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Groupe de Recherche en Electrotechnique et Elagtrerde Nancy, Henri Poincaré University, NancyARNRE
E-mail: gael.male@green.uhp-nancy® Malé)

Abstract

An analytical computation of the magnetic fieldtdtsution in a wholly superconducting synchronoetictance
motor is proposed. The stator of the studied motorsists of three-phase HTS armature windings fed\®
currents. The rotor is made with HTS bulks whicbgant the specificity to have a diamagnetic belmawder zero-
field cooling. The electromagnetic torque is obegirby the interaction between the rotating magrfetid created
by the HTS windings and the HTS Bulks. The propcmaalytical model is based on the resolution oflaeg's and
Poisson’s equations (by the separation of variatéelnique) for each sub-domain, i.e. stator wigslirair-gap,
holes between HTS bulks and exterior iron shieldr the study, the HTS bulks are considered as gterfe
diamagnetic materials. The boundary and continaipditions between each sub-domains yield to thodoad|
solution. Magnetic field distributions and electragnetic torque obtained by the analytical methad campared
with those obtained from finite element analyses.

Keywords
Analytical solution, bulk superconductor, diamaggrat high magnetic field, reluctance motor.

1. Introduction the literature are all based on the maximizatiofLef
Hts materials can be used in various types of mtett L,) and require ferromagnetic materials on both tterr
devices like motors and generators which repreaant and the stator.
important part of the superconducting applicatifis In this paper, we propose an analytical modetihg
Among them, Superconducting Synchronous Reluctanae new type of ScSynRM without ferromagnetic
Motors (ScSynRM) are studied and tested in differematerials (except for the outer magnetic shield)e T
companies and research institutes [9-13]. proposed motor uses superconducting materialsdir b
Conventional synchronous reluctance motothe stator and the rotor. Figure 1 shows the straobf
(SynRM) with ferromagnetic materials present a $émpthe motor considered in the paper. The stator stnsf
structure and rugged characteristics. The rotosumh an air-core three-phase HTS armature windings fed b
motors consists of magnetic and nonmagnetic mégerisAC currents. The HTS stator windings generate a
The electromagnetic torque is directly determingdhe rotating magnetic field of high amplitude. The totg
difference between thd-axis inductancd.y and theg- magnetic field rotates at an angular velocity etato
axis inductancé,. Many works have been carried out irthe electrical current frequency and the numbepadé
the field of SynRM rotor design to improve the miaeh pairs of the winding configuration. The rotating
performances by increasing tleeq axes inductance magnetic field interacts with the HTS bulks plaegdhe
difference L4 — Lg) [3]. Recently, some authors haverotor (air-core rotor). The electromagnetic torgise
proposed to replace the nonmagnetic materials b$ Hbbtained by the magnetic field lines deviationhe fir-
bulks. HTS bulks present a diamagnetic behaviorrwhgap due to the presence of the rotor HTS bulks iwgrk
they are zero-field cooling. This property is used under diamagnetic properties (zero-field cooling)is
decrease theg-axis inductance of the SynRM andwell known that if a superconducting bulk is cooled
therefore improves the performances of such m¢&8rs down without applied magnetic field at a temperatur
The topologies of SynRM with HTS bulks proposed ibelow its critical temperaturg,, a pure superconductor



2. Problem description and assumptions

The structure of the studied ScSynRM is shown in

figure 1. It consists of a jpole-pairs armature windings

andQ HTS bulks placed in the rotor. As can be seen in

figure 1, the rotor contains a ring §f holes domains
A=0 between theQ HTS bulks which are difficult to handle
in the analytical prediction of the air-gap magodild.
Analytical approaches for the magnetic field
computation in classical ferromagnetic machinesgisi

Superconducting
Bulk

Cryostat
airgap }

=%
P 4
A Ay
: /
; ; .
d &
v
/ i
/ /
;
{ \ /
e
/ / \
[ \ ’
| /
L
ol

\ ‘ " sub-domains method can be found in the literatde][
] However, the proposed analytical models relatedn-i
S , /' Magnetic cored electrical machine and cannot be used for the
. ‘ , Yoke analysis of the proposed air-cored machine with HTS
‘ . , bulks.
oy i . — Here, we propose an analytical solution of the reign
T EEH field distribution for the studied HTS motor. The
Figure 1. Studied HTS reluctance machine Laplace and Poisson’s equations are solved in s@lgh
(Q=4,p=2,6,=0). domain (air-gap, stator windings, exterior iron gpknd

holes between HTS bulks). The solution is obtained
using boundary and interface conditions between the

will not allow any magnetic field to freely enter, i )
tgéfferent sub-domains.

names Meissner effect. This implied that a magne
field applied near this superconductor will be exied
like for a diamagnetic material.

A cryostat is inserted between the stator windiagd
the outer iron yoke to cool down the whole HTS moto

The geometrical parameters are:
» for the rotor, inner and outer radii of the bulks
R; andR; respectively;

at low temperature with liquid nitrogen (77 K) oithw * for the three phase windings, the inner and outer
liquid neon around 30 K [8]. The outer iron yoke radii R; andR, respectively;
operates like a magnetic shield to limit the maignet * for the magnetic yoke, the inner and outer radii
effects on the external environment. Rs andR; respectively;
» for the external domain (air region), the outer
The performances of the proposed reluctance motor radiusR;.

would be analyzed by an analytical model preseimed
this paper. Analytical methods are, in generals led he winding-opening ig. The hole opening angle
computational time consuming than numerical oris (I The angular position of thieth hole is defined as
finite-element method) and can provide closed-form
solutions giving physical insight for designers, 8®y
are useful tools for first evaluation of electricabtors

performances and for design optimization. In thgnere g is the angular position of the HTS bulks rotor.

proposed analytical model, the HTS materials ar . .
assumed to be perfect (no AC losses in the HTS co'§II the calculus are made by using the following

and perfect diamagnetic behavior of the HTS bulks). aSSl-JmEp:(;)Z?;ects are neglected

The different sections are written like following. ° Relative permeability of the outer magnetic yoke

Section Il describes the problem and the assunptién is pr >>1, (4 = 100 has been chosen)

the model. The analytical method for magnetic field * Magnetic yoke is not saturated.

calculation (in the air-gap, windings and in theeso * HTS bulks have radial sides.

sub-domains) is given in section Nl. The » Perfect diamagnetic behavior of the HTS bulks.
electromagnetic torque expression is developed in

section IV. The analytical results are then vedifigith The last assumption is equivalent as to impose a
finite-element method in section V. Dirichlet condition on the surfaces of the

B a2 . .
6 =—+—+4+6, with 1<i< 1
i 2 Q 0 Q ()



superconducting bulks for the magnetic vector pidén

A=0 (2

As shown in figure 1, the whole domain is dividedtbi
six sub-domains: the rotor shaft sub-domain (redjon
the air-gap sub-domain (region 1), the winding-su
domain (region llI), the outer air-gap (for cryd¥taub-

domain (region 1V), the magnetic yoke sub-doma

(region V), the exterior sub-domain (air region \dnd
the Q holes sub-domains (regions i). Thb holes sub-

domain shape is shown in figure 2. The sub-domkins

to VI have annular shapes.

Due to the presence of electrical current in tragost
windings, a magnetic vector potential formulatioash
been chosen in 2D polar coordinates to describe

problem. According to the adopted assumptions, the

magnetic vector potential has only one componetgl
the zdirection and only depends on the and @
coordinates. The notations used in the paper are

A =A(r0) L,

A =A(r0) e,

Ap = A (o) e,
A=Ay (r,0) e,
Ay = Ay (r.0)&,
A =A(r,0) e,
An =A,(r.0) e,

for the rotor shaft sub-domain
for the i-th hole sub-domain

for the air-gap sub-domain

for the windings sub-domain

for the outer air-gap sub-domain

for the exterior sub-domain

3. Problem formulation and solution
By separation of variables technique, the solutidn
Laplace’s equation is considered for the holes,dine

gaps and the iron sub-domains, and the Poisson’s
equation for the windings sub-domain. For simpicit

and more clarity of the general solutions in thiéedént

sub-domains, the following notations are adopteH

throughout the paper

_(R) (R
P, (R, R,)=| —~ — 3
2 (R Ry) (RNJ +[RWJ 3)
(R (R
E,(R.Ry) ==X | -| =% 4
®oR=[ ] -] @

3.1. General Solution of Laplace’s Equation in the i-t

radiusR, delimited by the angle§ and g+ £.

{

Considering a perfect diamagnetic behavior forHi&
bulks, the radial component of the magnetic figldha
isides of the HTS bulk is null. The boundary coris
For thei-th hole domain are

R<sr<sR,
6,<6<6 +p

a°A
ar?

2
J10A 1 07A

=0 for
r’ 962

()

Alpeg =0 and Al,_,. ;=0 (6)

The continuity of the tangential magnetic fieldeeéen

thei-th hole and the air-gap sub-domains leads to
the

or =R or =R
oA _ A (8)
ar r=R2 ar r:R2

The general solution of (5) can be found by usimg t
method of the separation of variables, the solutan
be written as

A(r.0) =R(r)0;(0) (9)

for the magnetic yoke sub-domain

Equation (9) is substituted into (5) to obtain two
ordinary differential equations wherg (AC0) is the

separation constant.

O, -16,=0
r2R +r.R +AR =0

(10)
(11)

sing (9), the boundary conditions (6) become

Oilpq =0 and &5, , =0 (12)

The problem is to find the values of the paramétdor
which nontrivial solutions of (10) satisfying the
boundary conditions (12). Solutions are describgdb
Sturm-Liouville problem.

hUnder the latest condition, the values of the patam

hole sub-domain (regions i=1 to i= Q) are called eigenvalues and the solutions are called
Figure 2 shows thd-th hole sub-domain and the€igenfunctions. A general method to compute the

associated boundary conditions. The Laplace’s Mateigenvalges_ and_ eigenfunctions for a Sturm-Lioavill
must be solve in a domain of inner radRisand outer Problemis given in [1].



Figure 2. i-th hole sub-domain and its boundary
conditions.

The eigenvalues of the problem (10), (12) are

2
Ay = -(%Tj with n=123,... (13)

The eigenfunctions correspondingAg are given by

0,,(8)= sin(%(@ -6 )]

(14)

For/,, the general solutions of (11) can be written as

_nhmr nit

R,(6)=clr Z +Di\r? (15)
whereC/, and D/, are arbitrary constants.

Writing the general solution as a linear combiorti
of the previous solutions, we have

A(1,60)=30,(6)R 1)

n=1

(16)

therefore
AM6)=3(Cir £ +DirF) Sin[%(&—&i))

n=1

nrir

17)
where C! and D are constants which will be
determinate by the interface conditions.

Considering the interface conditions (7) and (8 t

general solution of the magnetic vector potentiahiei-
th hole domain is rewritten as

[ee]

_ i BR. Pup(R)  (nmr J
6=3|cl P sif ™ 6-4
A Zl( 0T By g RRe) LB )

‘i D! BR PomphR) M(H—&)J
nr Enﬂ/,B(Rz'Rl) B

n=1!
(18)

where n is a positive integer,P,,3(R,,R,) and
Enmp(R,.R,) are defined by (3) and (4) respectively.

The constantsC!, and D are determined using a

Ly

over the
R

. : .0,
Fourier series expansion Ga& an
r
R

hole-opening intervalq , 8+ 3]

8+5

ci=2 aﬂ‘ Etin(”—”(e—a)Jme (19)
B g olg \B
8+p

D =2 aﬂ‘ Esm(ﬂ’(e—ei)jme (20)
B g 0l B

The expressions for the coefficien@), and D/, are
givenin the appendix.

3.2. General solution of Laplace’s equation in the Rotor
Shaft sub-domain (region I)

The rotor shaft sub-domain and the associated taynd
conditions are shown in figure 3. The problem ttveso
is

2 2
O 10A | 10%A _
o r or

The boundary condition at the radius= R, is difficult

to handle because of the existence of the holsk@sn

in figure 1.

Considering the continuity of the magnetic vector
potential at the interface between the holes aaddtor
shaft domains and considering that the magnetitovec
potential is equal to zero elsewhere (diamagnetic
proprieties of superconducting bulks), the boundary
condition atr = R; can be written as

A (R,6) =F(6) (22)
with
F(H)z{A(Rl,m Do0la.6+8l 5y
0 elsewhere
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Figure 4. Schematic representation of BfF@atr = R;.

| A :EZ [A(R.6)E (28)
Figure 3. Rotor shaft sub-domain (region 1) with its =14
boundary conditions. Q 8+8
——Z IA R.0)eodhd) e  (29)

whereA (r, ) is the magnetic vector potential in thth

. g+ﬂ
hole given by (18). c) _ziz [ A (R, 6)Bin(ho) 6 (30)
i 8

The distribution of F(8) at r = R, along the rotor shaft

interval [0, 21 is schematically shown in figure 4.

The general solution of (21) is well known [1] (joelic
Sturm-Liouville problem in a disc). By taking into
account the boundary condition (22) and the faat the
magnetic vector potential must be finiterat 0, the and Cr'1 are given in the appendix.
general solution of (21) can be written as

whereQ is the number of HTS bulks in the rotor. It is
worth noting that the mutual interaction betweeer th
holes is related by the sum operation@in (28), (29)

and (30). The expressions for the coefficieRsA,

3.3. General solution of Laplace’s equation in the air-
o (" gap sub-domain (region II)
A=A+ (—J (AL.cos(hH)+Cr'] sin(hH)) The air-gap sub-domain and the associated boundary
| \ Ry conditions are shown in figure 5. The problem tlveso

(24) is
whereh is a positive integer. The coefficiert}, Al 9°A, L 1oA, +i02Au ~ 0 for {Rz <r<Rs (31)
2 2 1p2
and C! are determined using a Fourier series expansiof" ror r° a6 O<@s=2m
of F(8) over the interval [0, . .
© o 0.2 The boundary condition at=R; is
Al :Zi jF(e).de (25)
d 0A | _ oAy
21 or | or | (32)
A== j (6) [eogdho) @ (26) r=Re r=Re
Th
2 The same method as the one presented in sub-s&ction
Cl=— f (6) sin(hg) e (27)  is used to determine the boundary conditiom aR,.
Th

Introducing the functiorG(d), the boundary condition

can be written as
Taking into account (23), the coefficients (25)(RY)

can be rewritten as A (R,,0) =G(6) (33)



_ody I :izn
A j G(8).dé (36)

(air-gap) |

|| J' a'A\Ill (37)

Al =2 T oA [tos(j @) [t 38
j_z__([—e 0s(j 6) (38)

B} -2 j G(8) [tos(j8) (1o (39)
2m
2
cj -2 [ LATR [$in(j 6) 06 (40)
2y 00 |y
3
i 2
i D :2i [G(8) 3in(j6) o (41)
T
Figure 5. Air-gap sub-domain (region Il) and its 0
boundary conditions. The expressions for the coefficienty , By , Al' , B},
" Cj' andD| are given in the appendix.
wi
\(R,,0) [060|6,6 +
G(ﬁ)z{A( 2:9) 9.6+ /] (34) The flux density distribution in the air-gap can be
0 elsewhere deduced from the magnetic vector potential by
where A (r,8) is the magnetic vector potential in the
th hole given by (18). The distribution @&(g) along 1 aA” (42)
the air-gap surface at= R, presents the same shape as " r o6
the one presented in figure 4. __O0A, 43
Big=——7"- (43)

The general solution of (31) is well known [1] (jmelic
Sturm-Liouville problem in an annulus). By takingo
account the boundary conditions (32) and (33), thiEhe radial and the tangential components of the
general solution of the magnetic vector potentiatie magnetic flux in the air-gap are then

air-gap can be written as

or

By, (r.0) =
A, (r,0) = A} +B(')',|n[%j _i A!|.R3 Ei(nR) +g! Pi(r,Rs) ( j sin{j.0)
) R Ej(1R) B (r.R) a0 P(RR) JP(RZPS)
Al 2 2 +Bll =12l coqj6 e
+JZ=:1[ P P(R31R2) : Pj(Rz-R3)JCOS(J ) +Z(C}'.F\;3 % D}' :(g:::)](lj Cos(jﬂ)
=t
+z(c}'.R.3 S0 py ) ]-sin(j.e) (44
j=1 J P(R3,R2) Pj(RzaRs) B(')'

(35) Biig(r.60) = N
where j is a positive integer, P;(R,,R, )and

(] Ry Pj(r.Ry) E;(r.Rs) .
E;(R.R,) are defined by (3) and (4). The‘jzzll(?j-[ ! Tngr ! m}cosﬁ.e)

1l 1 1
coefﬁuentsAo B Aj B Cj and D are W Ry P(1Ry) <Dl E;(r,Rs) (0)
determined using Fourier series expansions o‘fz jTPj(Rg,Rz) J P (R, Rs) S
% and G(¢) over the air-gap interval [0 (45)

Rs



3.4. General solution of Laplace’s equation in the outer
air-gap sub-domain (region V)

The outer air-gap sub-domain and the associated
boundary conditions are shown in figure 6. The problem
to solve is

46
oz r ar 2 962 05652;1( )

2 2 Ry,<r<
Ay  10Ay , 1 0°Ay :Ofor{ 4, ST<Rs
The boundary condition at the radius=R, can be
written as

oAy|  _ oAy

47
o g, O |, (47)
The boundary condition at= R is ] ] ) ] o
Figure 6. Outer air-gap sub-domain (region V) with its
boundary conditions.
Ay (Rs,0) = A, (Rs,0) (48)
ZﬂaA| .
By taking into account the boundary conditions (il C|'V j —n E'l;ln(l o) 4o (54)
(48), the general solution of the magnetic vector 21 08
potential in the outer air-gap sub-domain can bigew v 2 _
as oY = J A (Rs.6).sin(6) W8 (55)
0
Ay (r,0) =AY +B(|>V-|n(%) The expressions for the coefficiedy' ,BYY , A",

v R E(R) o R(LRY) J {6) B, ¢ andD/V are given in the appendix.

+Z(A.' : B'Y. :
- I R(R R (Rs,R
= (R, RS) (Rs. Ra) 3.5. General solution of Laplace’s equation in the
+§: cv R B(OLR) v R(LR) sinl.g) ~ magnetic yoke sub-domain (region V)
= ' P(R4,R5) o "R (Rs,Ry) ' The magnetic yoke sub-domain and the associated
(49) boundary conditions are shown in figure 7. The [@ab

wherel is a positive integer. to solve is
The coefficients\y’ ,By’ , A ,B"Y, ¢V and DY

2
are determined by Fourier series expansions A +56A, 10° A =0 for Re=r=FRs 56
2 2 ap2 (56)
0A or ror r° 06 0<@<2m
or

and Ay (Rs,6) over the interval [0, 13
Ry

Considering the continuity of the tangential comgmuin
of the magnetic field at the radius=R; , The

1 2 -, .
= fpv (R, 6).d8 (50)  boundary condition can be written as
Ho-Hr dr r=Rg Ho dr r=Rs

v 27 A, where/y is the permeability of the vacuum apdis the
A o f a_;‘ [os(6) L& (52)  relative permeability of the iron.
The boundary condition at=R; is

v 27
"o iA,(RS,H).cos(H) e (53) A (Re.6)= A, (Ro. ) (58)



2
BY :%J'A”(RG,Q).COSG f)He  (63)
0

2
cY Zijur.agg Bin(f.0) e  (64)
T 0 R

2 _
V=== [A)(Rs.,0).sin(f.H)[HE  (65)
2m
The expressions for the coefficiemg , B(\)/ , A\f/, B\f/ ,C\f/

and D\f/ are given in the appendix.

3.6. General solution of Laplace’s equation in the
exterior sub-domain (region VI)

The exterior sub-domain and the associated boundary
conditions are shown in figure 8. The problem tvesds

Figure 7.Magnetic yoke sub-domain (region V) with its

boundary conditions. 0°A,  10A, 1 0°A, 0 o [RESTER
a2 r or 2 962 0<f<2m
By taking into account the boundary conditions (&gl (66)

(58), the general solution of the magnetic vector
potential in the magnetic yoke sub-domain can bgne poundary condition for the exterior domain at
written as r = Ry can be written as

A (r,0)=A + BX.In[%)

1A __ 1 oA (67)
+i v R Ei(,Rs) +BY Pr (1, Rs) cod1 ) Uy Or |rR6 Lo-l,  Or |er6
P RR) D P (R R S
°( v R5 E; (r, Re) v P (r,Rs) _ Th_e bo.undary condition for the exterior sub-domatn
+fz=1(cf £ P (ReRy) ! Pf(Re,Rs)J'S'”(fH) "Ry s

(59) An(R7,6)=0 (68)

_ o N v  The radiusR; is chosen far enough to not affect the
wheref is a positive integer, the coefficier§, By, results. By taking into account the boundary coad

AY BY,CYandDY are determined by Fourier serieg67) and (68), the general solution of the magnetic
vector potential in the exterior sub-domain can be

expansions of—‘ and Ay (Rs,6) over the interval Wwritten as

A, (r,6) =By .In(%)

[0, 2.
. Rs Em(r, R7)J VI codm8) + Y sin(mo
A =5 | An(Rs.6)d6 (60) Z[ m Pr(Re.Ry) i cone) i sinina)
27 (69)
27T aA|
J(; - e (61) wherem is a positive integer The coefficierﬁg' A\{]

and C\nﬂ' are determined by Fourier series expansions of

.cos(f.0) @ (62) oA,
Rs a—" and A, (R,,6) over the interval [0, 7]
r
Rs

2 2 0A
AT = on L Feag

0



Ay = A4y

(Windings),

Figure 8. Exterior sub-domain (region VI) with its Figure 9. Windings sub-domain (region Ill) and its
boundary conditions. boundary conditions.
27r 1 apv As shown in figure 1, a three-phase winding is used
J 7 66’ (46 (70)  the studied motor. Figure 10 shows the total ctrren
fer

density distribution alon@tdirection in the three-phase
windings wherel, corresponds to the maximum current
[tosme) b  (71)  density through a winding. The three-phase windirgs
fed with electrical current such &s | andl,= 1. =-1/2.
The distribution of the total current densilycan be
$in(m@) [dEo (72)  expressed in Fourier's series expansion (76) and

VI _1271 1 oA

27Tolufer' 08 Rs

Vi :im 1 oA

m

27Ty Hier ag replaced in (73)
The expressions for the coefﬂmeﬁﬁ v'and CY) are .
given in the appendix. J(H) => 3 .cos(k.(H - ¢o)) (76)
k=1

4. General solution of Poisson’s equation in Wheregis the current angle control.
windings sub- domains (regions Ill)

The windings sub-domain and its associated boundz 47(6)
conditions are shown in figure 9. The problem is th % .
following Phase a
J Phase b'
%Ay +}0A||| +i62A||| — . 3 for Ry<rs<Ry, 2T
o2 For 12 92 =—Hy 0<O< 27 r'd Phase ¢
(73) ; A X 27:#‘0:9
wherey is the permeability of the vacuum adds the v 2 z ;h .
total current density corresponding to the threasgh ; 3 ! £ \\ asee
windings. _ht :‘E): Phase b
The boundary conditions at=R; and r =R, are 2 . S
. P 1
respectively . Phase a
5l
Ay (Rs,0) = A (Rs, ) (74)

Figure 10. Current density distribution in the three-
Ay (Ry,0) = Ay (Ry,6) (75) phase windings along-direction.



10

In(r/Ry) In(r/Rs) 2
Ay (r.6)= Al +B 3 m_ 2 _
u (r.0)= A" RR) (R, /Ry) c! —ZHJ(;A” (Ry,0).sink8)d8  (84)
E(r,R,) E(r,R)j 27
+ M k4’ B”I K87 .cosk.0 1 _ 2 .
kz:l(Ak E«Ra,R) ¢ Eu(RyRs) 42) D =—- i Av (Ry,6)sin(k)dg  (85)
+in(r)-COE(k-¢o)-COS(k-9) (77)  The expressions for the coefficients)' By , A ,
; c R R B, c)! andD," are given in the appendix.
+Z(C|i” E(nRy) +D! k(rRs) j.sin(kﬂ)
k=1 E(Rs.Ry) E(Rq.Rs) 5. Electromagnetic torque calculation
o ) . The electromagnetic torque is obtained using the
+ l(z_:le (r).sin(k.g, ).sin(k.6) Maxwell stress tensor. A circle of radiRsin the airgap
B sub-domain is taken as the integration path so the
electromagnetic torque is expressed as follows
where
k k
Ec(r,R) Ps] [rJ
r)= —f - f f— | —filr L
SO Ew R»[ (R“)(Fa k(PS)Nk(R“) R,) "l Re JB..r(Re 6) B 5(R,6) @0 (86)

reluctance motor. According to (44) and (45), the

_E(R) ( (PS)[&Jk_fk(RI)J'[fk(RS)(rJk_fk(r)J where L is the axial length of the superconducting
(78) analytical expression for the electromagnetic terqu

and becomes
ﬂL s . . .
HoJ I? Fe = —021 12 (B H =B HY (87)
0vk ; —_ ; P j=
— if k=i.p with i, =
(k* -4) P €= 135 where
_)_Hodkr? ) i L
fie(0) ===~ (4rlr) -3 if k=2 ai -t R Ei(ReR) oy Pi(ReRe)
0 otherwise " R(RGR) T TP(RyRy)
o _ol R EiRaR)  P(RRy)
(79) 2 T R RR) P (RysRo)
Wherek is a positive integerp i§ the number of pgle- Ry P, (Re, Rz) | Ei(RoRy) (88)
pairs of the three phase windings afg(R,,R,) is Ho =A — 5 55~ P (Ro:R PR R
defined by (4) I Pi(Rs, 2) i (R2, Rs)
' . P (Re,R E:(R.,R
The coefficients Ay , By', A, By, C.'and H, =cl'. R;’» (Re:Rp) +D __J(Re 3)
I Pi(Rs,Ry) P (Ry, Rs)

D, are determined using Fourier series expansions of

A (R, 0) and Ay, (Ry,6) over the interval [0, 6. results and comparison with finite element

In order to validate the proposed analytical model,
comparison with 2D finite element simulations hagb
realized using FEMM software [2]. The geometrical
parameters of the studied HTS reluctance motor are
Ay (Ry,6).d8 (81) given in taple 1. The geo_metri(_:al _parametgrs h_aenb
2 chosen arbitrary. The main objective of this papeio

o show the accuracy of the proposed analytical model.
[ Ay (Rg,6).codk.6)de (82)  The analytical solutions in the hole sub-domain and

0 the other sub-domains have been computed withite fin
21

2y

Ay === [ A (Rs,0)d8 (80)

1’
21T
i

Bél |

O‘—-:l O'—a:l

A;i”

number of harmonic term$ andK as indicated in table

By w (Ry,6).codk.8)dé (83) 1.

:||'\’ 'S’|'\’
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Table 1.Parameters of the model.

Symbol Quantity Value
R Inner radius of bulks 9cm
R Outer radius of bulks 9.5cm
R3 Inner radius of the windings 10 cm
R4 Outer radius of the windings 12.5cm
Rs Outer radius of the outer air-
14.5cm
gap (cryostat yoke)
Rs Outer radius of the magnetic 18 cm
yoke
R, Outer radius of the exterior 20 cm
L Axial length of the motor 100 cm
B HTS bulk opening wQ
a Winding opening 11/12
Jo Maximum CL_Jrrgnt density in 60 A/mm2
one phase windings
p Pole-pairs number 2
Q Number of bulks (with p =Q/2) 4
N Number of harmonics used for
the magnetic field calculation 80
in the hole domains
K Number of harmonics used for

the magnetic field calculation
in the others domains (It could
be different in each domain)

100

7. Flux density distribution

The magnetic flux lines under no-load and loa
conditions are shown respectively in figure 1la ar
figure 11b. The HTS bulks are represented in rddrco
The three-phase stator windings are fed with etadtr
current such ak = | andl, = I, =-1/2 corresponding to
AC operation. The position angle of the rotor i&efi to
& = 0° for no-load condition and, = 22.5° for load
condition (that corresponds to the maximum torqgL
position). Due to the diamagnetic behavior of thESH
bulk, the magnetic field lines are deviated arotimel
superconducting bulks. The deviation of the figtte$
in the air-gap is the cause of the electromagnetgue.

(b)

Figure 11.Magnetic flux lines under (a): no-load
_ L _ condition & = 0°) and (b): load conditiorgf = 22.5°).
The corresponding flux density distributions (radiad
tangential components) in the middle of the air-G&pP  an excellent agreement with the results deduceth fro
=9.75 cm) under no-load conditiong = 0°) and load FEM is obtained. Figure 14 shows the flux density
condition & = 22.5°) are plotted, respectively, in figuregistribution for radial and tangential componenttiie
13 and figure 14. The effect of the HTS bulks oa thm|dd|e of a hole domain (between HTS bu|ks) As
flux density waveforms is very clear. One can d&® texpected, one can observe that the tangential flux
distortion of the flux density distribution at tihecation density is null on the sides of the HTS bulks. The

of the HTS bulks. The radial flux density is almasil  analytical and numerical results are again in close
behind the bulks due to the diamagnetic behavidhef agreement.

superconducting material.
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Figure 15. Static torque versus rotor position for Figure 16. Electromagnetic torque versus rotor
Jo = 60A/mm?2. position.
8. Electromagnetic Torque performance of the proposed HTS motor with a very

The static torque versus mechanical rotor posifioi® good precision. Moreover, the analytical model prés
presented in figure 15. The three-phase HTS wirdingess computational time consuming than numericakon
are fed with electrical current suchlgs | andl,=1c=-  (finite element method). Hence, the analytical nfode
I/2 corresponding to AC operation. Compared to the Ffeveloped in this paper can be used as a preliyntoat
simulations, one can see that the analytical caficrl to investigate the influence of the design pararsete
well tracks the electromagnetic torque. The torqu§ich as HTS bulks opening, pole-pairs number, windi

characteristic shown in figure 15 presents the sarggnfigurations. That will be done in future works.
behavior of the classical result obtained for a

conventional 4-pole Synchronous Reluctance Moter [3ppendix
5]. One can observe that a maximum torque of aroumdr the determination of the integration coeffitgn

7000 N.m is obtained for a value éf equal to 22.5°.  integrals of the form have been calculate as fahgw
Figure 16 shows the electromagnetic torque waveform

versus rotor position. The phase current wavefamms a+p T

the three-phase HTS windings are sinusoidal. Thef,(n,i)= j cos(J.H)Eé;in(; (H—Q)JEHQ (A1)
studied machine produced an average torque of about é B

6800 N.m. It can be seen that the machine exhibits 8+B

important torque ripple mainly due to the winding 9u(n.i)= f sm(uH)Bln(—”(H—Hi)JmH (A2)
distribution. Once again, the analytical resulte ar B
good agreement with the FEM results. 9+ﬁ

j sm[— 6-6, )Jme (A.3)
9. Conclusion
In this paper, an analytical method to compute aine
gap field distribution in a wholly HTS reluctanceotor  The development of (A.1) and (A.2), which are used
has been presented. The Laplace’s and Poissot§ expressions of the integration coefficients, given
equations in polar coordinates have been solvethdy by
technique of separation of variables in the diffiergub-
domains (holes, air-gap, iron and windings). Thefor nz#ug

solutions have been obtained using boundary and n7B
continuity conditions between the different sub- fu(n,i)= (uﬁ)z —(nn)z ((_ )n cos((e +,3) ) 005(9 u))
domains. (A.4)

The different results presented in this paper snavn
that the proposed analytical model is able to mtetie



g 0) = {4 s+ k) - snlgw)
(A.5)

-for nm=up

fum,o=—§[sm(ua)+ﬁ(cos«ei +zﬂ)u)—cos<au»]
(A.6)

gu(n.) ——[cos(ue) L (sin((g,+ 28)u)-sinfa u))j
(A7)

The development of (A.3) gives the following furcts

nir

« Expressions of the coefficientd,, A, and C| for

the rotor shaft sub-domain
The development of (28), (29) and (30) gives

__ C ,BR;L nn/ﬁ(Rl Rz)
Z‘inzllan” Enn;p(RrRz) " (A9)
- | 2
+2”§r§1 Nt Enygp(RoRy) "
A = ZZ c ﬂnil Enmﬁ((F:e1 R))Df“(n’i)
Tiz1n= 113R nz/ S\ 1R2 (A.lO)
| > 2 Of .
" Z::an:l NT Enpp(RoRy) u ()
Q2 (R,Ry) .
C| :1 :1,8R1 n/ L\ M IR2
hl Q”?Z:lﬂRn” Enn;ﬁ(Rl R») 8.0 (A11)
i BR -
+7_Ti§r12::1Dn N7 Enpp(RoRy) 8. (1)
« ExpressionsA)' B, A" B, ' and D) for

the windings sub-domain.
The development of (80), (81), (82), (83), (84) #8H)
gives

Al = Al +BY .In(R,/Ry) (A.12)

By’ =A’ +By .In(Rs/Ry) (A.13)

14

o E:(R:;,Ry) 2

n _ A“& jV3 T2 B!l

A 121[ L] P (RaRy) Pj(Rz,Rs)]
(A.14)

gl =5 av Ra El(R,Rs) oy 2 j

‘ E(A‘ I RARWR)  R(RLRY)
(A.15)

cli _i ch Rs E;(Rs,Ry) +p! 2

“ Gl T PRuR) ! P(RRy)
(A.16)

D/l :Z(Clv Ry E(Ri,Rs) +DV 2 j

G071 RRuR) T R(RsRY)
(A.17)

» ExpressionsA) ,By A", B},

air-gap sub-domain.
The development of (36), (37), (38), (39), (40) &t
gives

C}' and DJ!I for the

i BR 2
Z_‘:anl " nor Enn/,g(Rl R,) n s
+_zz pi PR P p(Rey Ry) '
27T i1 nor Enﬂ/ﬁ(Rz,Rl) n
1A By
» _{ln(R3/R4) (A-19)
Al =5 KAl P (Rs, Ry)
| "zleB A E«(Rs,R4) (A.20)
o K 2 ©
+ 2 —Be ——=—~+2 GRs)co
I(Z=:1R3 Ey (R4, Rg) kz=:1 k( 3) 5(¢1)
Qe . BR 2 _
B!I _1' Crl1ﬁ 1 Dfu )
| ”gi”z::l 77 Enrr 5 (Re,Ry) ‘ I)(A 21)
i Sps i BRy Pnn/,B(Rz,Rl) ) )
+ﬂ.i§n§1Dn. AT By 5 (o, RY f, (n,i)
c! :iL.C”' LG
an o S (A22)
o K 2 ® _
+2 5 D . ———=—+* 2. G« R3]sin
k=1 Rs E.(Ry, Rs) kZ::l «(R3)sin(¢y)



D!l = ZZ ci AR 2 g, (n,i) By =-4,.By (A.31)
bV omiEen "o B p(RLRY)

D BRy P p(Ra,Ry) (A29) = i v Ra 2 BV 1 EBRs.Ry)
*‘Zlnzl " oy (ReuR M) LA RARR) T R R(RRY
where Q is the number of rotor holes and (A.32)

oy 0G(r) BY = = [ v Re Em(Rs, R7)J A 33
&RI=750 = A e R R (A.33)
« ExpressionsA) , By’ A"V ,BY, ¢V and D" for cV :’uri(cllv Ry 2 +DV | E(Rs, R4)J
the outer air-gap sub-domain. El Rs R (R4, Rs) Rs P (Rs,R,)
The development of (50), (51), (52), (53), (54) 4b8) (A.34)
gives v [ Re Em(Re.Ry)

AY = A +BYn(R/Rs)  (A24) O ‘Zz[cm m Pm(Re,R7)j (A35)

B :{A(')E' —B(')”)J A25) ExpressionsBy', AY'and CY' for the exterior sub-
In(Ry /R ' domain.
© K 5 v The development of (70), (71) and (72) gives

v _ 11
A LR B RRD v

@ Kk P.(R,, R (A.26) Y =20 (A.36)
ey 25 6 (R) codpy) -

k=R T E(RRs) i3 . £

Ailziz(A\{& 2 . YL f(ReaR5)J

B - i v Rs E( (Rs,Ry) Loy 5 H Rs Pt (Rs,Re) Re Pf(RZZZ)

" f Pr(R.Rs) ' Pr(Rs,Rs) (A.35)
(A.27) 3

Vs Ko~ 2 Cn = Z[ \f/_s 2 +DY L—Ef(Rﬁ’RS)J
C'=YoC — 5o My 1 Rs Pt (Rs, Rs) Rs Pr (Rs.Rs)

k=1 Ry Ex(Rs:Ry) (A.28) (A7)
||| Pk(R4 R3) . .
kz ¢ ERR) kZlek(FM))sm(qﬁl)

Dllv:i[c\f/Ts t (Rs,Rg) +DV 2 ]

= Pt (Rs, Re) Pt (Re, Rs)
(A.29)
where G, (R,) = 0Gy(r) :
or | g,

« ExpressionsAy ,By ,AY ,BY ,CY and DY for the

magnetic yoke sub-domain.
The development of (60), (61), (62), (63), (64) #6H)
gives

Ay =BY".In(R,/Rs) (A.30)

15

* Expression<C], and D}, for the i-th hole sub-domain.
The development of (19) and (20) gives

i(A,: Ri.fu(n,i)+ C) Rl.gu(n,i)J (A.38)

1

=

DI!1 :—BOH'Nn E
R B
+£§:(A“ & 2 +B}I j E; (RZ R3)] (n I)
Bial " R P(RR) R, P (R, Rs)
23| Al Rs 2 noJ Ej(Rz,R3) .
Sylchtfe 2 pn d =2,
+ﬁ,z:1( IR PRR) | R, P,-(RZ,Rg)Jg”(”')

(A.39)



So a system of linear equations with the same nuoifbe
unknowns will be solve. By rewriting the above
equations in matrix and vectors format, a numerical
solution can be found by using mathematical soféwar
(Matlab).
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