of the associated (canonical) pre-logical relation
provides a different partial surjection between those two models, and, by the
way, makes the proof presented here easier.

Extensional collapse situations, defined in a slightly different way, have been
used in [3] for constructing, given two modelsM,N of a given applied λ-calculus,
a quotient model M/N whose theory is a super-set of both Th(M) and Th(N ).

2 Logical versus pre-logical relations

Logical relations have been introduced by Plotkin in [12], in order to characterize
λ-definability in the full type hierarchy. The main features of logical relations
are:

– they contain all the tuples of the form ([M ℄, . . . , [M ℄), where M is a closed,
simply typed λ-term. This is known as “the fundamental property”of logical
relations.

6 Otherwise stated: ∀σ, τ, f, g : σ → τ if ∀x ∈ σ f(x) = g(x) then f = g.
7 It has to be noticed that in these examples the collapse is not a logical relation. It
is defined as a categorical notion, independently from the hierarchy of simple types
and obviously instantiating to an extensional collapse situation in the sense defined
in this paper.



– they are completely determined by their behaviour at ground types. Hence,
defining a logical relation boils down to specify it at ground types.

The main drawback of logical relations, from our point of view at least, is that
they are not closed under (relational) composition; actually, the property stated
in the second item above is incompatible with the closure under composition.
In [9], Honsell and Sannella define pre-logical relations, as a weakening of the
notion of logical relation which enjoy the fundamental property and is closed
under (relational) composition. The price to pay is that pre-logical relation are
not determined by their behaviour at ground types, and that they are language-
dependent: at higher-types, pre-logical relations have to obey a closure condition
which depends from the specific simply typed λ-calculus Λ one is interested in
8.

Nevertheless, pre-logical relations are very well adapted to our framework: in
general, we will prove the existence of an extensional collapse situationM →E N
by exhibiting a λ-calculus ΛN , with respect to which N is fully complete. In
such a situation, if M is a model of ΛN , the relation {([P ℄M, [P ℄N ) | P ∈
(ΛNσ )0}σ∈Types is a partial surjective function at all types, and it is a ΛN -pre-
logical relation (which is not logical in general).

We want to be able to compose such pre-logical relations. Of course, the
composition of relations which are partial surjective functions is a partial surjec-
tive function. Moreover, we know that, given a simply typed λ-calculus Λ, the
composition of two Λ-pre-logical relations is Λ-pre logical [9].

The point here is that we will compose relations which are pre-logical rel-
atively to different λ-calculi: the set of constants of ΛN will of course depend
on N . Nevertheless, when composing a ΛN -pre-logical relation and a ΛN

′

-pre-
logical relation, one gets a Λ-pre-logical relation for any language Λ which is
a sub-language of both ΛN and ΛN

′9. Hence, we consider the poorest possible
language, namely the simply typed λ-calculus without constants, over a given set
of ground types (for our purposes, a unique ground type bool is enough), call it
Λ, and define extensional collapse situations as Λ-pre-logical relations which are
partial surjctive functions at all types.

It has to be noticed that logical relations are, a fortiori, Λ-pre-logical. Hence
the composition of two logical relations, which is not logical in general, is Λ-pre-
logical.

So, in general, we can exhibit different extensional collapse situations between
two given models. Let us consider again, for instance, the case of C and S. We
will see in Section 3 that the simply typed λ calculus equipped with the ground
boolean constants true and false and the first-order constant if, noted ΛS ,
determines, following the lines described above, an extensional collapse situation
C →E S, which is different from the totality collapse described in Section 1.
For instance, the parallel-or function is related to the binary disjunction in the

8 Moreover, just like logical relations, they have to be closed with respect to the
interpretations of the constants of Λ.

9 This is an immediate consequence of the definition of pre-logical relations and of
proposition 1.



totality collapse, but not in E, since no term of ΛS defines the parallel-or (by
the way, the three “sequential” disjunctions strict-or, left-or and right-or are
ΛS-definable).

3 Type frames, logical and pre-logical relations

Since all the models considered in this paper are extensional, we provide here a
very simple definition of type frame, where higher types are interpreted by sets
of functions10.

The set of simple types over a set K of ground type constants is the smallest
set containing K and closed w.r.t. the operation σ, τ 7→ σ → τ .

Definition 1. A type frame M over a set K of ground types is a family of sets

indexed by simple types over K, such that

Mσ→τ ⊆ {f | f is a function from Mσ to Mτ}.
A type frame is finite if all the sets of the family are finite sets.

When Mσ→τ = MMσ

τ , the type frame is full.

Definition 2. Given two type frames M and N over K, a binary logical rela-
tion R between M and N is a family of binary relations Rσ ⊆ Mσ×Nσ, indexed

by simple types over K, such that, for all σ, τ, f ∈ Mσ→τ , g ∈ Nσ→τ :

(f, g) ∈ Rσ→τ ⇔ [∀x ∈ Mσ, y ∈ Nσ [(x, y) ∈ Rσ ⇒ (f(x), g(y)) ∈ Rτ ]]

For defining pre-logical relation, we use the notion of environment-based
interpretation of the typed λ-calculus in type frames, which will be introduced
in Section 4. In the following definition, let Λ be the simply typed λ-calculus,
without constants, over a set K of ground types.

Definition 3. A binary pre-logical relation R between M and N is a family of

binary relations Rσ ⊆ Mσ ×Nσ, indexed by simple types over K, such that:

– for all σ, τ, f ∈ Mσ→τ , g ∈ Nσ→τ : (f, g) ∈ Rσ→τ ⇒ [∀x ∈ Mσ, y ∈
Nσ [(x, y) ∈ Rσ ⇒ (f(x), g(y)) ∈ Rτ ]]

– Given:

• P ∈ Λτ , for any type τ ,
• a M-environment ρ and a N -environment ρ′ such that, for all types δ
and variable x : δ, (ρ(x), ρ′(x)) ∈ Rδ,

• a variable z : σ, for any type σ,

the following holds:

[∀(a, b) ∈ Rσ ([P ℄Mρ[z:=a], [P ℄Nρ′[z:=b]) ∈ Rτ ] ⇒ ([λz.M ℄Mρ , [λz.M ℄Nρ′ ) ∈ Rσ→τ

It is easy to see that any logical relation is pre-logical. We are interested in a
particular kind of pre-logical relations:

10 In section 6 we provide the more general definition, encompassing non extensional
models.



Definition 4. A binary pre-logical relation R between two type frames M and

N over K is a pre-logical surjection if:

– at all types, R is surjective: ∀σ ∀y ∈ Nσ ∃x ∈ Mσ (x, y) ∈ Rσ

– at all types, R is a partial function: ∀σ ∀x ∈ Mσ ∀y, y′ ∈ Nσ (x, y), (x, y′) ∈
Rσ ⇒ y = y′

Lemma 1. A binary pre-logical relation between M and N which is a partial

function at ground types and surjective at all types is a pre-logical surjection.

Proof. Straightforward, by induction on types. The extensionality of N is re-
quired here.

Definition 5. An extensional collapse situation is a triple M,N ,E, where M
and N are type frames over a given set K of ground types and E is a pre-logical

surjection from M to N .

We note M →E N the fact that M,N ,E is an extensional collapse situation.
Extensional collapse situations are closed under composition, in the following

sense:

Proposition 1 ([9], Prop. 5.5). If M →E N and N →F P then M →F◦E P,

where (F ◦ E)σ = Fσ ◦ Eσ.

Hence, the set of type frames over a given set K of ground types is pre-ordered
by the relation N ≤ M ⇔ M →E N , for some E. Let ≡ denote the equivalence
relation associated to this pre-order.

We call pre-logical isomorphism a pre-logical relation E such that both E and
E−1 are pre-logical surjections.

3.1 Type frames over bool

In order to define the type frames we are interested in, let us introduce the
following notation: if A and B are sets (resp. partially ordered sets), A ⇒ B
(resp. A ⇒m B) denotes the set of all the functions from A to B (resp. the
partially ordered set of monotonic functions from A to B, ordered pointwise).

We consider four type frames over a single ground type bool: S, C, E and L,
defined as follows:

– • Sbool = {tt, ff},
• Sσ→τ = Sσ ⇒ Sτ .

– • Cbool = {⊥, tt, ff}, partially ordered by ⊥< tt, ff ,
• Cσ→τ = Cσ ⇒m Cτ .

– • Ebool = {tt, ff,⊤}, partially ordered by tt, ff < ⊤,
• Eσ→τ = Eσ ⇒m Eτ .

– • Lbool = {⊥, tt, ff,⊤}, partially ordered by ⊥< tt, ff < ⊤,
• Lσ→τ = Lσ ⇒m Lτ .

The type frames C and E are dual. We show that C ≡ E by exhibiting a
pre-logical isomorphism.



Proposition 2. The logical relation E between C and E defined by Ebool =
{(tt, tt), (ff, ff), (⊥,⊤)} is a pre-logical isomorphism.

Sketch of the proof. First of all, the relation defined above is logical, hence, a
fortiori, pre-logical. In order to show that it is a pre-logical isomorphism, one
can prove by simultaneous induction on types, the following statements:

(iσ) Eσ is a bijection.
(iiσ) ∀(x, y), (x′, y′) ∈ Eσ (x ≤ x′ ⇔ y′ ≤ y).

4 Applied λ-calculi

The type frames introduced in the previous section are models of simply typed
λ-calculi endowed with constants, called applied λ-calculi:

Definition 6. Given a set K of ground types, an applied λ-calculus Λ over K
is given by a family of typed constants C(Λ)σ, indexed by simple types over K.

The terms of the calculus are simply typed λ-terms built by application and

λ-abstraction starting from the typed constants and variables.

The operational semantics of an applied λ-calculus is specified by a set of

δ-rules, stipulating the behaviour of the constants, and by the β-rule.

As a matter of notation, we will write Λσ (resp. Λ0
σ) for the set of terms (resp.

closed terms) of type σ.
The usual, environment based, interpretation of an applied λ-calculus in a

type frame M, given a suitable map C from the constants of the calculus to
elements of the appropriate type, is defined as follows:

– [x℄Mρ = ρ(x), [c℄Mρ = C(c)

– [PQ℄Mρ = [P ℄Mρ ([Q℄Mρ ), [λx : σ.P ℄Mρ = d ∈ Mσ 7→ [P ℄Mρ[x←d]

The interpretation of a closed term P will be noted simply [P ℄M, or [P ℄, when
non ambiguous.

Two conditions have to be satisfied for a type frame M to be a model of a
given applied λ-calculus:

1. In the fourth item of the definition above, one has that the function d ∈
Mσ 7→ [P ℄Mρ[x←d] is an element of Mσ→τ , for the appropriate type τ .

2. The map C is sound: for any δ-rule P →δ Q, one has [P ℄M = [Q℄M.

When these conditions are satisfied, the model is such that P →∗ Q ⇒[P ℄M = [Q℄M, where the rewriting relation → is the contextual closure of
→β ∪ →δ.

Note that, for the type frames S,C,E and L, the first condition is always

satisfied, since for all of them [σ → τ℄ is the exponential object [τ℄[σ℄
in some

Cartesian closed category (actually there exists a ccc which is an ambient cate-
gory for all those type frames, namely the category of finite partial orders and



monotone functions). Hence, in order to show that a given type frame among
S,C,E and L is a model of a given applied λ-calculus, it is sufficient to provide a
sound interpretation of the constants of the language.

Among the models of a given applied λ-calculus, the fully complete ones are
those whose elements are definable (in general, one asks for the definability of
finite elements. We skip this condition here since we focus on finite type frames).

Definition 7. A model M of an applied λ-calculus Λ is fully complete if for

all σ and for all d ∈ Mσ there exists a closed Λ-term D of type σ such that[D℄M = d.

We define now the applied λ-calculi that will be used in the sequel to prove
some extensional collapse situations.

We call these calculi ΛS and ΛC respectively, to emphasise the full complete-
ness of the corresponding type frames.

4.1 The basic boolean calculus

Here is the definition of the constants of ΛS and of their operational semantics:

Definition 8. – C(ΛS)bool = {true, false}
– C(ΛS)bool→bool→bool→bool = {if}
– if true M N →δ M , if false M N →δ N

Lemma 2. S is a fully complete model of ΛS .

Sketch of the proof. First of all, the interpretation mapping the ground constants

on the corresponding boolean values and such that [if℄Sd e f =

{
e if d = tt
f if d = ff

is clearly sound, hence S is a model of ΛS .

Concerning full completeness : consider an element f = {(a1, b1), . . . , (an, bn)} ∈
Sσ→τ . If the ai, the bj and the equality predicate on Sσ were ΛS-definable, then
it would be easy to write down a ΛS-term defining f , as a sequence of nested
if.

On the other hand, one can ΛS-define the equality predicate on Sσ→τ if one
is able to define the elements of Sσ and the equality predicate on Sτ .

Hence, the proof consists in a straightforward simultaneous induction on
types, for the two following properties:

DEF(σ): all the elements of Sσ are ΛS-definable.

EQ(σ): the equality predicate on Sσ is ΛS-definable.

By the way, EQ(bool) is provided by the term

λx:bool y:bool. if x (if y true false) (if y false true).

Let P (σ) = ∀e ∈ Sσ∃P ∈ ΛS
0
σ [P ℄S = e,

Lemma 3. C and E are models of ΛS .



Proof. The ground constants true and false are interpreted by the correspond-
ing booleans, in both models. Here is the interpretation of the constant if in
the two models:[if℄Cd e f =







e if d = tt
f if d = ff
⊥ otherwise

[if℄Ed e f =







e if d = tt
f if d = ff
⊤ otherwise

these interpretations clearly validate the δ-rules concerning if.

4.2 Adding non-termination

Non-termination can be added to the basic calculus by means of fixpoint combi-
nators, for instance. Nevertheless, a single new constantΩ : bool, whose intended
interpretation is the undefined boolean value ⊥ is enough. In fact, fixpoint com-
binators do not add expressive power in the case of finite ground types, apart
from the possibility of divergence. In order to achieve the full completeness of C,
we add a parellel-or constant to the language, following Plotkin [13].

ΛC is the extension of ΛS defined as follows:

Definition 9. ∀σ C(ΛS)σ ⊆ C(ΛC)σ and:

– Ω ∈ C(ΛC)bool
– C(ΛC)bool→bool→bool = {por}
– por true M →δ true, por M true →δ true

– por false false →δ false

Lemma 4. C is a fully complete model of ΛC.

Proof. This is a corollary of Plotkin’s proof of full abstraction of the Scott model
of parallel PCF [13].

Lemma 5. L is a model of ΛC.

Proof. The ground constants true and false and Ω are interpreted by tt, ff
and ⊥ respectively. Here there are the interpretations of if and por in L:[if℄Ld e f =







⊥ if d =⊥
e if d = tt
f if d = ff
⊤ if d = ⊤[por℄Ld e = {tt | d ≥ tt or e ≥ tt} ∨ {ff | d ≥ ff and e ≥ ff}}

Otherwise stated, the interpretation of por in L is given by the following
truth table:

por ⊥ ff tt ⊤
⊥ ⊥ ⊥ tt tt
ff ⊥ ff tt ⊤
tt tt tt tt tt
⊤ tt ⊤ tt ⊤



This interpretation validates the δ-rules concerning if and por.
Notice that the interpretation of the parallel-or constant in L given above is

the only one which is sound with respect to the δ-rules of por. Actually:

tt = [true℄L = [por true x℄L[x:=⊤] = [por℄Ltt⊤
5 Extensional Collapse Situations

In this section, we prove the six extensional collapse situations exhibited in
Figure 1. An effective way of providing an extensional collapse situation M →E

N , is to define an applied λ-calculus ΛN such that N is a fully complete model
of ΛN , and M is a model of ΛN ; then full completeness may be used to exhibit
a suitable pre-logical surjection. The key fact is expressed by the fundamental
lemma of (pre-)logical relations below:

Lemma 6 ([9], Lemma 4.1). If M, N are models of an applied λ-calculus Λ,
and E is a pre-logical relation between M and N , such that for all constants c : σ
of Λ, ([c℄M, [c℄N ) ∈ Eσ, then, for all types σ and for all P ∈ Λ0

σ, ([P ℄M, [P ℄N ) ∈
Eσ.

Corollary 1. Let M, N be type frames over K, and suppose that there exists

an applied λ-calculus Λ such that N is fully complete for Λ.
Then there exist a pre-logical surjection E such that M →E N .

Proof. Define Eσ = {([P ℄M, [P ℄N ) | P ∈ Λ0
σ}.

As shown in [9], Exemple 3.7, this is a pre logical relation.
We have to prove that Eσ is a partial surjective function, for all σ. For ground

types, the statement holds by full completeness of N , under the hypothesis that
different ground constants of Λ are not identified in M, that we take for granted.

By using Lemma 1 we are left with proving that E is surjective at higher
types, and this is guaranteed by the full completeness of N .

Given an applied λ-calculus Λ and one of its models M, let ThΛ(M) = {P =

Q | P,Q ∈ Λ0 and [P ℄M = [Q℄M} .

Corollary 2. Let M and N be models of an applied λ-calculus Λ, and M →E N
be an extensional collapse situation. If, for all constants c : σ of Λ, ([c℄M, [c℄N ) ∈
Eσ, then ThΛ(M) ⊆ ThΛ(N ).

Proof. Let us suppose that [P ℄M = [Q℄M, for two given closed Λ-terms P and

Q. By lemma 6 we have that ([P ℄M, [P ℄N ), ([Q℄M, [Q℄N ) ∈ Eσ. Since Eσ is a

function, we conclude that [P ℄N = [Q℄N .
Here is our main result:

Proposition 3. The following extensional collapse situations do hold:

C → S, E → S, C → E, E → C, L → C, L → E.



Proof. – C → S and E → S follow from Corollary 1, where the applied λ-
calculus is ΛS , and Lemmas 2, 3.

– C → E and E → C follow from Proposition 2
– L → C follows from Corollary 1, where the the applied λ-calculus is ΛC , and

Lemmas 4, 5.
– L → E follows from the two items above and Proposition 1.
Note that, by composition of extensional collapse situations, we obtain L →

S.

By Corollary 2, the proposition above yields in particular:

Corollary 3. – ThΛ
S

(C) ⊆ ThΛ
S

(S)

– ThΛ
C

(L) ⊆ ThΛ
C

(C)

The examples presented in Section 1 show that the inclusions above are strict.

6 Conclusion and further work

We have provided a general definition of “inclusion” of models of higher order,
functional computations via the notion of extensional collapse situation, and
shown this notion at work on some simple models over bool.

As suggested by the title, this work should be considered as a first step
settling the ground for the study of extensional collapse situations on more
complicated models. As a matter of fact, the definitions of section 3 have to
be generalised a bit to encompass non extensional models. In particular, if C is a
Cartesian closed category without enough points, the corresponding type frame
Cσ is defined by:

– Cbool = C(1, Cbool) for a suitable object Cbool

– Cσ→τ = C(1, Cσ ⇒ Cτ )

and, given f ∈ Cσ→τ and x ∈ Cσ, one defines f(x) = ev◦ <f, x>.
Then, the fundamental lemma 6 holds and the construction of extensional

collapse situations via applied λ-calculi goes through. This generalisation of log-
ical relations for categories without enough points is described for instance in
[2], section 4.5.

Let us introduce a direction for further work via an example, referring to the
ones showed in the introduction. The terms:

λx:bool. x

λx:bool. if x then x else x

get the same interpretation in all the models considered in the present paper.
They get different interpretation, for instance11, in the model R of set and
relations [8], endowed with the finite multiset exponential (see for instance [4]
for a direct description of that model as a Cartesian closed category).

11 Actually, these terms get different interpretations in all models for which linearity

is an extensional property. This character of the model is often termed “resource
sensitivity”.



Using Ehrhard’s result on the extension collapse of R over L [7], we should
obtain the following chain of extensional collapse situations:

S < C ≡ E < L < R
An interesting sub-problem is the definition of an extension of (finitary) PCF

w.r.t. which L is fully complete.
What comes after? More intensional models, like game models, could collapse

overR. Also, where is the place of models based on stable orderings, as the stable
or strongly stable ones, in this hierarchy?

We already know some partial answer (for instance, the fact that Berry and
Curien’s sequential algorithms collapse over the model of strongly stable func-
tions [6]).

Quite a number of different models of higher order, functional computation
exist in literature.

Having a better overview of the poset of extensional collapse situations relat-
ing these models may contribute to a better understanding of the whole picture.

Acknowledgments. Thanks to an anonymous referee of a previous version of
this work, for suggesting that pre-logical relations are the proper framework to
deal with extensional collapse situations.
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