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Abstract—Global localization aims to estimate a robot’s pose 

in a learned map without any prior knowledge of its initial pose.  

Achieving highly accurate global localization remains a challenge 

for autonomous mobile robots especially in large-scale 

unstructured outdoor environments. This paper introduces a 

real-time reliable global localization approach with the capability 

of addressing the kidnapped robot problem using only laser 

sensors. Our approach includes four steps: 1) local Simultaneous 

Localization and Mapping 2) map matching 3) position tracking 

and 4) localization quality evaluation. For sensor perception, we 

use occupancy grid method to represent robot environment. A 

novel pyramid grid-map based coarse-to-fine matching approach 

is proposed to improve the localization accuracy. Experimental 

results including an outdoor environment of 25,000 m
2 

are 

presented to validate the feasibility and reliability of the proposed 

approach. 

Keywords—global localization, SLAM, coarse-to-fine, mobile 

robots 

I.  INTRODUCTION 

Mobile robot localization deals with determining a robot’s 
pose relative to its surrounding environment. It is considered as 
the fundamental problem in autonomous mobile robotics [1], 
[2]. Acquiring precise localization is of essential importance for 
accomplishing a given mission. The localization problems can 
be categorized into three levels: position tracking, global 
localization and the kidnapped robot problem [1], [3], [4]. 

Position tracking assumes that the initial robot pose is given 
and the robot’s pose can be achieved by compensating pose 
errors and tracking robot over time in a known environment. 
Addressing the global localization problem is more challenging 
as it seeks to localize itself in a studied map with an unknown 
initial pose. The kidnapped robot problem is that well-localized 
robot gets kidnapped and teleported to some other location 
without being informed. It is even more difficult than the 
global localization, in that the robot might still naively believe 
that it is on the right track while it does not. Also, being 
capable of recovering from the localization failure is critical for 
truly autonomous robots since most state-of-the-art localization 
algorithms can not be guaranteed never to fail [3]. 

In this paper, we present a high-efficient robust global 
localization approach together with the ability of recovering 
from “kidnapping” in complex outdoor environments using 

exclusively laser data. In our approach, the robot 
simultaneously determines its location and builds a SLAM map 
based on a proposed local SLAM (Simultaneous Localization 
and Mapping) algorithm. Meanwhile, a local map which differs 
from the SLAM map is also created for map matching purpose. 
Once the robot gains sufficient evidence for localization 
distinction, a map matching algorithm is carried out to search 
the initial pose by matching the local map to a global reference 
map. After that, we can update the robot pose based on robot 
initial pose and relative movement knowledge from local 
SLAM. Then, global localization is actually simplified as a 
position tracking problem. Besides, a novel pyramid grid-map 
based coarse-to-fine matching method is used to further 
improve localization accuracy. In order to handle the 
kidnapped robot problem, a localization quality evaluation 
algorithm is also integrated into the whole localization system. 

The rest of the paper is organized as follows: In Section II, 
we review the localization problem formulation and briefly 
introduce the architecture of our localization system. Section III 
further discusses the localization and matching approaches in 
detail. Real experimental results in unstructured outdoor 
environments are given in Section IV. Finally, Section V 
presents the conclusion and future work.  

II. LOCALIZATION PROBLEM AND SOLUTION 

A. Localization Problem 

In general probabilistic terms, the global localization 
problem is considered as a posterior probability density 
optimization problem conditioned on all available history data. 

�  = arg max{ ( | )}
MAP

t t t
x

x P x Y                     (1) 

where xt is the robot pose at time t. All available data Yt are 
divided into two types: perceptual data z1:t = {z1, z2,…, zt} and 
control data u1:t = {u1, u2,…, ut}. x0 stands for the initial pose. 
By applying the Markov assumption, (1) can be rewritten as 

�
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B. Localization Solution 

To address the global localization problem, we design and 
develop a novel architecture for our localization system. As 
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Figure 1.  Architecture of the Localization System 

shown in Fig. 1, the localization system includes four main 
parts: local SLAM, map matching, position tracking and 
localization quality evaluation. 

III. ROBOT LOCALIZATION 

A. Local SLAM 

Local SLAM algorithm enables a mobile robot to build an 

accurate SLAM map M of an unknown environment while 

concurrently using this map to recover its pose xt. The SLAM 

algorithm calculates the joint posterior probability over all past 

observations and controls [3],[5] as follows: 

 

1: 1: 0( , | , , )t t tP x M z u x                         (3) 

 

The joint posterior (3) can be obtained through a recursive 

procedure of (4) and (5). 
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Where P(xt | xt-1, ut) is the motion model which denotes the 

transition of robot state. P (zt | xt, ML) is called the sensor 

model which describes the probability of observing zt when xt 

and M are already known. In this paper, a motion prediction 

model and a grid-map based maximum likelihood mapping 

framework are presented to tackle the local SLAM problem. 

Also, a pyramid grid-map based coarse-to-fine refining 

strategy is proposed to improve localization precision. 

 

1) Motion Prediction: To model robot motion, we simply 

assume that the relative movement at time t equals the one at 

time t-1: ∆xt = ∆xt-1. This is because of the continuity property 

of the robot movements. As in most cases, the relative 

movements will not suddenly suffer from an enormous change, 

particularly when the system update rate is high. We also have 

vt = vt-1, wt = wt-1, where vt is the translational velocity and wt is 

the rotational velocity. The rough pose estimation is given by 
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In order to avoid confusion, the pose state x is denoted by 
vector (xp, yp, θp)

T
. Then the motion model is presented as 
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Where η

’
 is a normalization constant and 
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The variances δxp , δyp, and δθp are given by δxp = λ1v, δyp = 

λ2v, and δθp = λ3w. λi (i = 1, 2, 3) is just a parameter. Moreover, 

a candidate pose space
' ' '

,1 ,{ ,..., }t t t kx x x=  is generated by 

sampling P(xt | xt-1, ut) for later pose refining process. The 

correspondent relative movement ∆x will finally be updated 

when the robot pose is refined. 

2) Perception Representation: For the SLAM map, we use 

the occupancy grid method to represent the environment. In 

this representation, the robot environment is discretized into 

two-dimensional square cells and each cell is associated with a 

value in [0, 1] indicating the probability of a cell being 

occupied. The higher value of a grid cell is, the darker a grid 

cell is and more likely it is being occupied. 

Assuming each grid cell is independent and poses x0:t are 

known. Given observations z1:t, the posterior probability P(m | 

x0:t, z1:t) for a grid cell m is determined by using Bayes theorem: 
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Assuming zt is independent from x0:t-1 and z0:t-1 at given m: 
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Also, for the opposite event: 
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Dividing (12) by (13) leads to the cancellation of various 

difficult-to-calculate probabilities: 
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Implementing log odds ratio for (14) brings an elegant 

recursive formula in log-odds term: 
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In (15), P(m) is the prior occupancy probability of a grid cell. 

The remaining probability P(m | xt, zt) stands for the inverse 

sensor model. We adopt a similar model according to [6]. 

Posterior probability P(m | z1:t, x0:t) can be recovered easily 

since the Odds(m| z1:t, x0:t) can be computed recursively. 

3) Scan Matching: Building a consistent environment map 

requires knowing the robot’s precise localization. However, 

the pose estimation from motion prediction is inaccurate. 

Therefore, we introduce a grid-based scan matching approach 

to refine the robot’s pose in the maximum likelihood mapping 

framework. We correct the robot pose by comparing the 

current laser scan with the existing SLAM map. The robot’s 

pose at time t is determined as follow [3], [6], [7]: 
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t

t tt t t t t
x

x P z x M P x x u−−=            (17) 

In (17), P(xt |
�

1tx − , ut) is the motion model which is already 

discussed in the previous description. To calculate P(zt | xt, Mt-1), 
we apply a high-efficient method according to [6]. It only 
focuses on the grid cells which are hit by the laser end-points. 

We denote current laser scan by 
1 2{ , ,..., }N

t t t tz z z z=  which 

contains N individual measurements (N corresponding laser 

beams). Each ( 1,..., }K

tz K N=  is projected into the existing 

SLAM map in global coordinate reference. The grid cell which 

is hit by the laser end-point 
K

tz  is denoted by
( )hit K

tm . If cell 

( )hit K

t
m  is being occupied, the occupancy value of this cell will 

be added into a voting score. The likelihood of the sensor 
measurement is represented by the final voting score: 
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k
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=
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The maximizing operation in (17) is implemented by an 
extensive search over candidate pose space. The most likely 
robot pose is recovered when the current laser scan correctly 
aligns with the existing SLAM map. After that, we update 
SLAM map M,t = M,t-1∪{zt, xt} according to (15) and (16). 
Finally, the robot simultaneously improves its localization and 
SLAM map by alternating the pose refining and map updating. 

4) Further Pose Refining: To further improve localization 

accuracy, we propose a novel pyramid grid-map based coarse-

to-fine refining strategy: As Fig. 2 shows, Firstly, the scan 

matching process runs in the low-resolution grid map 
A

t
M (20×20cm

2
/pixel). The rough pose estimation

*(1)

t
x and 

candidate pose space
'(1)

tx  are obtained respectively from the 

motion model and the sampling algorithm. By performing the 

maximum likelihood mapping algorithm, 
(1)

t
x  is found as the 

refined pose among the candidate pose space. Furthermore, we 

enter a higher resolution map 
B

t
M  (10×10cm

2
/pixel) and the 

same matching procedures are carried on in the second-level 

map starting as
*(2) (1)

t tx x= . It indicates that we regard the 

previous refined pose as the raw estimation in the current level 

map. Once the matching process is finished, again, we come 

into a higher resolution level to continue our matching process. 

Finally the best robot pose is recovered as
(3)

t
x in the map 

C

t
M  

(5×5cm
2
/pixel). Note that the pose candidate space area is 

reduced during the refining process. To avoid unexpected 

mismatching, we check the pose corrections and set the 

restriction as:  

( ) ( )| | | |  (  )j k
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correction. The matching process will stop if correction 

relationship goes against (19), for instance: 
(2) (3)| | | |
t t

x x<� � , 

the matching process ends and 
(2)

t
x returns as the final result. 
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Figure 2.  Pyramid grid-map based coarse-to-fine refining strategy 



   

 

It’s worth to notice that the initial pose x0 is unknown for 

the moment. For implementing local SLAM algorithm, we 

assume the initial pose as x0= (0, 0, 90
◦
)

T
 and it will be 

corrected in the following discussions.  

B. Map Matching 

Laser-based global localization problem is similar to a 

recognition problem as the robot seeks to match the current 

local map with a global reference map. Before going into any 

detail, we first introduce the map presentation for map 

matching algorithm. Similar to the SLAM map, all maps are 

still presented using the occupancy grid approach and laser 

data are projected into two-dimensional square cells. However, 

instead of calculating the occupancy possibility, we regard a 

cell is empty until it is being hit more than twice. 

 In our method, we increasingly build the local map ML 

based on laser data and localization results from local SLAM. 

The global reference map is built by a robust laser-based 

SLAM algorithm which is capable of creating a consistent map 

in large-scale outdoor environments [8]. In fact, we load all 

global reference data (reference map, reference laser scans and 

corresponding robot poses) into the localization system at the 

beginning. When the local map gains sufficient evidence, we 

carry out the map matching algorithm to search robot’s initial 

pose. The map matching algorithm contains two steps: 

Step1: We generate a set of local maps by rotating the 

local laser map ML every 4
◦
 from 4

◦
 to 360

◦ 
(θ=4

◦
,.., 360

◦
) . The 

local map set is presented as  
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L L L L
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Assuming each local map 
*

, ( 1,...,90)
L k

M k = contains n 

small grid cells: 
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Where 
*( )

,

j

L k
m  is a small grid cell in 

*

,L k
M . 

Step 2: We create position samples from robot reference 
poses. All the position samples are considered as the robot’s 
possible initial position. As Fig. 3 shows, we denote all 
potential candidate positions (marked as circle) by the set 
XC={XC0 , …, XCs}={(XCx0, XCy0), …, (XCxs, XCys)}. For map 

matching purpose, we create submap 
*

,G i
M  centered in XCi 

based on global reference data: 
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G i G i G i G i
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Where 
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j

G i
m  is a grid cell in 

*

,G i
M . Apparently, both 

*

,G i
M  

and 
*

,L i
M  have the same map size.  

 To quickly locate robot initial position area and speed up 
the whole matching process, the map matching firstly takes 
place in a low-resolution level (50×50cm

2
/pixel): each local 

map 
*

,L k
M  seeks to match with submap 

*

, ( 1,..., )
G i

M i s=  one 

by one. The refined initial robot pose is obtained 

when
*

,L k
M and

*

,G i
M achieve the best matching: 

*

,G iM
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,L kM

 

Figure 3.  Matching process between local map and reference submap 
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Obviously, the recovered initial pose might not be very 

accurate at the moment. Similar to the SLAM refining process, 
we zoom into a higher resolution level and execute an 
extensive search around the previous recovered initial pose: 
First, we generate candidate pose space by sampling in the 
neighborhood area of the recovered initial pose (in both 
position and orientation); Next, we create a series of local 
maps based on candidate poses; Again, we implement similar 
matching process between new local maps and global 
reference map. Finally, an accurate initial robot pose is found 
by the progressive pose searching and map matching 
procedures. 

C. Position Tracking 

By now, we can update the robot pose according to both 
the localization results of SLAM (relative moments) and the 
precise initial pose. After that, the global localization problem 
turns out to be a position tracking problem. In this paper, we 
address the position tracking problem by matching the current 
laser scan to the existing global map using similar mapping 
framework discussed in the local SLAM section.  

D. Localization Quality Evaluation 

From previous discussion, the robot is able to precisely 
localize itself in the global map through three processes: local 
SLAM, map matching and position tracking. However, to cope 
with the localization failure or recover from “kidnapping”, we 
need to address the kidnapped robot problem.  

For solving the kidnapped robot problem, a grid-map based 
coverage ratio evaluation method is presented to assess the 
localization quality so as to detect localization failure or 
“kidnapping”. Suppose there are N laser points in the current 
scan. First we project all laser points into global map. Then, 
the evaluation algorithm performs status-checking operation 
towards the cells which are hit by those transformed laser 
points. Cell status Vi and coverage ratio R are calculated by (24) 
and (25) respectively. 
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If the coverage ratio R is smaller than a certain threshold, 
the quality evaluation module informs system that the robot 
has been kidnapped or reached a poor localization. 
Consequently, our system automatically reset the global 
localization and switch to re-localization procedure (As 
illustrated in Fig. 1).  

IV. EXPERIMENTS EVALUATION 

A. Experiment Configuration 

The proposed localization architecture has been 

implemented in two different vehicle platforms. As Fig. 4(a) 

shows, AGV is a fully autonomous vehicle equipped with two 

IBEO Alasca-XT laser scanners (left and right front corner). 

Cycab as depicted in Fig. 4(b) is a prototype of smart car 

mounted with a single IBEO-ML laser scanner in front.  

B. Experiment Results 

A number of experiments in different scenarios have been 

carried out to test and validate the feasibility and robustness of 

our localization approach. As depicted in Fig. 5(a), the 

experiment environment covers an area of 25,000 m
2
 along 

with buildings, parking slots, trees, bushes and other clutter. 

The corresponding global map is shown as Fig. 5(b). During 

the experiments, AGV has been randomly placed in different 

starting spots (two examples, A and B, shown in Fig. 5(b)). 

Then, AGV seeks to localize itself from scratch without any 

localization notification: It incrementally builds the local map 

and determines itself locally based on SLAM. After the local 

map accumulates enough evidence, AGV is capable to 

recover itself in the global map by our matching algorithm. 

Fig. 6(a) and Fig. 6(b) illustrate the local maps starting 

from spot A and B respectively (AGV marked as the rectangle 

in Fig. 6). Map matching and global localization results are 

shown in Fig. 6(c) and Fig. 6(d). As we can see, AGV obtains 

an accurate global localization (relative to the global map) 

when the local map achieves a satisfying alignment with 

reference map (as depicted in Fig. 6(c) and Fig. 6(d), local 

map data in small circles are projected to global reference 

map for showing the map alignment). 

Another experiment was carried out during a one-week 

public demonstration in Formello, Italy, March 2010. The 

demo site is located in a highly unstructured and complicated 

outdoor environment (see Fig. 7(a)) with garden benches, 

tents, trees, bushes and even running kids. As Fig. 7(b) 

illustrated, Cycab starts its autonomous running from point A 

and B respectively. Results of local maps and final global 

localization from A and B are described in Fig (8) in detail. 

In fact, the global maps (as shown in Fig. 5(b) and Fig. 

7(b)) are not up-to-date. For example, parking cars appearing 

and disappearing ( labeled by c1 in Fig.6 (c), c2, c3 in Fig. 

6(d) ), dynamic moving objects ( labeled by P1 in Fig. 8(d) ),  

       
    (a)                                                         (b) 

Figure 4.  Experiment vehicle platforms: (a) AGV;  (b) Cycab. 

      
    (a)                                                         (b) 

Figure 5.  Experiment scenario and map: (a) Scenario site; (b) Global map. 

   
    (a)                                                         (b) 

   
    (c)                                                         (d) 

Figure 6.  Experiment results of AGV: (a) Local map from A; (b) Local map 

from B; (c) localization result A; (d) localization result B. 



   

 

    
    (a)                                                         (b) 

Figure 7.  Experiment scenario and map: (a) Scenario site; (b) Global map. 

     
    (a)                                                         (b) 

    
    (c)                                                         (d) 

Figure 8.  Experiment results of Cycab: (a) Local map from A; (b) Local 

map from B; (c) localization result A; (d) localization result B. 

scene structure change (labeled by P2 in Fig. 8(c)). However, 

as the real experiment results have shown, our localization 

approach is robust enough to those modifications in the scenes. 

This is because the map matching algorithm is mainly based 

on solid features and distinctive evidence which are unlikely 

to be modified in a short-term (i.e., city buildings, street 

infrastructures, trees, etc.). Overall, the proposed map 

matching algorithm is capable to determine robot localization 

despite of the minor environment changes. In a highly shape 

repetitive environment, the matching algorithm could be 

confused and forced to fail at the beginning. But, the robot 

can re-localize itself correctly in the global map after gaining 

sufficient evidence for localization distinction. Indeed, the 

proposed localization approach could fail if the environments 

change significantly or the onboard laser sensors are 

“blocked” by the surrounding crowd. 

To validate the ability of solving the kidnapped robot 

problem, we simulate the “kidnapping” situation by resetting 

a well-localized robot pose. More details as well as some 

experiment videos are available in [9]-[11]. 

V. CONCLUSION 

In this paper, we presented a high-efficient reliable global 

localization approach and demonstrated its good performance 

in challenging outdoor scenarios in real-time. The architecture 

of our localization system is mainly divided into four parts: 

local SLAM, map matching, position tracking and localization 

evaluation. Through local SLAM, map matching and position 

tracking, the robot can determine its localization relative to 

the global map. In addition, by incorporating localization 

quality evaluation algorithm, the robot is able to recover from 

the localization failure or “kidnapping” thus solving the 

kidnapped robot problem. In the future, for achieving truly 

“global” localization characteristic, we plan to associate GPS 

coordinate with the global map which enables our localization 

system to provide positioning information at the scale of the 

whole earth. 
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