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We complete the different cases remaining in the estimation of the essential norm of a weighted composition operator acting between the Hardy spaces H p and H q for 1 ≤ p, q ≤ ∞.

In particular we give some estimates for the cases 1 = p ≤ q ≤ ∞ and 1 ≤ q < p ≤ ∞.

Introduction

Let D = {z ∈ C | |z| < 1} denote the open unit disk in the complex plane. Given two analytic functions u and ϕ defined on D such that ϕ(D) ⊂ D, one can define the weighted composition operator uC ϕ that maps any analytic function f defined on D into the function uC ϕ (f ) = u.f • ϕ. In [START_REF] Hoffman | Banach spaces of analytic functions[END_REF], de Leeuw showed that the isometries in the Hardy space H 1 are weighted composition operators, while Forelli [START_REF] Forelli | The isometries of H p[END_REF] obtained this result for the Hardy space H p when 1 < p < ∞, p = 2. Another example is the study of composition operators on the halfplane. A composition operator in a Hardy space of the half-plane is bounded if and only if a certain weighted composition operator is bounded on the Hardy space of the unit disk (see [START_REF] Matache | Composition operators on Hardy Spaces of a half-plane[END_REF] and [START_REF] Sharma | Composition operators on Hardy spaces of the upper half-plane[END_REF]).

When u ≡ 1, we just have the composition operator C ϕ . The continuity of these operators on the Hardy space H p is ensured by the Littlewood's subordination principle, which says that C ϕ (f ) belongs to H p whenever f ∈ H p (see [START_REF] Cowen | Composition operators on spaces of analytic functions[END_REF], Corollary 2.24). As a consequence, the condition u ∈ H ∞ suffices for the boundedness of uC ϕ on H p . Considering the image of the constant functions, a necessary condition is that u belongs to H p . Nevertheless a weighted composition operator needs not to be continuous on H p , and it is easy to find examples where uC ϕ (H p ) H p (see Lemma 2.1 of [START_REF] Contreras | Hernández-Díaz Weighted Composition Operators between Different Hardy Spaces[END_REF] for instance).

In this note we deal with weighted composition operators between H p and H q for 1 ≤ p, q ≤ ∞. Boundedness and compactness are characterized in [START_REF] Contreras | Hernández-Díaz Weighted Composition Operators between Different Hardy Spaces[END_REF] for 1 ≤ p ≤ q < ∞ by means of Carleson measures, while essential norms of weighted composition operators are estimated in [START_REF] Cucković | Weighted composition operators between different weighted Bergman spaces and different Hardy spaces[END_REF] for 1 < p ≤ q < ∞ by means of an integral operator. For the case 1 ≤ q < p < ∞, boundedness and compactness of uC ϕ are studied in [START_REF] Cucković | Weighted composition operators between different weighted Bergman spaces and different Hardy spaces[END_REF], and Gorkin and MacCluer in [START_REF] Gorkin | Essential Norms of Composition Operators[END_REF] gave an estimate of the essential norm of a composition operator acting between H p and H q .

The aim of this paper is to complete the different cases remaining in the estimation of the essential norm of a weighted composition operator. In section 2 and 3, we give an estimate of the essential norm of uC ϕ acting between H p and H q when p = 1 and 1 ≤ q < ∞ and when 1 ≤ p < ∞ and q = ∞. Sections 4 and 5 are devoted to the case where ∞ ≥ p > q ≥ 1.

Let D be the closure of the unit disk D and T = ∂D its boundary. We denote by dm = dt/2π the normalised Haar measure on T. If A is a Borel subset of T, the notation m(A) as well as |A| will design the Haar measure of A. For 1 ≤ p < ∞, the Hardy space H p (D) is the space of analytic functions f : D → C satisfying the following condition

f p = sup 0<r<1 T |f (rζ)| p dm(ζ) 1/p < ∞.
Endowed with this norm, H p (D) is a Banach space. The space H ∞ (D) is consisting of every bounded analytic function on D, and its norm is given by the supremum norm on D.

We recall that any function f ∈ H p (D) can be extended on T to a function f * by the following formula: f * (e iθ ) = lim r 1 f (re iθ ). The limit exists almost everywhere by Fatou's theorem, and f * ∈ L p (T). Moreover, f → f * is an into isometry from H p (D) to L p (T) whose image, denoted by H p (T) is the closure (weak-star closure for p = ∞) of the set of polynomials in L p (T). So we can identify H p (D) and H p (T), and we will use the notation H p for both of these spaces. More on Hardy spaces can be found in [START_REF] Koosis | Introduction to H p spaces[END_REF] for instance.

The essential norm of an operator T : X → X, denoted T e , is given by

T e = inf{ T -K | K is compact on X}.
Observe that T e ≤ T , and T e is the norm of T seen as an element of the Calkin algebra B(X)/K(X) where K(X) is the space of all compact operators on X. Notation: we will note a ≈ b whenever there exists two positive universal constants c and C such that cb ≤ a ≤ Cb. In the sequel, u will be a non-zero analytic function on D and ϕ will be a non-constant analytic function defined on D satisfying ϕ(D) ⊂ D.

2 uC ϕ ∈ B(H 1 , H q ) for 1 ≤ q < ∞
Let's first start with a characterization of the boundedness of uC ϕ acting between H p and H q for 1 ≤ p ≤ q < ∞: Theorem 2.1 (see [START_REF] Cucković | Weighted composition operators between different weighted Bergman spaces and different Hardy spaces[END_REF], Theorem 4). Let u be an analytic function on D and ϕ a analytic selfmap of D. Then the weighted composition operator uC ϕ is bounded from H p to H q if and only if

sup a∈D T |u(ζ)| q 1 -|a| 2 |1 -āϕ(ζ)| 2 q/p dm(ζ) < ∞.
As a consequence uC ϕ is a bounded operator as soon as uC ϕ is uniformly bounded on the set {k

1/p a | a ∈ D} where k a is the normalized kernel defined by k a (z) = (1-|a| 2 )/(1-āz) 2 , a ∈ D. Note that k 1/p a ∈ H p and k 1/p a p = 1.
These kernels play a crucial role in the estimation of the essential norm of a weighted composition operator: Theorem 2.2 (see [START_REF] Cucković | Weighted composition operators between different weighted Bergman spaces and different Hardy spaces[END_REF], Theorem 5). Assume that the weighted composition operator uC ϕ is bounded from H p to H q with 1 < p ≤ q < ∞. Then

uC ϕ e ≈ lim sup |a|→1 - T |u(ζ)| q 1 -|a| 2 |1 -āϕ(ζ)| 2 q/p dm(ζ) 1 q .
The aim of this section is to give the corresponding estimate for the case p = 1. We shall prove that the previous theorem is still valid for p = 1: Theorem 2.3. Suppose that the weighted composition operator uC ϕ is bounded from H 1 to H q for a certain 1 ≤ q < ∞. Then we have

uC ϕ e ≈ lim sup |a|→1 - T |u(ζ)| q 1 -|a| 2 |1 -āϕ(ζ)| 2 q dm(ζ) 1 q .
Let's start with the upper estimate: Proposition 2.4. Let uC ϕ ∈ B(H 1 , H q ) with 1 ≤ q < ∞. Then there exists a positive constant C such that

uC ϕ e ≤ C lim sup |a|→1 - T |u(ζ)| q 1 -|a| 2 |1 -āϕ(ζ)| 2 q dm(ζ) 1 q .
The main tool of the proof is the use of Carleson measures. Assume that µ is a finite positive Borel measure on D and let 1 ≤ p, q < ∞. We say that µ is a (p, q)-Carleson measure if the embedding J µ : f ∈ H p → f ∈ L q (µ) is well defined. In this case, the closed graph theorem ensures that J µ is continuous. In other words, µ is a (p, q)-Carleson measure if there exists a constant C 1 > 0 such that for every

f ∈ H p , D |f (z)| q dµ(z) ≤ C 1 f q p . (2.1) 
Let I be an arc in T. By S(I) we denote the Carleson window given by

S(I) = {z ∈ D | 1 -|I| ≤ |z| < 1, z/|z| ∈ I}.
Let's denote by µ D and µ T the restrictions of µ to D and T respectively. The following result is a version of a theorem of Duren (see [START_REF] Duren | Theory of H p spaces[END_REF], p.163) for measures on D:

Theorem 2.5 (see [START_REF] Blasco | A note on Carleson measures for Hardy spaces[END_REF], Theorem 2.5). Let 1 ≤ p < q < ∞. A finite positive Borel measure µ on D is a (p, q)-Carleson measure if and only if µ T = 0 and there exists a constant C 2 > 0 such that µ D (S(I)) ≤ C 2 |I| q/p for any arc I ⊂ T.

Notice that the best constants C 1 and C 2 in (2.1) and (2.2) are comparable, meaning that there is a positive constant β independent of the measure

µ such that (1/β)C 2 ≤ C 1 ≤ βC 2 .
The notion of Carleson measure was introduced by Carleson in [START_REF]Carleson Interpolations by bounded analytic functions and the corona problem[END_REF] as a part of his work on the corona problem. He gave a characterization of measures µ on D such that H p embeds continuously in L p (µ).

Examples of such Carleson measures are provided by composition operators. Let ϕ : D → D be an analytic map and let 1 ≤ p, q < ∞. The boundedness of the composition operator C ϕ : f → f • ϕ between H p and H q can be rephrased in terms of (p, q)-Carleson measures. Indeed, denote by m ϕ the pullback measure of m by ϕ, which is the image of the Haar measure m of T under the map ϕ * , defined by

m ϕ (B) = m ϕ * -1 (B)
for every Borel subset B of D. Then

C ϕ (f ) q q = T |f • ϕ| q dm = D |f | q dm ϕ = J mϕ (f ) q q
for all f ∈ H p . Thus C ϕ maps H p boundedly into H q if and only if m ϕ is a (p, q)-Carleson measure.

In the sequel we will note the disk of radius r by rD = {z ∈ D | |z| < r} for 0 < r < 1. We will need the following lemma concerning (p, q)-Carleson measures:

Lemma 2.6. Take 0 < r < 1 and let µ be a finite positive Borel measure on D. Note

N * r := sup |a|≥r D |k a (w)| q p dµ(w). If µ is a (p, q)-Carleson measure for 1 ≤ p ≤ q < ∞ then so is µ r := µ | D\rD . Moreover one can find an absolute constant M > 0 satisfying µ r ≤ M N * r where µ r := sup I⊂T µ r S(I) |I| q/p •
We omit the proof of Lemma 2.6 here, which is a slight modification of the proof of Lemma 1 and Lemma 2 in [6] using Theorem 2.5.

In the proof of the upper estimate of Theorem 2.2 in [START_REF] Cucković | Weighted composition operators between different weighted Bergman spaces and different Hardy spaces[END_REF], the authors use a decomposition of the identity on H p of the form I = K N + R N where K N is the partial sum operator defined by K N ( ∞ n=0 a n z n ) = N n=0 a n z n , and they use the fact that (K N ) is a sequence of compact operators that is uniformly bounded in B(H p ) and that R N converges pointwise to zero on H p . Nevertheless the sequence (K N ) is not uniformly bounded in B(H 1 ). In fact, (K N ) is uniformly bounded in B(H p ) if and only if the Riesz projection P : L p → H p is bounded [START_REF] Zhu | Duality of Bloch Spaces and Norm Convergence of Taylor Series[END_REF]Theorem 2], which occurs if and only if 1 < p < ∞. Therefore we need to use a different decomposition for the case p = 1. Since K N is the convolution operator by the Dirichlet kernel on H p , we shall consider the Fejér kernel F N of order N. Let's define K N : H 1 → H 1 to be the convolution operator associated to

F N that maps f ∈ H 1 to K N f = F N * f ∈ H 1 and R N = I -K N . Then K N ≤ 1, K N is compact and for every f ∈ H 1 , f -K N f 1 → 0 following Fejér's theorem. If f (z) = n≥0 f (n)z n ∈ H 1 , then K N f (z) = N -1 n=0 1 - n N f (n)z n . Lemma 2.7. Suppose uC ϕ ∈ B(H 1 , H q ). Then uC ϕ e ≤ lim inf N uC ϕ R N .
Proof.

uC ϕ e = uC ϕ K N + uC ϕ R N e = uC ϕ R N e since K N is compact ≤ uC ϕ R N
and the result follows taking the lower limit.

We will need the following lemma for an estimation of the remainder R N :

Lemma 2.8. Let ε > 0 and 0 < r < 1.

Then ∃N 0 = N 0 (r) ∈ N, ∀N ≥ N 0 , |R N f (w)| q < ε f q 1 , for every |w| < r and for every f in H 1 . Proof. Let K w (z) = 1/(1 -wz), w ∈ D, z ∈ D. K w is a bounded analytic function on D. It is easy to see that for every f ∈ H 1 , R N f, K w = f, R N K w where |w| < r, N ≥ 1 and f, g = 1 2π 2π 0 f (e iθ )g(e iθ ) dθ for f ∈ H 1 and g ∈ H ∞ . Then we have |R N f (w)| = | R N f, K w | = | f, R N K w | ≤ f 1 R N K w ∞ . Take |w| < r and choose N 0 ∈ N so that for every N ≥ N 0 one has r N ≤ ε 1/q (1 -r)/2 and 1/N N -1 n=1 nr n ≤ (1/2)ε 1/q . Since R N K w (z) = R N ∞ n=0 wn z n = N -1 n=0 n N wn z n + ∞ n=N wn z n , one has R N K w ∞ < 1 N N -1 n=0 nr n + ∞ n=N r n ≤ ε 1/q . Thus |R N f (w)| q ≤ ε f q 1 for every f in H 1 .
Proof of Proposition 2.4. Denote by µ the measure which is absolutely continuous with respect to m and whose density is |u| q , and let µ ϕ = µ • ϕ -1 be the pullback measure of µ by ϕ. Fix 0 < r < 1. For every f ∈ H 1 , we have

(uC ϕ R N )f q q = T |u(ζ)| q (R N f ) • ϕ (ζ) q dm(ζ) = T (R N f ) • ϕ (ζ) q dµ(ζ) = D |R N f (w)| q dµ ϕ (w) = D\rD |R N f (w)| q dµ ϕ (w) + rD |R N f (w)| q dµ ϕ (w) = I 1 (N, r, f ) + I 2 (N, r, f ). (2.3)
Let us first show that lim

N sup f 1 =1 I 2 (N, r, f ) = 0. For ε > 0, Lemma 2.8
gives us an integer N 0 (r) such that for every N ≥ N 0 (r),

I 2 (N, r, f ) = rD |R N f (w)| q dµ ϕ (w) ≤ ε f q 1 µ ϕ (rD) ≤ ε f q 1 µ ϕ (D) ≤ ε f q 1 u q q .
So, r being fixed, we have lim

N sup f 1 =1 I 2 (N, r, f ) = 0.
Now we need an estimate of I 1 (N, r, f ). The continuity of uC ϕ : H 1 → H q ensures that µ ϕ is a (1, q)-Carleson measure, and therefore µ ϕ,r := µ ϕ | D\rD is also a (1, q)-Carleson measure by using Lemma 2.6 for p = 1. We deduce the following inequalities:

D\rD |R N f (w)| q dµ ϕ,r (w) ≤ β µ ϕ,r R N f q 1 ≤ 2 q βM N * r f q 1
using Lemma 2.6 and the fact that R N ≤ 1 + K N ≤ 2 for every N ∈ N. We take the supremum over B H 1 and take the lower limit as N tend to infinity in (2.3) to obtain lim inf

N →∞ uC ϕ R N q ≤ 2 q βM N * r .
Now as r going to 1 we have:

lim r→1 N * r = lim sup |a|→1 -D |k a (w)| q dµ ϕ (w) = lim sup |a|→1 -T |u(ζ)| q 1 -|a| 2 |1 -āϕ(ζ)| 2 q dm(ζ)
and we obtain the estimate announced using Lemma2.7. Now let's turn to the lower estimate in Theorem 2.2. Let 1 ≤ q < ∞. Consider F N the Fejér kernel of order N, and define K N : H q → H q the convolution operator associated to F N and R N = I -K N . Then (K N ) N is a sequence of uniformly bounded compact operators in B(H q ), and R N f q → 0 for all f ∈ H q . Lemma 2.9. There exists 0 < C ≤ 2 such that whenever uC ϕ is a bounded operator from H 1 to H q , one has

1 C lim sup N R N uC ϕ ≤ uC ϕ e .
Proof. Take K ∈ B(H 1 , H q ) a compact operator. Since (K N ) is uniformly bounded, one can find C > 0 satisfying R N ≤ 1 + K N ≤ C for all N > 0, and we have:

uC ϕ + K ≥ 1 C R N (uC ϕ + K) ≥ 1 C R N uC ϕ - 1 C R N K .
Now use the fact that (R N ) goes pointwise to zero in H q , and consequently (R N ) converges strongly to zero over the compact set K(B H 1 ) as N goes to infinity. It follows that

R N K -→ N 0,
and

uC ϕ + K ≥ 1 C lim sup N R N uC ϕ
for every compact operator K :

H 1 → H q . Proposition 2.10. Let uC ϕ ∈ B(H 1 , H q ) with 1 ≤ q < ∞. Then uC ϕ e ≥ 1 C lim sup |a|→1 - T |u(ζ)| q 1 -|a| 2 |1 -āϕ(ζ)| 2 q dm(ζ) 1 q . Proof. Since k a is a unit vector in H 1 , R N uC ϕ = uC ϕ -K N uC ϕ ≥ uC ϕ k a q -K N uC ϕ k a q .
(2.4)

First case: q > 1 (k a ) converges to zero for the topology of uniform convergence on compact sets in D as |a| goes to 1, so does uC ϕ (k a ). The topology of uniform convergence on compact sets in D and the weak topology agree on H q , therefore it follows that uC ϕ (k a ) goes to zero for the weak topology in H q as |a| goes to 1. Since K N is a compact operator, it is completely continuous and carries weak-null sequences to norm-null sequences. So K N uC ϕ (k a ) q → 0 when |a| → 1, and

R N uC ϕ ≥ lim sup |a|→1 - uC ϕ (k a ) q .
Taking the upper limit when N → ∞, we obtain the result using Lemma 2.9. For the second case we will need the following computation lemma: 

k a ϕ(z) = (1 -|a| 2 ) ∞ n=0 (n + 1)(ā) n ϕ(z) n . Then α p (a) = ∞ n=0 (n + 1)(ā) n ϕ(z) n , z p = ∞ n=0 (n + 1)(ā) n n j=0 n j a n-j 0 ψ(z) j , z p .
where f, g = T f ḡ dm. Note that ψ(z) j , z p = 0 if j > p since ψ(0) = 0, and consequently

α p (a) = ∞ n=0 (n + 1)(ā) n min(n,p) j=0 n j a n-j 0 ψ(z) j , z p = p j=0 ∞ n=j (n + 1)(ā) n n j a n-j 0 ψ(z) j , z p = p j=0 ψ(z) j , z p ∞ n=j (n + 1)(ā) n n j a n-j 0 .
In the case where a 0 = 0 we obtain

α p (a) = p j=0 ψ(z) j , z p a -j 0 ∞ n=j (n + 1) n j (āa 0 ) n = p j=0 ψ(z) j , z p a -j 0 (j + 1)(āa 0 ) j (1 -āa 0 ) j+2 = p j=0
ψ(z) j , z p (j + 1)(ā) j (1 -āa 0 ) j+2 using the following equalities for x = āa 0 ∈ D:

∞ n=j (n + 1) n j x n =   ∞ n=j n j x n+1   = x j+1 (1 -x) j+1 = (j + 1)x j (1 -x) j+2
Note that the last expression obtained for α p (a) is also valid for a 0 = 0. Thus, for 0 ≤ p ≤ N we have the following estimates:

|α p (a)| ≤ p j=0 | ψ(z) j , z p | j + 1 (1 -|a 0 |) j+2 ≤ p j=0 ψ j ∞ N + 1 (1 -|a 0 |) N +2 ≤ (N + 1) 2 (1 -|a 0 |) N +2 max 0≤j≤N ψ j ∞ ≤ M,
where M is a constant independent from a.

Second case: q = 1 In this case, it is no longer for the weak topology but for the weak-star topology of H 1 that uC ϕ (k a ) tends to zero when |a| → 1. Nevertheless, it is still true that

K N uC ϕ (k a ) 1 → 0 as |a| → 1. Indeed if f (z) = n≥0 f (n)z n ∈ H 1 , then K N f (z) = N -1 n=0 1 - n N f (n)z n .
We have the following development:

k a ϕ(z) = (1 -|a| 2 ) ∞ n=0 α n (a)z n .
Denote by u n the n-th Fourier coefficient of u, so that

uC ϕ (k a )(z) = (1 -|a| 2 ) ∞ n=0 n p=0 α p (a)u n-p z n , ∀z ∈ D.
It follows that

K N uC ϕ (k a ) 1 ≤ (1 -|a| 2 ) N -1 n=0 1 - n N n p=0 α p (a)u n-p z n 1 .
Now using estimates from Lemma 2.11, one can find a constant M > 0 independent from a such that |α p (a)| ≤ M for every a ∈ D and 0 ≤ p ≤ N -1. Use the fact that z n 1 = 1 and |u p | ≤ u 1 to deduce that there is a constant M > 0 independent from a such that

K N uC ϕ (k a ) 1 ≤ M (1 -|a| 2 ) u 1
for all a ∈ D. Thus K N uC ϕ (k a ) converges to zero in H 1 when |a| → 1, and take the upper limit in 2.4 when a tends to 1 -to obtain

R N uC ϕ ≥ lim sup |a|→1 uC ϕ (k a ) 1 , ∀N ≥ 0.
We conclude with Lemma 2.9 and observe that

C = sup R N ≤ 2 since R N ≤ 1 + K N ≤ 2. 3 uC ϕ ∈ B(H p , H ∞ ) for 1 ≤ p < ∞
Let u be a bounded analytic function. Characterizations of boundedness and compactness of uC ϕ as a linear map between H p and H ∞ have been studied in [START_REF] Contreras | Hernández-Díaz Weighted Composition Operators between Different Hardy Spaces[END_REF] for p ≥ 1. Indeed,

uC ϕ ∈ B(H p , H ∞ ) if and only if sup z∈D |u(z)| p 1 -|ϕ(z)| 2 < ∞ and uC ϕ is compact if and only if ϕ ∞ < 1 or lim |ϕ(z)|→1 |u(z)| p 1 -|ϕ(z)| 2 = 0.
In the case where ϕ ∞ = 1 we will note

M ϕ (u) = lim sup |ϕ(z)|→1 |u(z)| (1 -|ϕ(z)| 2 ) 1 p

•

As regarding Theorem 1.7 in [START_REF] Lefèvre | Generalized Essential Norm of Weighted Composition Operators on some Uniform Algebras of Analytic Functions[END_REF], it seems reasonable to think that the essential norm of uC ϕ is equivalent to the quantity M ϕ (u). We first have a majorization: Proposition 3.1. Suppose that uC ϕ is a bounded operator from H p to H ∞ and that ϕ ∞ = 1.

Then

uC ϕ e ≤ 2M ϕ (u).

Proof. Let ε be a real positive number, and pick r < 1 satisfying

sup |ϕ(z)|≥r |u(z)| (1 -|ϕ(z)| 2 ) 1 p ≤ M ϕ (u) + ε.
We approximate uC ϕ by uC ϕ K N where K N : H p → H p is the convolution operator by the Fejér kernel of order N, where N is chosen so that |R N f (w)| < ε f 1 for every f ∈ H 1 and every |w| < r (Lemma 2.8 for q = 1). We want to show that uC ϕ -

uC ϕ K N = uC ϕ R N ≤ max(2M ϕ (u) + 2ε, ε u ∞
), which will prove our assertion. If f is a unit vector in H p , then

uC ϕ R N (f ) ∞ = max sup |ϕ(z)|≥r |u(z)(R N f ) • ϕ(z)|, sup |ϕ(z)|<r |u(z)(R N f ) • ϕ(z)| .
We want to estimate the first term. If ω ∈ D, we note δ ω the linear functional on H p defined by

δ ω (f ) = f (ω). Then δ ω ∈ (H p ) * and sup |ϕ(z)|≥r |u(z)(R N f ) • ϕ(z)| ≤ sup |ϕ(z)|≥r |u(z)| δ ϕ(z) (H p ) * R N f p ≤ 2 sup |ϕ(z)|≥r |u(z)| (1 -|ϕ(z)| 2 ) 1 p ≤ 2 (M ϕ (u) + ε) ,
where we use the fact that R N f p ≤ 2 and δ w (H p ) * = 1/(1 -|w| 2 ) 1/p for every w ∈ D.

For the second term, since |ϕ(z)| < r we have

|u(z)R N f (ϕ(z))| ≤ u ∞ |R N f (ϕ(z)) | ≤ ε u ∞ f 1 ≤ ε u ∞
which ends the proof.

On the other hand, we have the lower estimate: Proposition 3.2. Suppose that uC ϕ is a bounded operator from H p to H ∞ and that ϕ ∞ = 1.

Then 1 2 M ϕ (u) ≤ uC ϕ e . Proof. Assume that uC ϕ is not compact, implying M ϕ (u) > 0. Let (z n ) be a sequence in D satisfying lim n |ϕ(z n )| = 1 and lim n |u(z n )| (1 -|ϕ(z n )| 2 ) 1 p = M ϕ (u).
Consider the sequence (f n ) defined by

f n (z) = k ϕ(zn) (z) 1/p = 1 -|ϕ(z n )| 2 1 p 1 -ϕ(z n )z 2 p
• Each f n is a unit vector of H p . Let K : H p → H ∞ be a compact operator.

First case: p > 1 Since the sequence (f n ) converges to zero for the weak topology of H p and K is completely continuous, the sequence (Kf n ) converges to zero for the norm topology in H ∞ . Use that

uC ϕ + K ≥ uC ϕ (f n ) ∞ -Kf n
∞ and take the upper limit when n tends to infinity to obtain

uC ϕ + K ≥ lim sup n uC ϕ (f n ) ∞ ≥ lim sup n |u(z n )| |f n (ϕ(z n ))| ≥ lim sup n |u(z n )| (1 -|ϕ(z n )| 2 ) 1 p ≥ M ϕ (u).
Second case: p = 1 Let ε > 0. Since the sequence (f n ) is no longer weakly convergent to zero in H 1 , we cannot assert that (Kf n ) n goes to zero in H ∞ . Nevertheless, passing to subsequences, one can assume that (Kf n k ) k converges in H ∞ , and hence is a Cauchy sequence. So we can find an integer N > 0 such that for every k and m greater than N we have Kf n k -Kf nm < ε. We deduce that

uC ϕ + K ≥ (uC ϕ + K) f n k -f nm 2 ∞ ≥ 1 2 uC ϕ (f n k -f nm ) ∞ - ε 2 ≥ 1 2 |u(z n k )| |f n k (ϕ(z n k )) -f nm (ϕ(z n k ))| - ε 2 ≥ |u(z n k )| 2 (1 -|ϕ(z n k )| 2 ) - |u(z n k )| 1 -|ϕ(z nm )| 2 2 1 -ϕ(z nm )ϕ(z n k ) 2 - ε 2 
Now take the upper limit as m goes to infinity (k being fixed) and remind that lim m |ϕ(z nm )| = 1 and |ϕ(z n k )| < 1 to obtain

uC ϕ + K ≥ |u(z n k )| 2 (1 -|ϕ(z n k )| 2 ) - ε 2 
for every k ≥ N. It remains to make k tend to infinity to have

uC ϕ + K ≥ 1 2 M ϕ (u) - ε 2 .
Combining Proposition 3.1 and Proposition 3.2 we obtain the following estimate:

Theorem 3.3. Suppose that uC ϕ is a bounded operator from H p to H ∞ and that ϕ ∞ = 1.
Then uC ϕ e ≈ M ϕ (u). More precisely, we have the following inequalities:

1 2 M ϕ (u) ≤ uC ϕ e ≤ 2M ϕ (u).
Note that if p > 1 one can replace the constant 1/2 by 1.

4 uC ϕ ∈ B(H ∞ , H q ) for ∞ > q ≥ 1
In this setting, boundedness of the weighted composition operator uC ϕ is equivalent to saying that u belongs to H q , and uC ϕ is compact if and only if u = 0 or

|E ϕ | = 0 where E ϕ = {ζ ∈ T | ϕ * (ζ)
∈ T} is the extremal set of ϕ (see [START_REF] Contreras | Hernández-Díaz Weighted Composition Operators between Different Hardy Spaces[END_REF]). We give here some estimates of the essential norm of uC ϕ that appear in [START_REF] Gorkin | Essential Norms of Composition Operators[END_REF] for the special case of composition operators:

Theorem 4.1. Let u ∈ H q . Then uC ϕ e ≈ Eϕ |u(ζ)| q dm(ζ) 1 q . More precisely, 1 2 Eϕ |u(ζ)| q dm(ζ) 1 q ≤ uC ϕ e ≤ 2 Eϕ |u(ζ)| q dm(ζ) 1 q
.

We start with the upper estimate:

Proposition 4.2. Let u ∈ H q . Then uC ϕ e ≤ 2 Eϕ |u(ζ)| q dm(ζ) 1 q 
.

Proof. Take 0 < r < 1. Since rϕ ∞ ≤ r < 1, the set E rϕ is empty and therefore the operator uC rϕ is compact. Thus uC ϕ e ≤ uC ϕ -uC rϕ . But

uC ϕ -uC rϕ q = sup f ∞≤1 T |u(ζ)| q f ϕ(ζ) -f rϕ(ζ) q dm(ζ). (4.1) 
For ε > 0, note

E ε = {ζ ∈ T | |ϕ * (ζ)| < 1 -ε}.
We assume that uC ϕ is not compact, hence E ε = ∅. We will use the pseudohyperbolic distance ρ defined for z and w in the unit disk by ρ(z, w) = |z -w|/|1 -wz|. The Pick-Schwarz's theorem ensures that ρ f (z), f (w) ≤ ρ(z, w)

for every function f ∈ B H ∞ . As a consequence the inequality |f (z) -f (w)| ≤ 2ρ(z, w) holds for every w and z in D. If ζ is an element of E ε then ρ ϕ(ζ), rϕ(ζ) = (1 -r)|ϕ(ζ)| 1 -r|ϕ(ζ)| 2 ≤ 1 -r 1 -r(1 -ε) 2 .
One can choose 0 < r < 1 satisfying sup Eε ρ ϕ(ζ), rϕ(ζ) < ε/2, and therefore

f ϕ(ζ) -f rϕ(ζ) ≤ 2 sup Eε ρ ϕ(ζ), rϕ(ζ) ≤ ε
for all ζ ∈ E ε and for every function f in the closed unit ball of H ∞ . It follows from these estimates and (4.1) that

uC ϕ -uC rϕ q ≤ sup f ∞≤1 Eε |u(ζ)| q ε q dm(ζ) + T\Eε 2 q |u(ζ)| q dm(ζ) ≤ ε q u q q + 2 q T\Eε |u(ζ)| q dm(ζ).
Make ε tend to zero to deduce the upper estimate.

Let's turn to the lower estimate:

Proposition 4.3. Suppose that u ∈ H q . Then uC ϕ e ≥ 1 2 Eϕ |u(ζ)| q dm(ζ) 1 q 
.

Proof. Take a compact operator K ∈ B(H ∞ , H q ). Since the sequence (z n ) n∈N is bounded in H ∞ , there exists an increasing sequence of integers (n k ) k≥0 such that (K(z n k )) k≥0 converges in H q . For any ε > 0 one can find N ∈ N such that for every k, m ≥ N we have Kz n k -Kz nm q < ε. If 0 < r < 1, we note g r (z) = g(rz) for a function g defined on D. Take k ≥ N. Then there exists 0 < r < 1 such that (uϕ n k ) r q ≥ uϕ n k q -ε.

For all m ≥ N we have

uC ϕ + K ≥ (uC ϕ + K) z n k -z nm 2 q ≥ 1 2 u (ϕ n k -ϕ nm ) q - ε 2 ≥ 1 2 (uϕ n k ) r -(uϕ nm ) r q - ε 2 ≥ 1 2 (uϕ n k ) r q -(uϕ nm ) r q - ε 2 ≥ 1 2 uϕ n k q -(uϕ nm ) r q -ε.
Let us make m tend to infinity, keeping in mind that 0 < r < 1 and ϕ r ∞ < 1:

(uϕ nm ) r q ≤ u q (ϕ r ) nm ∞ ≤ u q ϕ r nm ∞ -→ m 0.
Thus uC ϕ + K ≥ (1/2) uϕ n k q -ε for all k ≥ N. We conclude noticing that

uϕ n k q = T |u(ζ)ϕ(ζ) n k | q dm(ζ) 1 q -→ k Eϕ |u(ζ)| q dm(ζ) 1 q 
.

5 uC ϕ ∈ B(H p , H q ) for ∞ > p > q ≥ 1

In [START_REF] Gorkin | Essential Norms of Composition Operators[END_REF], the authors give an estimate of the essential norm of a composition operator between H p and H q for 1 < q < p < ∞. The proof makes use of the Riesz projection from L q onto H q , which is a bounded operator for 1 < q < ∞. Since it is not bounded from L 1 to H 1 (H 1 is not even complemented in L 1 ) there is no mean to use a similar argument. So we need a different approach to get some estimates for q = 1. A solution is to make use of Carleson measures. First, we give a characterization of the boundedness of uC ϕ in terms of a Carleson measure.

In the case where p > q, Carleson measures on D are characterized in [START_REF] Blasco | A note on Carleson measures for Hardy spaces[END_REF]. Denote by Γ(ζ) the Stolz domain generated by ζ ∈ T, i.e. the interior of the convex hull of the set {ζ} ∪ (αD), where 0 < α < 1 is arbitrary but fixed.

Theorem 5.1 ( [1], Theorem 2.2). Let µ be a measure on D, 1 ≤ q < p < ∞ and s = p/(p -q).

Then µ is a (p, q)-Carleson measure on D if and only if

ζ → Γ(ζ) dµ(z) 1 -|z| 2 belongs to L s (T) and µ T = F dm for a function F ∈ L s (T).
This leads to a characterization of the continuity of a weighted composition operator between H p and H q : Corollary 5.2. uC ϕ : H p → H q is bounded if and only if

G : ζ ∈ T → G(ζ) = Γ(ζ) dµϕ(z) 1-|z| 2
belongs to L s (T) for s = p/(p -q) and µ ϕ | T = F dm for a certain F ∈ L s (T), where dµ = |u| q dm and µ ϕ = µ • ϕ -1 is the pullback measure of µ by ϕ.

Proof. uC ϕ is a bounded operator if and only if there exists c > 0 such that for any

f ∈ H p , T |u(ζ)| q |f • ϕ(ζ)| q dm(ζ) ≤ c f q p ,
which is equivalent (via a change of variables) to D |f (z)| q dµ ϕ (z) ≤ c f q p for every f ∈ H p . This exactly means that µ ϕ is a (p, q)-Carleson measure. This is equivalent by Theorem 5.1 to the condition announced.

If f ∈ H p , the Hardy-Littlewood maximal non tangential function M f is defined by M f (ζ) = sup z∈Γ(ζ) |f (z)| for ζ ∈ T. For 1 < p < ∞, M is a bounded operator from H p to L p and we will denote its norm by M p . The following lemma is the analogue version of Lemma 2.6 for the case p > q.

Lemma 5.3. Let µ be a positive Borel measure on D. Assume that µ is a (p, q)-Carleson measure for 1 ≤ q < p∞. Let 0 < r < 1 and µ r := µ | D\rD . Then µ r is a (p, q)-Carleson measure, and there exists a positive constant C such that for every f

∈ H p , D |f (z)| q dµ r (z) ≤ ( F s + C M q p G r s ) f q p where dµ T = F dm and G r (ζ) = Γ(ζ) dµr(z) 1-|z| 2 .
In addition, G r s → 0 as r → 1.

Proof. Being a (p, q)-Carleson measure only depends on the ratio p/q (see [START_REF] Blasco | A note on Carleson measures for Hardy spaces[END_REF], Lemme 2.1), so we have to show that µ r is a (p/q, 1)-Carleson measure.

It is clear that G r ≤ G ∈ L s (T). Moreover dµ r | T = dµ T = F dm ∈ L s (T). Corollary 5.2 ensures the fact that µ r is a (p, q)-Carleson measure. Let f be in H p . Then T |f (ζ)| q dµ r (ζ) = T |f (ζ)| q dµ(ζ) = T |f (ζ)| q F (ζ) dm(ζ) ≤ T |f (ζ)| p dm(ζ) q p F s ≤ f q p F s (5.1) 
using Hölder's inequality with conjugate exponents p/q and s.

For z = 0, z ∈ D, note Ĩ(z) = {ζ ∈ T | z ∈ Γ(ζ)}. In other words ζ ∈ Ĩ(z) ⇔ z ∈ Γ(ζ). Then m Ĩ(z) ≈ 1 -|z| and D |f (z)| q dµ r (z) ≈ D |f (z)| q Ĩ(z) dm(ζ) dµ r (z) 1 -|z| 2 = T Γ(ζ) |f (z)| q dµ r (z) 1 -|z| 2 dm(ζ) ≤ T M f (ζ) q Γ(ζ) dµ r (z) 1 -|z| 2 dm(ζ) where M f (ζ) = sup z∈Γ(ζ) |f ( 
z)| is the Hardy-Littlewood maximal non tangential function. We apply Hölder's inequality to obtain

D |f (z)| q dµ r (z) ≤ C M f q p G r s ≤ C M q p G r s f q p . (5.2)
where C is a positive constant. Combining (5.1) and (5.2) it follows that

D |f (z)| q dµ r (z) ≤ ( F s + C M q p G r s ) f q p .
It remains to show that G r tends to zero in L s (T) when r tends to 1. We will make use of Lebesgue's dominated convergence theorem. Clearly we have 0

≤ G r ≤ G ∈ L s (T), so we need to show that G r (ζ) → 0 as r → 1 for m-almost every ζ ∈ T. Let A = {ζ ∈ T | G(ζ) < ∞}. It is a set of full measure (m(A) = 1) since G ∈ L s (T). Write G r (ζ) = Γ(ζ) f r (z) dµ(z) with f r (z) = 1I D\rD (z)(1 -|z| 2 ) -1 , z ∈ Γ(ζ). For every ζ ∈ A one has |f r (z)| ≤ 1 1 -|z| 2 ∈ L 1 (Γ(ζ), µ) since ζ ∈ A, f r (z) -→ r→1 0 for all z ∈ Γ(ζ) ⊂ D. Lebesgue's dominated convergence theorem in L 1 (Γ(ζ), µ) ensures that G r (ζ) = f r L 1 (Γ(ζ),µ)
tends to zero as r tends to 1 for m-almost every ζ ∈ T, which ends the proof.

Theorem 5.4. Let uC ϕ be a bounded operator from H p to H q , with ∞ > p > q ≥ 1. Then , where C ϕ p/q denotes the norm of C ϕ acting on H p/q .

Proof. We follow the same lines as in the proof of the upper estimate in Proposition 2.4: we have the decomposition I = K N + R N in B(H p ), where K N is the convolution operator by the Fejér kernel, and uC ϕ e ≤ lim inf

N uC ϕ R N .
We also have, for every 0 < r < 1, (uC ϕ R N )f q q = D\rD |R N f (w)| q dµ ϕ (w) + ≤ 2( F s + C M q p G r s )

1 q
using the fact that sup N R N ≤ 2. Now we make r tend to 1, keeping in mind that G r s → 0. We obtain uC ϕ e ≤ 2 F 1/q s . It remains to see that we can choose F in such a way that Indeed, if f ∈ C(T) ∩ H p/q , we apply Hölder's inequality with conjugates exponents p/q and s to have

T f dµ ϕ,T = Eϕ |u| q f • ϕ dm ≤ Eϕ |u| q |f • ϕ| dm ≤ C ϕ (f ) p/q Eϕ |u| sq dm 1/s
, meaning that µ ϕ,T ∈ H p/q * , which is isometrically isomorphic to L s (T)/H s 0 , where H s 0 is the subspace of H s consisting of functions vanishing at zero. If we denote by N (µ ϕ,T ) the norm of µ ϕ,T viewed as an element of H p/q * , then one can choose F ∈ L s (T) satisfying F s = N (µ ϕ,T ) ≤ C ϕ p/q Eϕ |u| pq/(p-q) dm 1/s and µ ϕ,T = F dm (see for instance [START_REF] Koosis | Introduction to H p spaces[END_REF], p. 194). Finally we have uC ϕ e ≤ 2 C ϕ 1/q p/q Eϕ |u(ζ)| pq p-q dm(ζ)

p-q pq .

Although we haven't be able to give a corresponding lower bound of this form for the essential norm of uC ϕ , we have the following result: Proposition 5.5. Let 1 ≤ q < p < ∞, and assume that uC ϕ ∈ B(H p , H q ). Then Proof. Take a compact operator K from H p to H q . Since it is completely continuous, and the sequence (z n ) converges weakly to zero in H p , (K(z n )) n converges to zero in H q . Hence uC ϕ + K ≥ (uC ϕ + K)z n q ≥ uC ϕ (z n ) q -K(z n ) q for every n ≥ 0. Taking the limit as n tends to infinity, we have .

Lemma 2 . 11 .

 211 Take a ∈ D and N ∈ N * . Denote by α p (a) the p-th Fourier coefficient of C ϕ k a /(1 -|a| 2 ) , so that for every z ∈ D we havek a ϕ(z) = (1 -|a| 2 ) ∞ p=0 α p (a)z p .Then there exists a constant M = M (N ) > 0 depending on N such that |α p (a)| ≤ M for every p ≤ N and every a ∈ D.Proof of Lemma 2.11. Write ϕ(z) = a 0 + ψ(z) with a 0 = ϕ(0) ∈ D and ψ(0) = 0. If we develop k a (z) as a Taylor series and replace z by ϕ(z) we obtain:

uC ϕ e ≤ 2

 2 

sup f p≤1 I 2 (

 p≤12 rD |R N f (w)| q dµ ϕ (w) = I 1 (N, r, f ) + I 2 (N, r, f ).As in the p ≤ q case, we show that limN N, r, f ) = 0.The measure µ ϕ being a (p, q)-Carleson measure, we use Lemma 5.3 to have the following inequalityI 1 (N, r, f ) ≤ ( F s + C M q p G r s ) R N f q p for every f ∈ H p . As a consequence uC ϕ e ≤ lim inf N sup f p≤1 I 1 (N, r, f ) 1 q

F

  

  uC ϕ e ≥ Eϕ |u(ζ)| q dm(ζ) 1 q.

uC ϕ e ≥

  Eϕ |u(ζ)| q dm(ζ) 1 q