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Abstract

This paper deals with the observability of the discrete mode, the internal state and the input of switching structured linear systems with
unknown input. The proposed method, based on a graph-theoretic approach, assumes only the knowledge of the system’s structure. We
express, in graphical terms, necessary and sufficient conditions for the generic observability of the discrete mode, the continuous internal
state and the input of a switching structured linear system. These conditions can be implemented by classical graph-theory algorithms
based on finding particular paths and cycles in a digraph.
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1 Introduction

Hybrid systems, combining event-driven and time-driven dy-
namics, have received growing attention in the control com-
munity as they can be used to describe a wide range of phys-
ical and engineering systems. For such systems, the general
problem of estimating the mode, the internal state and the
unknown input is of great interest in many control areas.
In the context of switching continuous time linear systems,
studies presented in (Babaali and Pappas, 2005; De Santis
et al., 2006; De Santis et al., 2009; Vidal et al., 2003) are
among the most significant works which deal with observ-
ability. They characterize completely the observability of the
continuous internal state and/or the discrete mode variable,
which is assumed to be unknown and arbitrary. Other def-
initions of observability for other kinds of hybrid systems
are also provided in the literature. For instance, (Bemporad
et al., 2000; Collins and van Schuppen, 2004; Chaib et
al., 2005) study the observability of hybrid linear systems,
where the discrete mode depends on the state trajectory or
are associated to discrete outputs. From the point of view
of the kind of systems and observability definitions, our
paper is close to (Babaali and Pappas, 2005; De Santis et
al., 2006; Vidal et al., 2003; De Santis et al., 2009). But,
our proposed method and the obtained results present two
main originalities. On the one hand, few works deal with
the observability of hybrid systems with unknown input. In
fact, there exist some works ((Pina and Botto, 2006) and
the references therein), which aim at designing unknown in-
put observers for SLS. (Vu and Liberzon, 2006) addresses
the problem of recovering the discrete mode variable and
the input given an output and an initial state. Nevertheless,
these works do not study state and input observability. On
the other hand, in most cases, observability analysis for SLS
deal with algebraic and geometric tools and so requires the
exact knowledge of the state space matrices characterizing
the systems’ model. In many modeling problems or during
conception stage, these matrices have a number of fixed zero
entries determined by the physical laws while the remaining
entries are not precisely known. Thus, to study the struc-
tural properties, we can consider models where the fixed ze-

ros are conserved while the non-zero entries are replaced by
free parameters. Many interesting works on these models,
called structured models, are related to the graph-theoretic
approach to analyse efficiently structural properties (Dion et
al., 2003). In this context, our aim is to use such approach
to characterize the observability of the discrete mode vari-
able, the internal state and the input for switching structured
linear systems (SSLS).
The paper is organised as follows: after Section 2, which is
devoted to the problem formulation, some definitions related
to the graph-theoretic approach are given in Section 3. The
main results are enounced in Section 4 before a conclusion.
2 Problem statement

Consider the following SLS

Σ :

{
ẋ(t) = A(rt)x(t) + B(rt)u(t)

y(t) = C(rt)x(t) + D(rt)u(t)
(1)

where x ∈ R
n, u ∈ R

m and y ∈ R
p are respectively the

state, the input and the output (measurement) vectors and
where A(·), B(·), C(·) and D(·) are real matrices of com-
patible dimensions. The exogenous and unobserved discrete

mode variable (or switching signal) r : [0,∞) → Q
def
=

{1, . . . , N}, is assumed, as in (Babaali and Pappas, 2005),
to be right-continuous and only a finite number of jumps
can occur in any finite interval. It results that all the sys-
tem trajectories are well defined. Without loss of generality
and for the sake of homogeneity, all the inputs are assumed
to be unknown. the control input signals, whose values are
known, are considered to be measured i.e. we associate a
virtual output equation of the form yk′ = uk to these in-
puts. Moreover, our aim is to address, in the same frame-
work autonomous SLS and SLS with known or unknown
input. However, the discrete mode observability as it is de-
fined in (De Santis et al., 2006), must be independent from
the system’s initial conditions x0 and so cannot be satis-
fied for autonomous SLS. Indeed, for such systems case, if
x0 = 0, then y(t) ≡ 0, ∀q ∈ Q, and give no information
about the discrete mode variable. To have a more general
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framework, we impose mode distinguishability for generic
initial conditions x0 and unknown input u:

Definition 1 Two modes q ∈ Q and q′ ∈ Q with (q 6= q′)
are distinguishable if one of following conditions holds:
- there exist an integer s ≥ 0 and an expression
Ψq(y, ẏ, . . . , y(s)) = 0 satisfied for mode q but not for mode
q′ for almost all initial conditions x0 and input u,
- there exist an integer s′ ≥ 0 and an expression

Ψq′(y, ẏ, . . . , y(s′)) = 0 satisfied for mode q′ but not for
mode q for almost all initial conditions x0 and input u.

Here, “ for almost all initial conditions x0 and input func-
tions u ” is to be understood as “ for all (xT

0 , uT )T ∈ R
n+m

except for the zero set of some polynomial with real co-
efficients in the n + m initial state and input components
which constitutes a proper algebraic variety in the state and
input space. Relatively to the definitions of (Babaali and
Pappas, 2005), our notion of distinguishability of q and q′

is equivalent to the fact that q is discernible from q′ or vice-
versa. The mutual mode discernibility, which is a dissym-
metric property in (Babaali and Pappas, 2005), is equivalent
to have both conditions of Definition 1 satisfied.

Definition 2 SLS (Σ) is location observable if ∀q ∈ Q,
∀q′ ∈ Q, with q 6= q′, q and q′ are distinguishable.

To establish the observability of SLS, we have to address, in
addition to location observability, the state and input observ-
ability of each mode as defined in (Trentelman et al., 2001):

Definition 3 A continuous system is state and input observ-
able if y(t) = 0, ∀t ≥ 0 implies x(t) = 0, ∀t ≥ 0 and
u(t) = 0, ∀t > 0.

Roughly speaking, state and input observability is equivalent
to the possibility to express the state and the unknown input
in function of output and its time derivatives.

Definition 4 SLS (Σ) is state and input observable if it is
location observable and every mode is state and input ob-
servable.

Location observability analysis can be reduced to the study
of the distinguishability of each pair of modes. Thus, there
is no loss of generality in considering in the first part of
the paper, for the sake of simplicity, that we have only two
modes. At the end of Section 4, we extend the obtained
results to the multiple modes case.
Since we study structural properties, it is pertinent to deal
with structured systems, for which we assume that only the
sparsity pattern of matrices A(q), B(q), C(q) and D(q) is
known for q ∈ {1, 2}. So, to each entry of these matrices, we
only know whether its value is fixed to zero, or that it has an
unknown real value represented by a real parameter λi. The

vector of these parameters is Λ = (λ1, λ2, . . . , λh)
T

and it
is assumed that Λ can take any value in R

h. We denote by
Aλ(q), Bλ(q), Cλ(q) and Dλ(q) respectively the matrices
obtained by replacing the nonzeros in A(q), B(q), C(q) and
D(q), for q ∈ {1, 2} by parameters λi and we denote

ΣΛ :

{
ẋ(t) = Aλ(rt)x(t) + Bλ(rt)u(t)

y(t) = Cλ(rt)x(t) + Dλ(rt)u(t)
(2)

If all parameters λi are numerically fixed, we obtain a so-
called admissible realization of SSLS (ΣΛ). A property is
true generically for SSLS (ΣΛ) if it is true for almost its re-
alizations or equivalently for almost all parameters λi.

To study the location observability, it is pertinent and neces-
sary to highlight the similarities and the differences between
the models associated to these modes. Thus, we decompose
each structured matrix into two parts: the first one is common
to the two modes and the second one is specific to each mode
i.e. for q ∈ {1, 2}, Aλ(q) = Aλ

0 + Aλ
q , Bλ(q) = Bλ

0 + Bλ
q ,

Cλ(q) = Cλ
0 +Cλ

q and Dλ(q) = Dλ
0 +Dλ

q . We assume that
the entries of all these matrices are free.

3 Graphical representation of structured switching lin-
ear systems

The digraph associated to (ΣΛ) is noted G(ΣΛ). It
is constituted by a vertex set V and an edge set E .
The vertices are associated to the internal continu-
ous state, the input and the output components of
(ΣΛ) and the directed edges represent links between
these variables. More precisely, V = X ∪ U ∪ Y,
where X = {x1, . . . ,xn}, U = {u1, . . . ,um} and
Y = {y1, . . . ,yp} are respectively the set of state, in-
put and output vertices. For q ∈ {0, 1, 2}, we define
Eq = Aq-edges∪Bq-edges∪Cq-edges∪Dq-edges, where,
for q ∈ {0, 1, 2}, Aq-edges = {(xj,xi) | Aq(i, j) 6= 0},
Bq-edges = {(uj,xi) | Bq(i, j) 6= 0}, Cq-edges =
{(xj,yi) | Cq(i, j) 6= 0} and Dq-edges =

{(uj,yi) | Dq(i, j) 6= 0}. Finally the edge set is E =

2⋃

q=0

Eq .

The edges included in E0 represent the common part of the
two modes’ models, while Eq , for q ∈ {1, 2} is related to
the specific part of each mode’s model. Each edge is asso-
ciated to a free non-zero parameter of the system’s model
called the weight of the edge. A number q is written under
each Eq-edge.

Example 1 To the system defined by the following matrices,
we associate the digraph in Figure 1.

Aλ
0 =




0 0 0 0 0 0 0 0
0 0 λ1 0 0 0 0 0
0 λ2 0 0 0 0 0 0
0 0 0 0 λ3 0 0 λ4
0 λ5 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 λ6 λ7 0 0
0 0 0 0 0 0 λ8 0




, Bλ
0 =




0
0
0
0
0

λ12
0
0




, Bλ
1 = Bλ

2 =

0, Cλ
0 =




λ13 0 0 0 0 0 0 0
0 0 0 0 λ14 0 0 0
0 0 0 λ15 0 0 0 0
0 0 0 0 0 0 0 λ16


, all the entries of Aλ

1

are zero except Aλ
1 (1, 2) = λ9, all the entries of Aλ

2 are zero
except Aλ

2 (5, 2) = λ10 and Aλ
2 (7, 6) = λ11, the elements of

matrices Cλ
1 , Cλ

2 , Dλ
0 , Dλ

1 and Dλ
2 are equal to zero.
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Figure 1. Digraph associated to system of Example 1
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The digraph representing the SSLS is built from the super-
position of the digraphs related to each mode. To study the
properties of the system associated to a specific mode q, we
have to restrict the edge set to E0 ∪ Eq . Then, many of the
functions and specific vertex subsets, defined below, present
an index q related to the considered mode.
• Two edges e1 = (v1,v′

1) and e2 = (v2,v′

2) are v-disjoint
if v1 6= v2 and v′

1 6= v′

2. Some edges are v-disjoint if they
are mutually v-disjoint.
• A path P is denoted P = vs0 → vs1 → . . . → vsi ,
where (vsj ,vsj+1

) ∈ E for j = 0, 1, . . . , i − 1. We say in
this case that P covers vs0 , vs1 , . . . , vsi . A path is simple
when every vertex occurs only once in this path. The weight
of P is the product of the weights of all its edges.
• A cycle is a path of the form vs0 → vs1 → . . . → vsi →
vs0 , where vs0 , vs1 , . . . , vsi are distinct.
• For q ∈ {1, 2}, we say that path P is included in E0 ∪ Eq

if all its edges are included in E0 ∪ Eq .
• Some paths (resp. cycles) are disjoint if they have no com-
mon vertex. A set of disjoint cycles is called a cycle family.
• P is a Y-topped path if its end belongs to Y. A Y-topped
path family is a set of disjoint simple Y-topped paths.
• The union of a Y-topped path family and a cycle family
is disjoint if they have no common vertex. Such union cov-
ers vertex v if it contains a path or a cycle which covers v.
In the sequel, V1 and V2 represent two subsets of V . We de-
note by card(·) the cardinality function and V1 \ V2 is the
set of elements in V1 which are not in V2.
• A path P = vs0 → vs1 → . . . → vsi is said a V1–
V2 path if vs0 ∈ V1 and vsi ∈ V2. If the only vertex of P
which belongs to V1 is vs0 and the only vertex of P which
belongs to V2 is vsi , P is called a direct V1–V2 path.
For q = {1, 2}, we denote:

• ρq

[
V1,V2

]
is the maximal number of disjoint V1-V2 paths

included in E0∪Eq . A set of ρq

[
V1,V2

]
disjoint V1-V2 paths

included in E0 ∪Eq is a maximum V1-V2 linking in E0 ∪Eq .

• µq

[
V1,V2

]
is the minimal number of vertices of U∪X∪Y

belonging to a maximum V1–V2 linking included in E0∪Eq .

• Vess,q

[
V1,V2

]
is the subset including the vertices present

in all the maximum V1–V2 linkings included in E0 ∪ Eq .
• θq [V1,V2] is the maximal number of v-disjoint edges in-
cluded in E0 ∪ Eq , starting in V1 and ending in V2.

• There exists a unique vertex subset So
q

[
V1,V2

]
and called

minimum output separator which is the set of begin vertices
of all direct Vess,q

[
V1,V2

]
–V2 paths included in E0 ∪ Eq .

In Example 1, ρ1

[
U,Y

]
= ρ2

[
U,Y

]
= 1, µ1

[
U,Y

]
=

µ2

[
U,Y

]
= 5. Vess,1

[
U,Y

]
= Vess,2

[
U,Y

]
=

{u1, x6, x7, x8}. Finally, So
1

[
U,Y

]
= {x8}.

Functions θq , ρq and µq and the two vertex subsets Vess,q

and So
q constitute the classical graphic-notions used in most

of the results related to the structural analysis using graph-
theoretic approach. Indeed, for example, θq(X,Y) is equal
to the generic rank of matrix Cq (Murota, 1987; Rein-
schke, 1988). ρq and µq are associated to the generic rank
of transfer matrices.

4 Main results

4.1 Preliminaries

Let VY ⊆ Y denotes a vertex subset which plays the role
of the output vertex subset instead of Y. Our aim is to char-

acterize the generic dimension of the observability subspace
when only measurements related to VY are available.

Definition 5 Consider SSLS (ΣΛ) associated to digraph
G(ΣΛ). For each vertex subset VY ⊆ ∪Y and for each
q ∈ {1, 2}, we define the following subdivision:

• X1,q(VY)
def
=

{
xi | ρq

[
U ∪ {xi},VY

]
> ρq

[
U,VY

]}
;

• Y0,q(VY)
def
= VY ∩ Vess,q

[
U,VY

]
;

• Y1,q(VY)
def
= VY \ Y0,q(VY);

•U0,q(VY)
def
=

{
ui | θq

[
{ui},X1,q(VY) ∪ Y1,q(VY)

]
= 0

}
;

• U1,q(VY)
def
= U \ U0,q(VY);

• Xs,q(VY)
def
= So

q

[
U0,q(VY),VY

]
∩ X;

• X0,q(VY)
def
= X \

(
X1,q(VY) ∪ Xs,q(VY)

)
.

One of the main properties of the subdivision (which
are proved in Lemma 5 of (Boukhobza et al., 2007)) is
that there is no edge from X0,q(VY) ∪ U0,q(VY) to
X1,q(VY) ∪ Y1,q(VY) and so that the dynamics of the
components included in X1,q(VY) is independent from
the elements X0,q(VY) ∪ U0,q(VY). We can then de-
compose for each mode the system into two subsystems:
(Σ0,q) defined by input U0,q(VY), state X0,q(VY) and
output Xs,q(VY) ∪ Y0,q(VY) and (Σ1,q(VY )), having
more outputs than inputs, defined by input U1,q(VY) and
Xs,q(VY), state X1,q(VY) and output Y1,q(VY).
In Example 1, X1,1(Y) = {x1, x2, x3, x4, x5},
Y1,1(Y) = Y, Y0,1(Y) = ∅ = U1,1(Y), U0,1(Y) =
{u1}, Xs,1(Y) = {x8} and X0,1(Y) = {x6, x7}.
For VY = Y and for each q ∈ {1, 2} we can write system
(ΣΛ) in mode q as (Boukhobza et al., 2007):




Ẋ0,q = A0,0(q)X0,q + A0,s(q)Xs,q + A0,1(q)X1,q+

+B0,0(q)U0,q + B0,1(q)U1,q

Ẋs,q = As,0(q)X0,q + As,sXs,q + As,1(q)X1,q+

Bs,0(q)U0,q + +Bs,1(q)U1,q

Ẋ1,q = A1,s(q)Xs,q + A1,1(q)X1,q + B1,1(q)U1,q

Y0,q = C0,0(q)X0,q + C0,s(q)Xs,q + C0,1(q)X1,q+

+D0,0(q)U0,q + D0,1(q)U1,q

Y1,q = C1,s(q)Xs,q + C1,1(q)X1,q + D1,1(q)U1,q

(3)

where X0,q, Xs,q , X1,q, U0,q, U1,q , Y0,q and Y1,q repre-
sent the state, the unknown input and the output associated
to vertex subsets X0,q(Y), Xs,q(Y), X1,q(Y), U0,q(Y),
U1,q(Y), Y0,q(Y) and Y1,q(Y) respectively.
In (van der Woude et al., 2003; van der Woude, 2000),
the authors consider the following structured linear system:{

ẋ(t) = Aλx(t) + Bλu(t)

y(t) = Cλx(t) + Dλu(t)
and they study its pencil matrix

defined by: P (s) =

(
Aλ

− sIn Bλ

Cλ Dλ

)
. Regarding P (s) as

a rational matrix, its generic rank, denoted g_rank(P (s)),
is such that g_rank(P (s)) = r, ∀ s ∈ C means that for
almost all parameter values, rank(P (s)) = r, ∀ s ∈ C. Im-
portant remarks are summarized in the following lemmas:

Lemma 1 There cannot exist an equation linking only the
output components of square subsystem Σ0,q, Y0,q and Xs,q .

Proof: Using results shown in (van der Woude, 2000)
(Theorem 5.1), we have that the generic num-
ber of invariant zeros of the pencil matrix of sys-
tem Σ0 is equal to card(X0,q) + card(Xs,q) +
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card(U0,q)−
(
µq

[
U0,q(Y),Xs,q(Y) ∪ Y0,q(Y)

]
−

ρq

[
U0,q(Y),Xs,q(Y) ∪ Y0,q(Y)

]
+ card(Xs,q)

)
. Thus,

the dimension of the strongly observable subspace and
so the number of possible independent observation equa-
tions is equal to µq

[
U0,q(Y),Xs,q(Y) ∪ Y0,q(Y)

]
−

ρq

[
U0,q(Y),Xs,q(Y) ∪Y0,q(Y)

]
. But, the cardinality of

U0,q(Y) ∪ X0,q(Y), which represents the unknown vari-

ables for this system, is at least µq

[
U0,q(Y),Xs,q(Y) ∪

Y0,q(Y)
]
− ρq

[
U0,q(Y),Xs,q(Y) ∪ Y0,q(Y)

]
. △

Lemma 2 For subsystem (Σ1,q), for each Yu =
{yi1,q

, yi2 , . . . , yik} ⊂ Y1,q(Y) such that ρq

[
U1,q(Y)∪

Xs,q(Y),Yu

]
= card(U1,q(Y) ∪ Xs,q(Y)), there exist

generically a matrix G, a function ϕ and an integer ν ≤ n1,q

such that
(
XT

s,q, UT
1,q

)T
= ϕ(Yu, Ẏu, . . . , Y

(ν)
u ) + GX1,q ,

where Yu
(ν) = (y

(ν)
i1,q

, y
(ν)
i2

, . . . , y
(ν)
ik

)T

Proof: According to (Dion et al., 2003) (Theorem 4), for
(Σ1,q), the existence of such Yu implies the invertibility of
(Σ1,q) using only Yu. Thus, using the inversion algorithm of
(Silverman, 1969), we can express the input of such system
i.e. U1,q and Xs,q in function of its state X1,q and its output
components Yu and their derivatives. △
Definition 6 Consider SSLS (ΣΛ) associated to di-
graph G(ΣΛ). To each vertex subset VY ⊆ Y
and q ∈ {1, 2}, we associate the integer βq(VY)
defined as µq

[
U0,q(VY),Xs,q(VY) ∪ Y0,q(VY)

]
−

ρq

[
U0,q(VY),Xs,q(VY) ∪ Y0,q(VY)

]
plus the maximal

number of vertices of X1,q(VY)∪U1,q(VY)∪Xs,q(VY)
covered by a disjoint union of

- a U1,q(VY) ∪ Xs,q(VY)–Y1,q(VY) linking of maxi-
mal size;

- a Y1,q(VY)-topped path family ;
- a cycle family covering only elements of X1,q(VY).

Lemma 3 Consider SSLS (ΣΛ) represented by digraph
G(ΣΛ,lin), βq(VY) is equal to the generic dimension of the
observable subspace in the extended state and input space
(xT (t), uT (t))T for mode q and restricting the measure-
ments to the output components associated to VY.

Proof: Using results proved in (van der Woude, 2000)
( Theorems 5.1 and 5.2 ) and in (van der Woude et
al., 2003) (Theorem 3.6) and considering that the measure-
ments of the system are reduced to the components as-
sociated to the elements of VY, for each mode q, num-
ber βq(VY) is equal to n + m − g_nq,inv,z(Pq(s)), where
g_nq,inv,z(Pq(s)) denotes the generic number of invariant
zeros of the pencil matrix Pq(s) associated to mode q. More-
over, from (Trentelman et al., 2001) (Lemma 7.7), we have
that n + m − g_nq,inv,z(Pq(s)) is also equal to the dimen-
sion of the observable subspace, i.e. the number of observ-
able directions or independent state and input combinations,
in the extended state and input space. △
4.2 Input and state observability of each mode

To establish the state and input observability of each mode,
we use immediately Corollary 7 of (Boukhobza et al., 2007):

Proposition 1 Each mode of SSLS (ΣΛ) is generically state
and input observable iff in digraph G(ΣΛ)
i. θq

(
X ∪ U,X ∪ Y

)
= n + m;

ii. X0,q(Y) ∪ U0,q(Y) ⊆ Vess,q[U0,q(Y),Y0,q(Y) ∪
Xs,q(Y)].

In Example 1, for mode 1, all edges (u1,x6), (x1,y1),
(x2,x3), (x3,x2), (x4,y3), (x5,y2), (x6,x7), (x7,x8)
and (x8,y4) are v-disjoint. Moreover, X0,1(Y) ∪
U0,1(Y) = {u1, x6, x7} ⊆ Vess,1

[
[U0,q(Y),Y0,q(Y) ∪

Xs,q(Y)]
]

= {u1, x6, x7, x8}. Thus, mode 1 is generi-
cally input and state observable.

4.3 Location observability analysis

Using the previous settings and definitions, we analyse, here-
after, the existence of an algebraic equation depending on
the mode to achieve mode distinguishability.

Proposition 2 SSLS (ΣΛ), with two possible modes q ∈
{1, 2}, associated to digraph G(ΣΛ) is generically location
observable iff one of the following conditions is satisfied:

Cond1. For some q ∈ {1, 2}, there exists a cycle C included in

E0 ∪ Eq , covering only elements of X1,q(Y) and containing at

least one edge of Eq;

Cond2. For some q ∈ {1, 2}, there exists a direct

Xs,q(Y) ∪ U1,q(Y)–Y1,q(Y) path included in E0∪Eq and con-

taining at least one edge of Eq;

Cond3. For some q ∈ {1, 2}, there exist a vertex yi ∈ Y1,q(Y)
and disjoint vertex subsets Ỹ ⊆ Y1,q(Y) \ {yi} (which can be

empty), Yu ⊆ Y1,q(Y) \ {yi} such that:

⋄ ρq

[
U1,q(Y)∪Xs,q(Y),Yu

]
= card(U1,q(Y)∪Xs,q(Y)),

⋄ For some q′ ∈ {1, 2}, q′ 6= q, βq(Ỹ ∪{yi}∪Yu)− βq(Ỹ ∪
Yu) 6= βq′(Ỹ ∪ {yi} ∪Yu)− βq′(Ỹ ∪Yu) or yi /∈ Y1,q′(Y).

Cond4. For some q ∈ {1, 2}, there exist a vertex yi and disjoint

vertex subsets Ỹ ⊆ Y1,q(Y) \ {yi}, Yu ⊆ Y1,q(Y) \ {yi}, a

yi-topped path P such that:

⋄ ρq

[
U1,q(Y)∪Xs,q(Y),Yu

]
= card(U1,q(Y)∪Xs,q(Y)),

⋄ βq(Ỹ ∪ Yu) + βq({yi} ∪ Yu) − βq(Ỹ ∪ {yi} ∪ Yu) > 0,

⋄ ∀yj ∈ Ỹ, βq

(
(Ỹ∪{yi}∪Yu)\{yj}

)
−βq(Yu ∪ Ỹ \{yj})

> βq(Ỹ ∪ {yi} ∪ Yu) − βq(Ỹ ∪ Yu)
def
= k̃i,

⋄ the length of P is greater or equal to k̃i + 1
⋄ ∃e ∈ Eq belonging to a So

q

[
vP, Ỹ ∪ {yi}

]
–Ỹ ∪ {yi}

path, where vP is the begin vertex of P .

Proof:
Sufficiency:

Condition Cond1.: Let us denote by xi one of the vertices
of cycle C verifying Condition Cond1.. Since this vertex
belongs to X1,q(Y), there exist a xi–yj path in E0 ∪ Eq ,
where yj ∈ Y1,q(Y), and a subset Yu ⊂ Y1,q(Y) \ {yi}
with ρq

[
U1,q(Y) ∪ Xs,q(Y),Yu

]
= card(U1,q(Y) ∪

Xs,q(Y)) < ρq

[
U1,q(Y) ∪ Xs,q(Y) ∪ {xi},Yu ∪ {yj}

]
.

From Lemma 2, there exist a matrix G, a function ϕ and

an integer ν ≥ 0 such that for mode q,
(
XT

s,q, UT
1,q

)T
=

ϕ(Yu, Ẏu, . . . , Y
(ν)
u ) + GX1,q. Substituting this in subsys-

tem (Σ1,q) and using notations of (3):




Ẋ1,q =
(
A1,1 + (A1,s, B1,1)G

)
X1,q + ϕx(Yu, Ẏu, . . . , Y

(ν)
u )

def
= ÃX1,q + ϕx(Yu, Ẏu, . . . , Y

(ν)
u )

Y1,q =
(
C1,1 + (C1,s, D1,1)G

)
X1,q + ϕy(Yu, Ẏu, . . . , Y

(ν)
u )

def
= C̃X1,q + ϕy(Yu, Ẏu, . . . , Y

(ν)
u )

(4)
Since the elements of G are represented by the edges be-
longing to the Yu-topped paths, they are independent from
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the elements of A1,1 associated to cycle C. Thus, the di-
graph representation of (4) contains also C. Therefore, from
(Reinschke, 1988) (Theorem 21.1), the characteristic equa-

tion of matrix Ã, which has the form Ãn1 + . . . + akÃk +
. . .+a0Ã = 0, where n1 = card(X1,q(Y)), contains a term

an1−k̄Ãn1−k̄
1,1 , where k̄ is the length of C and an1−k̄ depends

on the weight of C and so, on a specific entry of Aq accord-
ing to the existence of an edge belonging to Eq in C. Thus,

(
C̃jÃ

n1 + . . . + akC̃jÃ
k + . . . + a0C̃jÃ

)
X1,q = 0 (5)

where C̃j is the line of matrix C̃ related to output yj in

mode q in (4) i.e. yj = C̃jX1,q + ϕy,j(Yu, Ẏu, . . . , Y
(ν)
u ).

On the one hand, due to dynamics (4) for all k ≥ 0

C̃jÃ
k = y

(k)
j + ϕu(Yu, Ẏu, . . . , Y

(ν+k)
u ). On the other

hand, since there exists a path from xi to yj, if we denote by

ℓ > 0 the length of this path, then ∀k ≥ ℓ − 1, C̃jÃ
k 6= 0.

Furthermore, since ℓ+ k̄ ≤ n1, then term an1−k̄Ãn1−k̄
1,1 6= 0.

Therefore, equation (5) leads to an algebraic equation of

the kind Ψq(Y1,q, Ẏ1,q, . . . , Y
(s)
1,q ) = 0 parameterized by at

least an element of Aq specific to mode q.

Condition Cond2.: Let denote by vi the vertex of
U1,q(Y) ∪ Xs,q(Y) from which there is a direct

Xs,q(Y) ∪U1,q(Y)–Y1,q(Y) path P included in E0 ∪ Eq

and containing at least an edge eκ of Eq . Let us denote
by λκ the non-zero parameter (or weight) associated
to eκ. Let yj be the end of P and ℓ its length. Since

vi belongs to U1,q(Y) ∪ Xs,q(Y), it exists a subset

Yu = {yi1 , yi2 , . . . , yik} ⊂ Y1,q(Y) \ {yi} such that

ρq

[
U1,q(Y)∪Xs,q(Y),Yu

]
= card(U1,q(Y)∪Xs,q(Y))

without using edges and vertices of P . From Lemma 2,
there exist a matrix G, a function ϕ and an integer ν ≤ n1

such that the dynamics equation of subsystem (Σ1,q) is in
the form (4). Since the elements of G are represented by
edges belonging to the Yu-topped paths, they are indepen-
dent from the elements of A1,1. From the characteristic

equation of matrix Ã, we can write an equation as (5), where

also C̃j is the line of matrix C̃ related to output yj in mode

q in (4) i.e. yj = C̃jX1,q + ϕy,j(Yu, Ẏu, . . . , Y
(ν)
u ) and

so, C̃jÃ
k
1,1X1,q = y

(k)
j − C̃j

(
ϕ

(k−1)
x (Yu, Ẏu, . . . , Yu

(ν)) +

Ã1,1ϕ
(k−2)
x (Yu, Ẏu, . . . , Yu

(ν)) + . . . +

Ãk−2
1,1 ϕ̇x(Yu, Ẏu, . . . , Yu

(ν))
)

− ϕ
(k)
y,j (Yu, Ẏu, . . . , Y

(ν)
u ).

Since there exists a path of length ℓ from vi to yj contain-

ing an edge eκ, term CjÃ
ℓ−1
1,1 ϕ

(k−ℓ)
x (Yu, Ẏu, . . . , Yu

(ν)),
for all k ≥ ℓ, is not zero and depends on the element of Aq

denoted previously λκ which is specific to location q. In

particular, first term C̃jÃ
n1 , which is present in relation (5)

is not zero and depends on λκ. Thus, equation (5) leads to

an algebraic equation Ψq(Y, Ẏ , . . . , Y (s)) = 0 parameter-
ized by at least an element of Aq .

Condition Cond3.: First, yi ∈ Y1,q(Y) \Y1,q′(Y) means
that there is a redundancy equation linking yi, Yu and their
derivatives in mode q but not in mode q′ which achieves
location observability.
Otherwise, when yi ∈ Y1,q(Y) ∩ Y1,q′(Y), let us intro-

duce the following notation ki,1
def
= β1(Ỹ ∪ {yi} ∪ Yu) −

β1(Ỹ∪Yu) and ki,2
def
= β2(Ỹ∪{yi}∪Yu)−β2(Ỹ∪Yu).

According to Lemma 3, this implies that output yi al-
lows to observe ki1 (resp. ki1 ) new directions w.r.t. Yu

and Ỹ in the extended state and input space for mode
q (resp. q′). Therefore, we have that ki,1 (resp. ki,2) is
the minimal integer such that there exists an expression

of y
(ki,1)
i (resp. y

(ki,1)
i ), satisfied in mode 1 (resp. 2),

depending on the first ki,1 − 1 (resp. ki,2 − 1) deriva-

tives of yi, Yu and Ỹ and their derivatives i.e. ∃s1 ≥ 0

(resp.∃s2 ≥ 0) and function ϕ1 (resp ϕ2) such that y
(ki,1)
i =

ϕ1

(
yi, ẏi, . . . , y

(ki,1−1)
i , Yu, . . . , Y

(s1)
u , Ỹ , . . . , Ỹ (s1)

)

(resp. y
(ki,2)
i = ϕ2

(
yi, . . . , y

(ki,2−1)
i , Yu, . . . , Y

(s2)
u , Ỹ ,

. . . , Ỹ (s2)
)
). Consequently, when ki,1 6= ki,2, one

of these two numbers is strictly lower than the

other. If ki,1 < ki,2, then expression y
(ki,1)
i =

ϕ1

(
yi, . . . , y

(ki,1−1)
i , Yu, Ẏu, . . . , Y

(s1)
u , Ỹ , ˙̃Y, . . . , Ỹ (s1)

)

satisfied in mode 1 cannot be valid in mode 2. When
ki,2 < ki,1, we can do similar reasoning. In both the cases,
we obtain an expression, which allows to distinguish the
modes.

Condition Cond4.: The fact that for some q there ex-
ists a vertex subset Yu ⊆ Y1,q(Y) \ {yi} such that

ρq

[
U1,q(Y)∪Xs,q(Y),Yu

]
= card(U1,q(Y)∪Xs,q(Y))

implies, from Lemma 2, that there exist a matrix G, a
function ϕ and an integer ν ≤ n1 such that the dynam-
ics equation of subsystem (Σ1,q) can be put on form
(4). Moreover,the existence of a vertex yi and vertex

subset Ỹ ⊆ Y1,q(Y) \ {yi} disjoint with Yu such that

βq(Ỹ ∪Yu) + βq({yi} ∪Yu)− βq((Ỹ ∪ {yi} ∪Yu) > 0

implies that, for mode q, denoting by βq(Ỹ∪{yi}∪Yu)−
βq(Ỹ ∪ Yu)

def
= k̃i, we have ∀k ≥ k̃i,

y
(k)
i =

∑

s<k̃i

αi,sy
(s)
i +

∑

l |yl∈Ỹ

n1∑

s=0

αl,sy
(s)
l

+υ(Yu, . . . , Y
(n1)
u ) (6)

where n1 = card(X1,q). Since subset Ỹ is minimal i.e.

∀yj ∈ Ỹ, βq

(
Ỹ ∪ {yi} ∪ Yu) \ {yj}

)
− βq(Yu ∪ Ỹ \

{yj}) > k̃i, then in relation (6), all the components of Ỹ
intervene. Let us denote by vP = xj the begin vertex of path

P satisfying Condition Cond4. and ej the jth Euclidean
vector. Relation (6), where k +1 is here the length of P can
be written as:

C̃iÃ
kej =

( ∑

s<k̃i

αi,sC̃iÃ
s+

∑

yl∈Ỹ

n1∑

s=0

αl,sC̃lÃ
s+υ(Yu, . . . , Y

(n1)
u )

)
ej

(7)

where each non-zero component of C̃lÃ
s is associated to

the paths arriving to yl ∈ Ỹ of length s + 1. Since all the

{xj}-Ỹ ∪ {yi} paths starting from xj cover, by definition,

So
q

[
{xj}, Ỹ ∪ {yi}

] def
= {xr}, then there exist kr and k′

such that kr +k′ = k and C̃iÃ
kej = C̃iA

kr∆rÃ
k′

ej where
∆r is a diagonal matrix which has only one non-zero el-
ement ∆r(r, r) = 1. We can do the same reasoning for

each term C̃lÃ
sej and so there exist sr and s′ such that

s′r + s′ = s and C̃lÃ
sej = C̃lÃ

sr∆rÃ
s′

ej . The fact that

there is an edge eκ ∈ Eq belonging to a So
q

[
vP, Ỹ∪{yi}

]
–

Ỹ∪{yi} path means that this edge eκ appears in only some

of So
q

[
vP, Ỹ ∪ {yi}

]
–Ỹ ∪ {yi} paths. Thus, some, but not
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all, terms C̃iA
kr and C̃lÃ

sr contain the non-zero parameter
corresponding to edge eκ, which is specific to mode q of

SSLS (ΣΛ). Denoting by Cr = eT
r , where er is the rth Eu-

clidean vector, we have that C̃iÃ
kej = C̃iA

kr∆rÃ
k′

ej =

α′CrÃ
k′

ej and C̃lÃ
sej = C̃lÃ

sr∆rÃ
s′

ej = α′

l,sCrÃ
s′

ej .

Thus, after substitution of the previous terms in relation (7),

α′CrÃk′

ej =
( ∑

sr≤s<k̃i
α′

i,sαi,sCrÃs−sr +

∑

l |yl∈Ỹ

n1∑

s=sr

α′
l,sαl,sCrÃs−sr + υ(Yu, Ẏu, . . . , Y

(n)
u )

)
ej

(8)

where some, but not all coefficients α′ and α′

l,s depend

on the weight of eκ. This weight cannot be factorized and
simplified because all the coefficients do not depend on it

(some So
q

[
vP, Ỹ ∪ {yi}

]
–Ỹ ∪ {yi} paths do not contain

edge eκ). Therefore, equality (8) is valid only if some of
the coefficients α, αi,s and αl,s depend also on the weight
λκ of eκ. Thus, by means of equation (6) in which appear
coefficients αi,s and αl,s, we obtain an algebraic relation
depending on λκ and satisfied only when the discrete mode
variable is equal to q.
Necessity: Firstly, from Lemma 1, there cannot exist an

algebraic equation linking the output components of sub-
system (Σ0,q). So, only the edges in subsystem (Σ1,q) can

lead to an algebraic relation between outputs Y1,q(Y) and
their derivatives in order to deduce the discrete mode. In
this case, some outputs have to be used to invert (Σ1,q)
in order to eliminate from the output equations all the
unknown inputs and so to use all the possible derivatives
of the other outputs in a redundancy equation. It is neces-
sary then to consider a subset Yu ⊆ Y1,q(Y) such that

ρq

[
U1,q(Y)∪Xs,q(Y),Yu

]
= card(U1,q(Y)∪Xs,q(Y)).

Indeed, from Lemma 2 and Theorem 4 of (Dion et
al., 2003), only in such a case the system is left-invertible
and so there exist integer ν ≥ 0, matrix G and function ϕ

such that
(
XT

s,q, UT
1,q

)T
= ϕ(Yu, Ẏu, . . . , Yu

(ν)) + GX1,q ,

which can be substituted in subsystem (Σ1,q) for mode q,
to obtain an equation of form (4). When Conditions Cond1.
and Cond2. are not satisfied, it is not possible to obtain an
algebraic relation achieving mode distinguishability from

the characteristic equation of any matrix Ã of (4) related
to any choice of Yu, when this equation has the same
degree for the two modes. It is the case when Cond3. is not
satisfied. Moreover, when condition Cond2. is not satis-

fied, ϕy(Yu, Ẏu, . . . , Y
(ν)
u ) and ϕx(Yu, Ẏu, . . . , Y

(ν)
u ) do

not depend on any specific element of Aq , Bq , Cq or Dq ,

q ∈ {1, 2}. Furthermore, any output equation can be put on
the form (6), for some integer k, output component yi and

some set of output components Ỹ which do not include
yi and are disjoint from Yu. Moreover, when Condition
Cond3. is not satisfied, for any of these expressions (when
they exist), the degree k is the same for modes 1 and 2. Thus,
the only way to have a difference between the two algebraic
equations respectively is that there exists at least one coef-
ficient αi,s or αl,s of 6 , which characterizes specifically a
parameter which intervenes in only one of the two modes’

model. Without loss of generality, we can assume that Ỹ is
minimal i.e. in the algebraic relations and so all the com-

ponents of Ỹ appear. If it is not the case, we remove them

from Ỹ. Relation (6) implies that the observable subspace
obtained using outputs {yi}∪Yu and the one generated by

Ỹ∪Yu have non zero intersection. Thus, an algebraic equa-
tion linking some output components of (Σ1,q) is possible

in mode q only if there exist a vertex yi and disjoint vertex

subsets Ỹ ⊆ Y1,q(Y) \ {yi}, Yu ⊆ Y1,q(Y) \ {yi}, with

ρq

[
U1,q(Y)∪Xs,q(Y),Yu

]
= card(U1,q(Y)∪Xs,q(Y)),

and such that βq(Ỹ ∪ Yu) + βq({yi} ∪ Yu) − βq(Ỹ ∪
{yi} ∪ Yu) > 0. Assume that this inequality is satis-
fied and let us specify the necessary condition which
guarantees that the concerned algebraic equation allows
us to deduce the current mode of the system. Defining

k̃i = βq(Ỹ ∪ {yi} ∪ Yu) − βq(Ỹ ∪ Yu), relation (6) can-

not be satisfied for some k ≤ k̃i − 1. Thus, in redundancy

relation (6), k ≥ k̃i. Furthermore, since Ỹ is minimal, we

cannot express y
˜(ki)

i using only a part of Ỹ i.e. ∀yj ∈ Ỹ,

βq

(
(Ỹ ∪ Yu ∪ {yi}) \ {yj}

)
− βq

(
Yu ∪ Ỹ \ {yj}

)
> k̃i.

To guarantee location observability, there must exist at least

a yi-topped path P , of length greater or equal to k̃i + 1,
associated to this relation. Let us denote by xj (it cannot be

a U1,q(Y) ∪ Xs,q(Y)–Y1,q(Y) path when Cond2. is not

satisfied) the begin vertex of P and ej the jth Euclidean
vector. Moreover, when condition Cond2. is not satisfied, in

Equation (6), υ(Yu, Ẏu, . . . , Y
(n)
u ) does not depend on any

element specific of Aq , Bq , Cq or Dq (q ∈ {1, 2}). Then,

equation (6), can be written as relation (7), where C̃lÃ
s is

associated yl-topped paths, yl ∈ Ỹ of length s+1. Since all

the {xj}-Ỹ∪{yi} paths cover xr = So
q

[
xj, Ỹ∪{yi}

]
, then

according to the same arguments as previously (in the part
of the proof devoted to the sufficiency of condition Cond4.),
we can write an equation similar to (8) with the same nota-
tions, where α′ and α′

l,s′ depend only on the entries related

to the edges of E0 when Cond4. is not satisfied. So, all the
existing relations of the form (6) do not contain terms of Aq ,

Bq , Cq or Dq (q ∈ {1, 2}). We can do the same reasoning

for all Yu ⊆ Y1,q(Y) s.t. ρq

[
U1,q(Y) ∪ Xs,q(Y),Yu

]

= card(U1,q(Y) ∪ Xs,q(Y)). △
Comments and interpretation: To establish location ob-
servability, we first search in the graph the edges which
are specific to one mode and we interest to their position
w.r.t. the output vertices. If there is a specific edge be-
longing to any cycle in (Σ1,q) then the distinguishability
is possible (first condition). If a specific edge belong to
any input-output path in (Σ1,q) then the distinguishability
is possible (second condition). If a specific edge allows to
modify observability subspace of any output measurements
set or to modify the output subdivision Y0/Y1, then the
distinguishability is possible (third condition). Finally, if
a specific edge belong to an output rooted path including
a state vertex which can be linked independently to other
output, with some constraints on observability subspaces’
dimensions, then the distinguishability is possible (fourth
condition). If all the conditions are not satisfied, then the
two modes are sufficiently similar or their differences are
not observable from the measurements.
Note that, the second condition of Proposition 2 gener-
alizes the condition (De Santis et al., 2006; De Santis et
al., 2009) of location observability for non autonomous
systems, where the inputs are measured (∃i ≥ 0 such that

C(1)Ai(1)B(1) 6= C(2)Ai(2)B(2)). The first two con-
ditions, which can be checked immediately by searching
cycles and Xs,q(Y)∪U1,q(Y)–Y1,q(Y) paths, are based
on the characteristic equation of a matrix. So, both the
conditions of Definition 1, are satisfied. This means, using
definition of (Babaali and Pappas, 2005), that modes q and
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q′ are mutually discernible. It is the same when Condition

Cond4. is satisfied for some subsets Yu, Ỹ and {yi}, which
do not satisfy Condition Cond3. because, in this case, there
exist two expressions linking these output components and
their derivatives. One of them specific to some mode q
means that the other is specific to mode q′. In such a case
also both the conditions of Definition 1 are satisfied and we
obtain the mutual mode discernibility property as defined in
(Babaali and Pappas, 2005). Finally, when only Condition
Cond3. is satisfied, then there exists only one discriminating

expression. In fact, if βq(Ỹ∪{yi}∪Yu)−βq(Ỹ∪Yu) <

βq′(Ỹ∪{yi}∪Yu)−βq′(Ỹ∪Yu) then expression specific

to mode q is not satisfied by mode q′ but the expression ob-
tained for mode q′, which is of a greater degree, is satisfied
by mode q. If only Condition Cond3. is satisfied and if, for

each Yu, Ỹ and yi satisfying Cond3., we have the same
inequality sense between modes q and q′, then only one
condition of Definition 1 is verified. According to definition
of (Babaali and Pappas, 2005), q is not discernible from q′.
To summarize, the conditions enounced in Proposition 2
can be classified into two categories. The first one includes
conditions Cond3., a part of Cond1. and Cond2. when the
subdivision of the system for the two modes are different.
In this case, the two modes can be said structurally distin-
guishable. The distnguishability here depends on the struc-
ture of the systems associated to each mode and not on the
parameters’ values. In the case of condition Cond1., when
the cycle exists in a mode and not in the other one, there is
then at least an additional relation differentiating the two
modes and so the distinguishability is here also structural.
In all the other cases, the distinguishability is parametric.

Exemple 1 Continued Let us see if it is possible to find specific

equation characterizing mode 1. We illustrate the computations of

condition Cond4., which is the more complicated. It is easy to

see that conditions Cond1. and Cond2. are not satisfied. There

is only one edge (x2,x1) which is specific to mode 1. Since

Xs,1 = {x8}, we can take for Yu one of the outputs y3 or y4.

For instance, let us take Yu = {y4}, yi = y1 and for example

Ỹ = {y2}. In this case, we have that:

⋄ ρ1

[
U1,1(Y)∪Xs,1(Y),Yu

]
= 1, β1(Ỹ ∪Yu) = 7, β1(Ỹ ∪

{y1}) = 7 and β1(Ỹ ∪ {y1} ∪ Yu) = 8. So, β1(Ỹ ∪ Yu) +
β1({y1} ∪ Yu) − β1(Ỹ ∪ {y1} ∪ Yu) = 6 > 0. Since Ỹ is

constituted of only one output, it is then minimal and obviously,

∀yj ∈ Ỹ, β1

(
(Ỹ∪{y1}∪Yu)\{yj}

)
−β1

(
Yu∪ Ỹ \{yj}

)
=

7 − 4 > β1(Ỹ ∪ {y1} ∪ Yu) − β1(Ỹ ∪ Yu) = 8 − 7
def
= k̃1.

Let us search now a y1-topped path P which length is greater

or equal to k̃1 + 1 = 2 and if possible includes edge (x2,x1).

We can choose P = x2 → x1 → y1 with vP = x2. Moreover,

So
1

[
{x2}, Ỹ∪{y2}

]
= {x2} and so, we verify that edge (x2,x1)

specific to the mode 1 belongs to a So
1

[
{x2}, Ỹ∪{y2}

]
–Ỹ∪{y1}

path. Condition Cond4. is then satisfied. This graphic condition

characterizes algebraic relation ẏ1

λ9λ13
− ẏ2

λ5λ14
= 0 depending on

λ9 which is specific to mode 1 only. This relation is not satisfied

for mode 2 because, in this case ẏ1 is identically zero. Relation

ẏ1 = 0 is specific to mode 2 even if there is no specific coefficient

to mode 2 which appears.

4.4 Global observability analysis

According to Definition 4, we can immediately state:

Proposition 3 SSLS (ΣΛ), with two possible modes q ∈
{1, 2}, represented by digraph G(ΣΛ), is generically input
and state observable iff all the following conditions hold:
i.) (ΣΛ) is generically location observable i.e. one of the

conditions of Proposition 2 is satisfied;
ii.) ∀q ∈ {1, 2}, θq

[
X ∪ U,X ∪ Y

]
= n + m;

iii.) ∀q ∈ {1, 2},
{
xi ∈ X | ρq

[
U ∪ {xi},Y

]
=

ρq

[
U,Y

]}
⊆ Vess,q

[
U,Y

]
.

The conditions of Proposition 3 need few information about
the system and they can be checked by means of well-known
combinatorial techniques. From a computational point of
view, the decomposition of the system into two subsys-
tems which requires n + p + 1 computations of maximal
linking size and at most n + q computations of maximal
matching size. Using Ford-Fulkerson algorithm, the compu-
tation of the maximal linking size necessitates algorithms

which have a complexity order O(K2
√

M), where M is
the number of edges in the digraph and K = n + p + q
the number of vertices. For our digraphs, in the worst
case M = (m + 1) · n2 + n · p + n · q + q · p and so

O(K2
√

M) = O(n3).
The two first location observability conditions are equiva-
lent to a computation of the successors of some state and
input vertices in a digraph. This can be done using an algo-
rithm of complexity order O(M). The two last conditions
of Proposition 2 necessitate first the computation of the β
function, for which we use an algorithm which complex-
ity order equals O(K3 · M0.5) = O(n4) (Boukhobza et
al., 2007). Otherwise, in order to avoid the combinatorial

difficulties to find the corresponding outputs yi, Ỹ and Yu,
we must select first all the output vertices of Y1,q to which
there exist paths including Eq edges. It will necessitate, in

the worst case O(n2) computations of function β. So, the
two last conditions can be implemented using a polynomial
complexity order algorithm O(n6). Condition ii.) and iii.) of
Proposition 3 needs an algorithm of complexity order O(n4)
(Boukhobza et al., 2007).

4.5 Generalization to multi-mode case

The main difficulty is to generalize location observability cri-
terion and more precisely the matrix decomposition related
to each mode into two parts: a common one and a specific

one. Consider SSLS (ΣΛ), where Q
def
= {1, 2, . . . , N}. We

take the following notations: for q ∈ {1, 2, . . . , N}, q′ ∈
{1, 2, . . . , N} with q 6= q′, Aλ(q) = Aλ

q,q′ + Aλ

q,q′
, where

Aλ
q,q′ = Aλ

q′,q denotes the common part between Aλ(q)

and Aλ(q′) and Aλ

q,q′
represent the specific part of Aλ(q)

relatively to Aλ(q′). Similarly, Bλ(q) = Bλ
q,q′ + Bλ

q,q′
,

Cλ(q) = Cλ
q,q′ +Cλ

q,q′
and Dλ(q) = Dλ

q,q′ +Dλ

q,q′
. We have

multiple decompositions for matrices Aλ(q), Bλ(q), Cλ(q)
and Dλ(q) useful only in location observability study. To
each of these matrices, we associate, as in Section 3, an edge
subset. Thus, we state:

Proposition 4 SSLS (ΣΛ) associated to digraph G(ΣΛ)
is generically location observable iff for each pair q ∈
{1, 2, . . . , N}, q′ ∈ {1, 2, . . . , N} with q 6= q′, Propo-
sition 2 is satisfied by substituting edge subsets E0 by
Aq,q′-edges∪Bq,q′-edges∪Cq,q′-edges∪Dq,q′-edges, E1

by A
q,q′-edges ∪ B

q,q′ -edges ∪ C
q,q′-edges ∪ D

q,q′-edges

and E2 by Aq′,q-edges ∪ Bq′,q-edges ∪ Cq′,q-edges ∪
Dq′,q-edges.
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5 Conclusion

In this paper, we propose a graph-theoretic tool to analyze
discrete and continuous state and input generic observability
for switching structured linear systems with unknown inputs.
This problem has not been solved previously in the literature.
Our approach uses classical programming techniques and
is free from numerical difficulties since it uses well-known
combinatorial techniques which complexity is polynomial
(O(n6)). This makes our approach well suited to large scale
systems.
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