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Abstract

The paper deals with modeling of Synchronous Reluctance Motor (SynRM) accounting for all phenomena responsible
for torque ripple. Based on winding function approach, the proposed model consists in computing self and mutual
inductances considering no sinusoidal distribution of stator windings, slotting effect and no sinusoidal reluctance
variation caused by the rotor saliency. Then, optimal current waveforms are determined for each rotor position by
a second order equation solving in order to reduce torque ripple. Theses currents are used within a vector control
scheme. Satisfactory agreement between simulation and experimental results is obtained.
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1. Introduction

SynRM exhibits serious advantages to be used in variable speed drives and servomechanisms, its manufacturing
cost, ruggedness and synchronism with power supply frequency can constitute a good challenge [1]. However, the
rotor saliency being the origin of electromagnetic torque production is also responsible for torque ripple. This last
produces mechanical vibrations and acoustic noise especially when the motor operates at low speeds.

Reference [6] gives an overview of torque ripple minimisation techniques of permanent magnet ac motors, the
authors have pointed on a major class of control-based techniques. Among theses techniques, two interesting strategies
are presented respectively in [3] and [10]. The first consists on optimal currents injection determined by finite element
method and the second is based on a load torque observer and online torque ripple compensation. However, there
are few works in the literature on torque ripple minimization of SynRM neither by current harmonics injection nor by
direct on line compensation.

An accurate self- and mutual inductances calculation is necessary to improve the accuracy analysis of the SynRM.
Because of rotor saliency and stator windings distribution, the self- and mutual inductances of a SynRM are no
sinusoidal [2]. The electromagnetic torque produced by this machine presents a pulsating component in addition to
the dc component when it is fed by sinusoidal currents. The rotor position dependence of electromagnetic torque and
machine inductances can be evaluated by a variety of methodsincluding analytical method, finite element analysis
[8, 14] or winding function approach [11, 12, 13]. Finite element method gives accurate results. However, this
method is time consuming especially for the simulation of a controlled machine fed by a PWM inverter. In winding
function approach, the inductances of the machine are calculated by an integral expression representing the placement
of winding turns along the air-gap periphery [12].
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2. Calculation of inductances using winding function approach

2.1. Description of the machine

The cross-section of a cut-outs rotor SynRM is shown in figure1. The rotor presents a simple and robust structure.
The stator is the same as an induction motor and has single layer, concentric-3 phases distributed winding withNe
slots. It is assumed in winding function analysis that the iron of the rotor and stator has infinite permeability and
magnetic saturation is not considered.

Figure 1: Cross-section of a cut-outs rotor SynRM.

2.2. Magnetic field in the air gap

The magnetic field in the air gap is defined as [7]:

H (α − θ) =
(Na (α) .ia (θ) + Nb (α) .ib (θ) + Nc (α) .ic (θ))

e(α − θ)
(1)

whereθ is the angular position of the rotor (electrical angle) withrespect to thea winding reference,α is a particular
position along the stator inner surface.

The termNi (α) with i = a,b, c, represents in effect the magnetomotive force distribution along the air-gapfor a
unit current flowing the windingi. The winding function of the phasea for the studied SynRM is shown in figure
2 whereN represents the number of turns in series per phase. The winding function of the phaseb and phasec are
similar to that of phasea but are displaced by 120◦ and 240◦ (electrical degrees) respectively.

The air-gap functione(α − θ) is computed by modeling the flux paths through the air-gap regions using straight
lines and circular arc segments. The flux paths due to the rotor saliency are shown in figure3aand the corresponding
length of the flux lines is given by:

Er (α − θ) = e1 +
R
(

π
2 − |α − θ|

) (

sin|α − θ| − sin
(

β

2

))

cos(α − θ)
. (2)

whereR, β ande1 are defined in table1.
The flux paths due to the stator slots are shown in figure3band the corresponding length of the flux lines is given

by:

Es (α) =

{

π
2Rα 0 ≤ Rα ≤ h0

π
2Rα + γ (Rsα − h0) h0 ≤ Rα ≤ b0

2
(3)
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with:
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The slot dimensions areh0 = 0.9mm, h1 = 0.4mm, b0 = 2.5mmandb1 = 4.3mm. The total slot depth is 13.6mm.
The total air-gap function is then:

e(α − θ) = Es (α) + Er (α − θ) (4)

its representation is shown in figure4
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Figure 2: Winding function of the phasea

(a) Flux lines distribution due to the rotor saliency (b) Flux lines distribution due to the stator slots

Figure 3: Flux lines distribution

2.3. Inductances computation

In linear conditions, the magnetic energy stored in the airgap, with respect to rotor position, is:

W (θ) =
µ0

2

∫∫∫

v

H2 dv. (5)
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Figure 4: Total air-gap function

The field is invariant with respect tozaxis (perpendicular axis to the cross section of figure1). The volume element
is:

dv= RL e(α − θ) dα (6)

(5) is then transformed to:

W (θ) =
µ0RL

2

2π
∫

0

e(α − θ) H2 (α − θ) dα. (7)

Considering that the three phasesa, b andc are fed by three-phase balanced currents synchronized withthe rotor
position. By replacing (1) in (7), we obtain:

W (θ) =
µ0RL

2

2π
∫

0

1
e(α − θ)

(Na (α) ia (θ) + Nb (α) ib (θ) + Nc (α) ic (θ))2 dα. (8)

The development of (8) gives:

W (θ) =
µ0RL

2

∑

i=a,b,c

2π
∫

0

1
e(α − θ)

N2
i (α) i2i (θ) dα

+
µ0RL

2

∑

i=a,b,c

∑

j=a,b,c

2π
∫

0

1
e(α − θ)

Ni (α) N j (α) i i (θ) i j (θ) dα.

(9)

In other hand, we know the energy expression of a magnetically coupled circuit in terms of inductances and
currents as [7]:

W (θ) =
∑

i=a,b,c

1
2

Li (θ) i2i (θ) +
∑

i=a,b,c

∑

j=a,b,c

1
2

Mi j (θ) i i (θ) i j (θ) (10)

with Li (θ) is the self inductance of the phasei andMi j (θ) the mutual inductance between the phasei and the phasej.
Equaling (9) and (10), we obtain the general expressions of the self and mutual inductances:

Li (θ) = µ0RL

2π
∫

0

1
e(α − θ)

N2
i (α) dα (11)
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Mi j (θ) = µ0RL

2π
∫

0

1
e(α − θ)

Ni (α) N j (α) dα. (12)

2.4. Torque computation

The machine electromagnetic torqueΓem is obtained from the magnetic co-energyWco:

Γem(θ) = p

[

∂Wco

∂θ

]

(I constant)

(13)

wherep is pole pairs number.
In a linear magnetic system, the co-energy is equal to the stored energy:

Wco =
1
2

p [I (θ)]t [L (θ)] [ I (θ)] (14)

whereL (θ) is the inductance matrix:

L (θ) =





















La (θ) Mab (θ) Mac (θ)
Mab (θ) Lb (θ) Mbc (θ)
Mac (θ) Mbc (θ) Lc (θ)





















(15)

The electromagnetic torque is then:

Γem(θ) =
1
2

p [I ]t

[

∂L
∂θ

]

[I ] (16)

In the case of sinusoidal excitation the currents vector is:

[I (θ)] =

























√
2Irmscos(θ + ψ)√

2Irmscos
(

θ − 2π
3 + ψ

)

√
2Irmscos

(

θ + 2π
3 + ψ

)

























(17)

with ψ the load angle, the choice ofψ = 45◦ maximize the mean value of electromagnetic torque.

2.5. Application

A detailed comparison of the presented method with the finiteelements method is done in [9] where quasi similar
results of the two methods are shown.

Here, the method is applied to a SynRM those parameters are given in table1. Figure5 shows the obtained
inductances and electromagnetic torque using respectively (11), (12) and (16). One can observe torque pulsations
while the machine is optimized for low torque ripple purpose[4]. Despite that the machine is skewed, residual torque
pulsations caused by windings distribution and rotor saliency are important (around 26% of the mean value) . These
undulations can not be attenuated by structure optimization. The idea to outperform this problem consists on feeding
the machine by suitable currents waveshapes, that is the object of the next section.
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Table 1: Dimensions of the machine

Symbol Quantity Value
p Number of pole pairs 2
R Rotor outer radius 45mm
e1 Air-gap length 0.26mm
N Number of turns in series per phase 29
Ne Number of stator slots 36
L Active axial length 155mm
β Pole arc 45◦

e2 Interpolar air-gap length 10mm
δ Skewing angle 10◦

k Chording factor 1 (no chording)
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(a) Self and mutual inductances
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(b) Electromagnetic torque

Figure 5: Computed inductances and electromagnetic torque

3. Optimal currents for torque ripple cancellation

Using Park’s transformation [15] and neglecting the homopolar current (3-wires star connexion for the stator
windings), we have:

[

id
iq

]

= [P]





















ia
ib
ic





















(18)

whereid (θ) andiq (θ) are thed andq current components. The Park transform is defined as:

[P] =

√

2
3















cos(θ) cos
(

θ − 2π
3

)

cos
(

θ + 2π
3

)

sin(θ) sin
(

θ − 2π
3

)

sin
(

θ + 2π
3

)















(19)

with [P]−1 = [P]t.
The expression (16) is then transformed to:

Γem(θ) =
1
2

p

[

id (θ)
iq (θ)

]t [
Lddγ (θ) Ldqγ (θ)
Ldqγ (θ) Lqqγ (θ)

] [

id (θ)
iq (θ)

]

(20)

Lddγ, Lqqγ andLdqγ are obtained by Park transformation of derivative inductances matrix:
[

Lddγ (θ) Ldqγ (θ)
Ldqγ (θ) Lqqγ (θ)

]

= [P]t

[

∂L
∂θ

]

[P] (21)
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The development of (20) gives:

Γem(θ) = A (θ) i2d (θ) + B (θ) i2q (θ) +C (θ) id (θ) iq (θ) (22)

with:

A (θ) = Lddγ (θ) + Ldqγ (θ)
B (θ) = Lqqγ (θ) + Ldqγ (θ)
C (θ) = Lddγ (θ) + Lqqγ (θ) + 2Ldqγ (θ)

(23)

In order to have the maximum torque for minimum Joule losses,we must imposeid (θ) = iq (θ) = Ire f (θ). Equaling
Γem(θ) to the desired torque referenceΓd for each rotor position, we obtain the optimal current:

Iopt (θ) =

√

Γd

A (θ) + B (θ) +C (θ)
. (24)

In the case of speed control, it is preferable to fixid on its nominal valueIdre f avoiding strong saturation [1].
For each rotor position, to obtain the optimalq axis currentiqopt, we search the adequate root of the second degree
polynomial :

B (θ) i2q (θ) +C (θ) Idre f iq (θ) + A (θ) I2
dre f − Γd = 0 (25)

Figure?? shows the electromagnetic torque obtained with and withoutoptimal currents injection. The optimal
current computed by (24) is shown in figure6a. We can observe that torque pulsations are totally canceled.
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Figure 6: Comparison of steady-state results in two cases: with and without optimal current

3.1. Vector control with optimal currents
The synoptic scheme of the vector control of SynRM with optimal currents injection and without speed regulation

is shown in figure7. Starting from a desired value of torque, the calculated currents are tracked by PI controllers.
The simulated machine is whose described previously. The parameters used for dynamic simulations are the viscous
friction K f = 0.0018m−1.s−1, the moment of inertiaJ = 0.037kg.m2 and a resistance of one stator phaseRs = 2Ω.
The simulations are done using Matlab/Simulink software.

Figure 8 chows the dynamic behavior of dq currents and the resulting torque in the case of no torque ripple
compensation. We can observe the torque undulations, the increasing frequency is due to the fact that the speed does
not achieve the steady-state because no speed regulation isperformed. In the case of optimal currents injection (figure
9), at low speed the torque is no ripple containing because theoptimal currents are well tracked by the controllers.
However, when the speed increases some undulations of the torque are remarquable because of the limited capability
of the controllers to track high frequency signals. Indeed,the bandwidth of a controller is limited by the stability
condition of the closed loop dynamic system. To perform highfrequency signal tracking one must perform an other
controller such as hysteresis controller for example.
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(b) Electromagnetic torque

Figure 8: Dynamic simulation of current vector control without optimal currents injection
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(b) Electromagnetic torque

Figure 9: Dynamic simulation of current vector control withoptimal currents injection

In the case of speed vector control (figure10), the reference torque value is determined by the speed controller. The
optimal currentIqopt is obtained by solving the equation (25) while the reference of d-axis currentIdre f is maintained
constant. The obtained results for a reference speed of 10rad/s are shown in figure11. We can observe that quasi
total ripple cancellation is achieved and the velocity is smooth at steady-state. However, a relatively high overshoot
on the speed response is remarquable.
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Figure 11: Dynamic simulation of speed vector control with and without optimal currents injection

4. Experimental implementation of the off-line currents predetermination method

The experimental prototype SynRM is manufactured by milling a standard 4-pole, 3kW squirrel cage induction
motor. The stator of the considered motor contains 36 slots with three phase full pitch winding (k = 9

9). The skewing
angle of the rotor bars being equal to 13◦ determines the direction of milling to obtain the rotor salient poles. The
manufactured rotor is shown in figure12. It has the following parameters :β = 45◦, e2 = 10mmandδ = 13◦. To avoid
damping effect, the rotor end-rings are cut-off. A VSI inverter drives the SynRM by imposing the reference voltages
calculated by the controllers using PWM technique. A DSP card(dspace 1102) is used for numerical implementation
of control algorithms. A dc machine is coupled to the SynRM working as a variable load.

Figures14aand14b show the computed and measured self and mutual inductances.The measurement test is
done at stand-still. The rotor being blocked on a desired position θ, one stator phase is fed by a step voltage of low
amplitude to avoid saturation effect (fig. 13). The task is done forθ varying from 0 to 90◦ with an increment of 1◦ .
The inductances are obtained as follow:

La (θ) =
ψa∞

ia∞
=

t∞
∫

0

(va (t) − Rsia (t)) dt

ia∞
(26)

Mab (θ) =
ψab∞

ia∞
=

t∞
∫

0

vb (t) dt

ia∞
(27)

whereLa andMab are the self and mutual inductances,ψa∞ andψab∞ the steady-state flux of phasesa andb, va (t)
andvb (t) are the excitation voltage of phasea and the induced one in phaseb, ia andia∞ are the instantaneous and the
steady-state current of phasea.
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(a) Photography (b) Cross section

Figure 12: Manufactured rotor

Figure 13: Self and Mutual inductances measurement test
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(b) Mutual inductance versus Electrical Angle

Figure 14: Experimental and computed inductances
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Significant harmonics of inductances are given in tables2 and3. One can observe the good agreement between
the computed and measured inductances

Table 2: Self inductance harmonics

Harmonic order winding function method experimental result
dc-value 0.1036 0.1075

L2 0.0255 0.0225
L4 0.0020 0.0012
L6 −0.0028 −0.0039

Table 3: Mutual inductance harmonics

Harmonic order winding function method experimental result
dc-value −0.0432 −0.0410

M2 0.0647 0.0537
M4 −0.0017 −0.0012
M6 1.51E−05 0.0029

Figure15 shows the optimal current and the corresponding torque for areference torque value of 2N.m. The
optimal current is obtained like for the machine without slots in the rotor (equation (24)). Rotor slots are taken for
account in the inductances computation by adding an other air-gap function traducing this phenomenon.

-
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Figure 15: Optimal dq currents and the corresponding torque

The electromagnetic torque is estimated by:

Γem(t) =
ea (t) ia (t) + eb (t) ib (t) + ec (t) ic (t)

Ω
(28)

with:

ei (t) = vire f (t) − Rsi i (t) , i = a,b, c (29)

wherevire f (t) andi i (t) are respectively the reference voltage and the line currentof phase i andΩ is the mechanical
speed.
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From expression (29) one can deduce the inconvenience to estimate the electromagnetic torque at low speed. As
explained in [5], the voltage drop caused by IGBTs dead time is not negligible at low speed. Indeed, the real mean
value voltage supplying the machine windings is:

〈vi〉 =
〈

vire f

〉

− ∆v (30)

with:

∆v =
tdVdc

TPWM
(31)

wheretd is the dead time of the inverter,TPWM the pulse width modulation periodTPWM = 100µsand the voltage level
of the dc busVdc = 500V . A value of 3.8µs to td is measured in our inverter making∆v = 19V. Experimental tests
have shown that forΩ > 125rad/s the voltage drop∆v is negligible. Hence to estimate correctly the electromagnetic
torque, all measurements have been done forΩ > 125rad/s.

Because of the imposed high fundamental frequency explained below, the current controllers can not track the
higher harmonics above the sixth. Hence, we have limited ourstudy to only the sixth current harmonic injection.
Hence, the injected current is:

Iopt (θ) = M + H6 sin 6θ (32)

with Γd = 2N.m and the values of inductances harmonics given in tables2 and3, we obtain:

Iopt (θ) = 2.54− 0.13 sin 6θ (33)

Figures16aand16b represent respectively the estimated electromagnetic torque and its Fourier expansion with
and without sixth current harmonic injection. We can observe a reduction of torque harmonic magnitude essentially
the sixth. However, we constate a slight increase of the twelfth torque harmonic.
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Figure 16: Estimated torque and its Fourier expansion with and without sixth current harmonic injection

To confirm this result, a sweeping on the magnitude of the sixth current harmonicH6 from−0.2A to 0.05A is done
and the evolution of the sixth torque harmonic is plotted on figure17. The same optimum value is obtained for both
theoretical and experimental cases while an error on magnitude can be observed, this is probably due to an error in
torque estimation and poor tracking performance of PI controllers.

5. Conclusion

An efficient and simple method for torque ripple minimization in a synchronous reluctance motor is developed.
The proposed model is based on winding function approach, itallows accounting for all space harmonics, then the
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Figure 17: Sixth electromagnetic torque harmonic versus the sixth current harmonic: theoretical and experimental
result

whole spectrum of electromagnetic torque is accessible. Furthermore, the computing time is strongly minimized
compared to other methods based on numerical resolution of field equations.

Theoretically, the electromagnetic torque can be maintained constant by the injection of the optimal computed
current waveshapes. Because of difficulty to estimate electromagnetic torque at low speed, experimental verification
of the method was done at high speed where the injected optimal current harmonics can not be tracked by current
controllers. Hence, we have limited our experimental studyto only the sixth current harmonic and satisfactory results
have been obtained showing a significant attenuation of the sixth torque harmonic. Future work consists to validate
our method at low speed were speed harmonics are noteworthy.In this case, load current regulation is mandatory to
maintain a constant load torque. Also, online autocompensation observer/estimator-based technique is under experi-
mentation.
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