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Analytical Computation of the Magnetic Field Distribution in a
Magnetic Gear

Thierry Lubin, Smail Mezani, and Abderrezak Rezzoug

Groupe de Recherche en Electrotechnique et Elégtrere Nancy,
University Henri Poincaré, Nancy, FRANCE

In this paper, an analytical computation of the magetic field distribution in a magnetic gear is propsed. The analytical method is
based on the resolution of Laplace’s and Poissonequations (by the separation of variables technigyefor each sub-domain, i.e.
magnets, air-gap and slots. The global solution @btained using boundary and continuity conditionsThe analytical model developed in
this paper can be used as a tool for design optinaition of a magnetic gear. Magnetic field distributons and electromagnetic torque

computed with the proposed analytical method are ¢opared with those obtained from finite element anajses.

Index Terms— Analytical solution, magnetic gear, magnetic fial, electromagnetic torque.

I. INTRODUCTION

M

improved reliability, minimum acoustic noise anchénent

overload protection. Physical and hermetic isofati@tween
input and output shafts are also specific to sumhtactless
torque transmission devices [1]-[5]. It has beeowshthat a
transmitted torque density of 100 kNni/roan be obtained
which is comparable with that of mechanical geRscently,

magnetic gear has been integrated into PM motoisbtain

the so called “pseudo-direct” drives that resulhigh-torque

density electrical machines [6]. The later acttsatoe suitable
for high torque low speed application like electr&hicles [7]

or wind power generation [8].

The aim of this paper is to propose an exact ainalyt
solution of the magnetic field distribution in a gmeetic gear.

AGNETIC gears offer substantial advantages compared 1d1€ Laplace and Poisson’s equations are solveaadh sub-

using boundary and interface conditions.

The paper is organized as follows. The problem rijetszn
and the assumptions of the model are presentedctios II.
Section lll describes the analytical method for neig field
calculation in the air-gap, permanent magnets anthe slot
sub-domains. The analytical results are then eetifivith
finite-element method in section IV and section V.

Il. PROBLEM DESCRIPTION AND ASSUMPTIONS

Schematic representation of the studied magnetir ¢e
shown in Fig. 1. It consists of @ pole-pairs inner rotor, p,

An accurate knowledge of the air-gap magnetic fielgole-pairs outer rotor an@ ferromagnetic pole-pieces.

distribution is necessary for predicting the perfance of the Principle of operation of the magnetic gear is the
magnetic gear. The air-gap magnetic field can lzduated by modulation of magnetic field created by thepole-pairs PMs
analytical or semi-analytical methods or by nunaric rotor (prime mover) by the Q pole pieces. The atadifield
techniques like finite elements. Finite elementgeghccurate interacts with the, pole-pairs PMs rotor to transmit torque to
results considering geometric details and nonlibeaof the load (outer rotor or pole pieces) at a differggeed. The
magnetic materials. However, this method is comptitee combination Q=p;+p, results in the highest torque
consuming and poorly flexible for the first stepdefsign stage transmission capability of the gear. If the polegeis are kept
of a magnetic gear. Analytical methods are useifnilstfor first  stationary, the resulting gear ratiqig p; [1].
evaluation of magnetic gear performances and faigde The geometrical parameters are:
optimization since continuous derivatives issuedmfrthe - for the inner rotor, the radius of the yoke and the outer
analytical solution are of great importance in most radius of the PM&;;
optimization methods. - for the ring, the inner and outer radii of the sI&, R,

As shown in Fig. 1, a magnetic gear contains a ah@ respectively;
ferromagnetic pole-pieces which are difficult tontkee (open - and for the outer rotor, the inner radius of PRisand the
slots on two sides) in the analytical predictiontleé air-gap  inner radius of the yokeR
magnetic field. Analytical approaches for air-gamgmetic The slot opening angle i. The angular position of thieth
field computation in slotted machines can be foimdhe slotis defined as
literature [9]-[14]. However, the publications facassentially
on the determination of cogging torque in permameagnet g = _§+%1+90 with 1<i<Q @)

motors. I

where 6, is the initial angular position of the pole-pieceg.
Digital Object Identifier inserted by IEEE
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and the Poisson’s equation for the PMs sub-domé&osthe

Pole-pieces ﬁ - ' o . .
1 r\ sake of clarity and simplicity of the general swos in the
Permanent i different sub-domains, we adopt the following niotas
magnets r
u)’ (v
EACRY =[—j +(—j )
v u

E,(uv) = [%j —(%) 3)

A. General Solution of Laplace’s equation in the stbt

sub-domain (region i)

The i-th slot sub-domain and the associated boundary
conditions are shown in Fig. 2. We have to soleelthplace’s
equation in a domain of inner radi® and outer radiu®,
delimited by the angle§ andg+ 3

|
- Inner
!l'otor 4

! Outer rotor

az_A'+laA laZ_A:O for {RgerRA (4)

PR —
% rar  r? 96? 6<0<6+p
Fig. 1. Geometry of the studied magnetic g€ar(5, &= 0, p= 2, p= 3).
The boundary conditions for thHeth slot domain are (the
tangential component of the magnetic field at tiles of the

slot are null)

The following assumptions are adopted:

« End effects are neglected.
« The permeability of the iron is infinite (the magic field

in the iron vanishes). % =0 and 2—2 = (5)
* The relative recoil permeability of the magnetsijs=1. =6 6=6+8
As shown in Fig.1, the whole domain is divided ifite The continuity of the normal component of the filensity

sub-domains: the inner and outer air-gap sub-dasraégions between thé-th slot and the air-gap sub-domains leads to
Il and 111), the inner and outer PMs sub-domaireg{ons | and
IV) and theQ slots sub-domains (regions i). Theh slot sub- A (Rs,6) = A, (R, 6) (6)
domain shape is shown in Fig. 2. The sub-domailislll and A (R,,0) = A, (R,,6) (7)
IV have annular shapes.
A magnetic vector potential formulation is used® polar The general solution of (4) can be found by usihg t

coordinates to describe the problem. Accordindeoadopted method of the separation of variables, the solutan be
assumptions, the magnetic vector potential has ame \yitien as [14]

component along the z-direction and only dependhenand
6 coordinates. The notations used in the paper are A

A =A(r,0), for the inner PMs sub-domain
A, =A (r,8 &, forthe inner air-gap sub-domain
A =A(r,0) e, for thei-th slot sub-domain
A=A, (r,@ &, forthe outer air-gap sub-domain T
Ay = Ay (r,0) &, forthe outer PMs sub-domain

I1l.  ANALYTICAL MODEL

The solution of any partial differential equatioROE) ,
depends on the domain in which the solution isdovalid as .-
well as the boundary conditions that the solutiarstrsatisfy.
By using separation of variables, we now consiterdsplution
of Laplace’s equation for the slots and the air-gap-domains g 2. i-th slot sub-domain with its boundary conditions

3
>

.R4
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A(r,6)=A +BjiInr

_km (%4 - (8)
+Z(Akr By ﬂ)mo{ﬁ(e—a.)j

where A}, By, A, and B, are arbitrary constants

Considering the continuity conditions (6) and (7), the

general solution of the magnetic vector potentighiei-th slot
domain is rewritten as

A(r,0)= A +BjiInr

i Ewup(tRy)
+
;(Ak Evrip(Rs,Ry)

B Evrip(r,Rs)
Evri p(Rs,Ry)

) mos(%f (6-6))
©)

Where k is a positive integefs(r, R,) is defined by (3).

The constants),, B), A, and B} are determined using a

Fourier series expansion of the inner and outergar
magnetic vector potentialgy, (R;,0) andA, (R,,8) over the

slot interval g, 8+£].

g+p
A+ BOINR, =7 [ A (R, ) 16 (10)
8
o L8
Ao+ BYINR, = M. (Ri.6) @6 (11)
9+ﬁ
= j A (Ra,e)tco{—(e 9)) (12)
9+,3 K
j Au (Ry,6) mo{ ;(e—ei)]nue (13)

The expressions for the coefficiens, B), A, and B}
are givenn the appendix.

B. General solution of Laplace’s equation in the a&pg
sub-domains

1) Inner air-gap sub-domain (region II)

The inner air-gap sub-domain and the associateddzoy
conditions are shown in Fig. 3. The problem to sidve

O°A L 10A 1 0°A
a2 r oo r?2 962

R, <r<R
=0 mr{z R Y

O0<é@<ar

" (Inner
: air-gap)
AA; =0

=f®

Fig. 3. Inner air-gap sub-domain (region Il) withboundary conditions.

The continuity of the tangential component of thegmetic
field atr = R, leads to:

oy
or

Z9A

15
ol (15)

T:Rz

The boundary condition at the radius=R; is more

difficult to handle because of the existence of #hets as
shown in Fig. 1. Considering the continuity of tiamgential
magnetic field at the interface between the slotsthe air-gap
and considering that the tangential magnetic fisléqual to
zero elsewhere (infinite permeability of the feramnetic
pieces), the boundary conditionat R, can be written as

A = f(0) (16)
or | -g,
with
oA
— 0en|é,é6
(6= 0r |, .6,+4] (17)
0 elsewhere

whereA (r,8) is the magnetic vector potential in théh slot
given by (9). The distribution off (d) along the air-gap

domain interval [027% is schematically shown in Fig. 4.

The general solution of (14) is well known [15] (joelic
Sturm-Liouville problem in an annulus). By takingta
account the boundary conditions (15) and (16), dbaeral
solution of the magnetic vector potential in thedn air-gap
can be written as
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A (r.6) =AY

Al R AN R) Ry A(LR)
LA RRy B 0 B (R Ry

Af(©) 04,

+Z(Cr|1| R, A(rRs) +D! R AR )sin(né) k .
n=1 n En(RZ’R3) n En(R3’R2) 0 0+ 0, 21
(8 :
i . !
wheren is a positive integer/,(r,R;) and £,(R,,R;) are «—> >

slot Q slot 1 slot 1
defined by (2) and (3). The coefficies$ ,B!' ,C! and D

n

are determined using a Fourier series expansions . 4. Schematic representatiorf@ along the inner air-gap at Rs.

0A . .
?R and f (6) over the air-gap interval [07® The radial and the tangential components of thenesiag flux
2 in the inner air-gapre then
2 % By, (r.6) =
A= | a—’? [tosqé) M8 ag O (r.6)=
0o R +z_(A|1I R, AR | g R AR )sin(n)
0 2T wy r E(RpRy) 1 E(ReRy)
B! = j f () [Bosh6) (O (20) -
T +Z(Crl1l R, A(r.Re) +D/! Rs A(rR) )codno)
2 o - r E,(Ro.Ry) rEy(Rg,Ry)
C, =— |—1 Binnho)da 21
; Zﬂl o |y, S0 (21) 27)
2 —
2 . Bio(r,0) =
n_ &
D! _Zﬂjf(e) [3in(n6) (o (22) o n EMR) R EORY)
0 +) (A 2o By =8 2 codnd)
=] r E,(Ro.Ry) r E£,(Rs,Ry)
The expressions for the coefficied$ , B, ,C, and D/ +i_(cu R Ea(r.R) | pi Rs Ealr,Ro) Jsin(n6)
are given in the appendix. —~ "r E(R,Ry) "r E\(R,Ry)
The Neumann problem (14), (15) and (16) can have a (28)
solution only if [15] :
2”0A1 o 2) Outer air-gap sub-domain (region IlI)
J.? g = If(e) o (23) The outer air-gap sub-domain and the associateddaoy
0 Ry 0

conditions are shown in Fig. 5. The problem to sa$v

The treatment of (23) yields to the following rédas

_ 0°Ay L 10A, . 19°A, _ R,Sr<R
between the coefficienB, defined in (10) and (11) ar2“ T ar“ +r_2 692” =0 for 0<B<2m (29)
iBi -0 (24) The boundary condition for the outer air-gap domain
0 = 5
i=1 r=Rgis
The flux density distribution in the inner air-ga@an be 0A, _ Ay (30)
deduced from the magnetic vector potential by or r=Rg or r=Rq
- 104 The bound dition at the radius R, can be writt
Ty (25) e boundary condition at the radius= R, can be written
as
oA,
Bjg=—"—"7 26
e =", (26)

=9(6) (31)

aA‘III
or | g,
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I 2
! X |
cl' == [g(6) Bin(n6) e 36
" (Outer 0A =3An, n 277-([9( ) (no) (36)
: air-gap) or 2
! Ady =0 Dl _ 2 [0Ay Sinhe) e .
" 271-! or (o) (37)

The expressions for the coefficie®® ,B" ,C!" and

Rs D, are given in the appendix.

C. General solution of Poisson’s equation in the PMIs-s
domains (regions | and V)

1) Inner rotor PMs sub-domain (region I)

! The inner rotor PMs sub-domain and the associated

Fig. 5. Outer air-gap sub-domain (region Ill) withboundary conditions. boundary conditions are shown in Fig. 6. The proble solve

with IS
%A 10A . 1 0°A _ 1y oM {Rlsrst
0A —t 4Ly o L =0T for (38)
— 0en|g.6 + 2 2 962 0<f<?2
0@ =1 |, 6.6+ 4] Gy 00 T g 1 o0 ™
0 elsewhere wherep is the permeability of the vacuum and Slthe radial

magnetization of the magnets.
By taking into account the boundary conditions (3@ The boundary conditons ar =R, and r=R, are

(31), the g_eneral solution (_)f the magn_etlc vectoteptial in respectively
the outer air-gap sub-domain can be written as

d
Ay (1,60) = A i L0 (39)
Al R, A(rRs) gl Rs A(r,Ry) 9 '
+Z:;‘(A“ n E,(RoR) " n En(RS-RA))COin ) A (Ry.0) = A, (R,,6) (40)

SR R, A R) m R ARy |\
LG e RR T W ERRy S ?
(33)

wheren is a positive integerf,(r,Rs) and £,(R,,R;) are
defined by (2) and (3). The coefficierd§' ,B)' ,C)' and
D' are determined using a Fourier series expansiéns o

a';’—v and g(&) over the air-gap interval [O7®
;

Rs
Al :izfg(e) [tosh6) [ (34)
21T
0
21T
B! :% .[ag“—rv [Bosh6) (@6 (35)
0 r=Rg

Fig. 6. Inner PMs sub-domain (region I) withlisundary conditions.
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The radial magnetization distribution, M plotted in Fig. 7,
where B is the remanence of the magnets n the initial
phase angle of the inner rotor. The radial magagtin can be
expressed in Fourier’s series and replaced in (38).

According to the superposition law, the generaltsoh of
(38) is the sum of the general solution of the esgponding
Laplace’s equation and a particular solution [TEjking into
account the boundary conditions (39) and (40), dbeeral
solution of the magnetic vector potential in theenPMs sub-
domain can be written as

A(r,6) =
A AR X wcodn)eodnd)
+Z(C' :((ngRéz) X (r)sin(ng; ))sin(ng)

where

n+1
X, (1) :[1+1[ﬁ] Jmfn(r)
n\r

(42)

_M{lé[ﬁjmlmn(@
ARLR)| nR
and
% if n=jp with j=135..
f(r)= Z'TBfrlnr if n=p =1 (43)
0 otherwise

wheren is a positive integel; is the number of pole-pairs of

the inner rotor andP,(r, R) is defined by (2).

2
:%M' (R,,8) [Eosn0) (16 (44)
0
2 2m .
c! _EIA”' (R,,6) Bin(nd) (1O (45)
0

The expressions for the coefficient§, and C, are given
in the appendix.

2) Outer PMs sub-domain (region 1V)

The outer PMs sub-domain and the associated boundar

conditions are shown in Fig. 8. The problem to sa$s

*Ay
o r or

LL10Ay |, 10°A

:ﬂaMrfor R5srsR646
r2 06> ot (46)

08 0<f=<2m

The boundary conditions atr =R; and r=R; are
respectively

Ay (Rs,0) = Ay (Rs,6) (47)
Lia VA (48)
or r=Rg

By taking into account the boundary conditions (4nd
(48), the general solution of the magnetic vectoteptial in
the outer PMs sub-domain can be written as

The coefficientsA, and C| are determined using a Fourier

series expansion o, (R,,8) over the interval [0, @

AM:

Br/ }10 =

L 4
#‘Pi-ﬁ/ b ©;

'Br/ Wo

\ 4

(.pﬁ’TE/ bi e

Fig. 7. Magnetization distribution alorggdirection (inner PMs)

Ay (r,0) =
+ i(ALV A T ncodng:Deodne) @9
Z( e+, (sin(ng, Dsinne)
where
1 n+l
Yn(r):(u—[&] }Egn(r)
nir
n+l (50)
_AER) [ 1[&J
Pn(Rs,Rﬁ)[ “olr) [
and
AB rpy oo . L
—n(l—nz) if n=jp, with j=135.....
gn(r) = %rlnr if n=p,=1 (51)
0 otherwise
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Fig. 8. Outer PMs sub-domain (region 1V) withliisundary conditions.

wheren is a positive intege, is the number of pole-pairs of

1 R AR, Rs) _g! R AR, R)

W, =-A, n
Re £,(Ry. Re) Re £,(Rs,Ry)
X =-c R Ei(RyRs) _ D! R E,(ReRy)
" T RERR) R ERR) (56)
v =c'" R AR.R)  yi R A(RR,)
" TR ER,R) " R E(RyR)
7, =-A! R E (R Rs) _ B/ R E£,(RRy)
Re £,(Ry, Re) Re £,(Rs,Ry)
A similar expression can be obtained for

electromagnetic torque computation in the outegag.

IV. APPLICATION EXAMPLE 1

In order to validate the proposed model, the aitallyt
results have been compared with 2D finite elemamalgtions
obtained using FEMM software [16]. In the finiteemlent
analysis, the surfaces of the inner and outer soyokes as
well as those of the ferromagnetic pole-pieces hbeen
modeled by homogeneous Neumann boundary condiieins

the outer rotor ¢, is the initial phase angle of the outer rotog,e analytical study. The mesh in the air-gap anthé slot

and A,(r,Rs) is defined by (2). The coefficient#,’ and

Cr',V are determined using a Fourier series expansion
Ay (Rs,8) over the interval [0, @

2r

AY =2 [ Ay (R,6) eosh) (@0 (52)
o

(53)

C =2 [ Ay (Re6) 5in(16) (6
0

The expressions for the coefficients’ and C.V are given
in the appendix.

D. Electromagnetic torque

The electromagnetic torque is obtained using thevid
stress tensor. A circle of radiug B the inner air-gap sub-
domain is taken as the integration path so thereleagnetic
torque is expressed as follows

22]T

S By (R.6) By o(R,.6) (40
0

T. =
e Lo

(54)

wherelL is the axial length of the magnetic gear. Accogdim
(27) and (28), the analytical expression for tlecbmagnetic
torque becomes

2 o

]LRE Z(\Nnxn +Ynzn)
0 n=1

where

Te= (55)

regions has been refined until convergent resuit®htained.

OfThe geometrical parameters given in Table | aresidened
in the simulation studies. The analytical solutiomgthe air-
gap, in the PMs and in the slots domains have bemputed
with a finite number of harmonic termsandK as indicated in
Table I.

A. Flux density distribution

Figure 9 shows the magnetic flux lines for the neigngear
excited by both permanent magnet rotors. The paagkesd;
and ¢, of the rotors PMs are fixed to zero. The corresiyam
flux density distributions (radial and tangentiahgoonents) in
the middle of the inner air-gap € 5.1 cm and in the middle
of the outer air-gapr(= 6.3 cm) are plotted respectively in
Fig. 10 and Fig. 11. One can observe a very gooeeatent
between the analytical and finite element predidifor both
radial and tangential components.

TABLE |
PARAMETERS OF THE MODEL
Symbol Quantity value
Ry Radius of the inner rotor yoke 4cm
R> Outer radius of the inner rotor PMs 5cm
R3 Inner radius of the slots 5.2cm
Ra Outer radius of the slots 6.2cm
Rs Inner radius of the outer rotor PMs 6.4 cm
Rs Inner radius of the outer rotor yoke 7.4cm
L Axial length 10 cm
B Slot opening 175 rad
B Remanence of the magnets 12T
pi Pole-pairs inner rotor 2
Po Pole-pairs outer rotor 3
Q Number of ferromagnetic pole-pieces 5
N Number of harmonics used for magnetic field50
calculation in the air-gap and PMs domains
K Number of harmonics used for magnetic field50

calculation in the slot domains

the
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L

I

o
g

.Q%@mwnia.
Wiy

]

Fig. 9. Magnetic flux line distribution for theustied magnetic gear excited

by both PMs rotorsg = 0°, g= 0° and& = 0°).

i
i

A

Sz, iz
=i S
7 S

—Analyﬁcal . FEI\/I
1.5
£ . i A A
g s 11 L
2° S
>0
‘®
5-0.5 ‘/\
2 e f [l
x
2 1 "3
= Y T 7
1.5
-2
0 45 90 135 180 225 270 315 360

Circular angle 6 (degree)

@)

— Analytical ¢« FEM

. ] )
A/

SN LA

SV

REAT
'

Flux density (tangential), (T)
o

0 45 90 135 180 225 270
Circular angle 9 (degree)
(b)

Fig. 10. Flux density distribution in the middléthe inner air-gapr(= 5.1

cm): (a) radial component (b) tangential component.

315

360

B. Torque

Figure 12 shows the variation of the torque whichkxerted
on the inner rotor while keeping the pole-pieces rand the
outer rotor fixed. The inner rotor rotates withteape angle;
varying from 0° to 90°. The analytical results anegood
agreement with those obtained by the FEM. Fig.Hds that
a maximum torque of 75 Nm is obtained for a valfiepo
around 51°.

Figures 13(a) and 13(b) show the variation of the
electromagnetic torque which is exerted respegtivel the
inner and outer rotors. The pole-pieces ring isdixvhile the
inner and outer rotors PMs rotate in opposite tivacas

go =4, L (57)
Po
The starting point for the phase angle of the ino&sr PMs
is fixed at@ = 40° that corresponds to a torque value exerted
on the inner rotor of 61 Nm (see Fig. 12). FromsFij3(a)
and 13(b), one can observe as expected that theetiagear
amplifies the mean torque value by the gear rdti®/2

— Analytical ¢ FEM

ok,

J o

05 X
-

) l
e t ¥

Flux density (radial), (T)
o

0 45 90 135 180 225 270 315 360

Circular angle 6 (degree)

@

[—Analytical_+ FEM]
.l L 1} f

AL WA
Y

. NEATARNRYI |
| {1 i

Flux density (tangential), (T)
Q

0 45 90 135 180 225 270 315 360
Circular angle 6 (degree)

(b)

Fig. 11. Flux density distribution in the middlétbe outer air-gapr(= 6.3
cm): (a) radial component (b) tangential component.
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As shown in Figs. 13, the torque ripples are imgutrtn the V. APPLICATION EXAMPLE 2
studied example. Indeed, the low order harmoniespaesent  another example is considered in this section. Shme
in the flux density waveform of both air-gaps. Thésults in a geometrical parameters as in Table | are used exoephe

low filtering of the air-gaps which leads to highilgating pole-pair numbers which are ngw=3, p=13, Q=16 which
torques. This effect can obviously be avoided bgpprly |cads to a gear ratio equal4d3.

choosingp, andQ for a given gear ratio [1]. Once again, very
good agreement is obtained between numerical aalytaal The magnetic flux lines distribution for this camiration

results. are shown in Fig. 14 (the slot opening is fixedste 7/16).
The radial and tangential flux densities on a eirad the inner
o | | and outer air gaps are given in Fig. 15 and Fig.A@ood
oo [+ FEM — Analytical] N ~ agreemerlt is noticed between the analytical andhdineerical
computations.
AN :
§5o - Figure 17 shows the static torque vs. positionhef inner
.§40 N// A\ rotor. Compared to the configuration given in finst design
;30 / \ example, the maximum torque is lower. However, the
g f transmitted torque on the outer rotor is more irtgutrfor the
%20 / ’\\ second example. Indeed, the gear ratio is more ritapiofor
B 10 / this configuration (4.33 instead of 1.5).
0

0 10 20 30 40 50 60 70 80 90
Angular position of inner rotor ¢i (degree)

Furthermore, the torque ripples are practicallyistent for
example 2 as it can be observed in Fig. 18. Thigirros the

Fig. 12. Torque exerted on the inner rotor with fiole-pieces ring and the influence of the pole-pairs combination on the terg
outer rotor fixed ¢, = 0 andp = 0). pulsations [1].

To show the influence of the slot opening, Fig.gh&s the
variation of the electromagnetic torque exertedtlms inner
TN TN rotor against the “slot opening to tooth pitch”isatOne can
\M/ \ observe that the maximum torque is obtained fatia 0f0.5.
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Again, we notice a close agreement between theytanad!
and numerical simulations.
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Fig. 13. Electromagnetic torque exerted on theeiimotor (a), and on the Fig. 14. Magnetic flux line distribution for theagnetic gear excited by both
outer rotor (b). PMs rotors ¢ = 0°, = 0° andé = 0°)
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Fig. 15. Flux density distribution in the middléthe inner air-gapr(= 5.1
cm): (a) radial component (b) tangential component.
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Fig. 17. Torque exerted on the inner rotor with ffole-pieces ring and the
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Fig. 16. Flux density distribution in the middléthe outer air-gapr(= 6.3
cm): (a) radial component (b) tangential component.

360

VI.

In this paper, an exact 2-dimensional analyticathoe for
predicting the magnetic field distribution in a matjc gear
has been presented. The Laplace’s and Poisson&i@asi in
polar coordinates have been solved by the technigfue
separation of variables in the slots, air-gap amds Bub-
domains. The solutions have been obtained usingdzoy
and continuity conditions between the sub-domaiRkix
density and torque computations are in close ageatemith
these of FE predictions. The proposed analyticaldeho
presents lower computational time than FEM. Heitcgill be
used in future work as a tool for design optimizatiof a
magnetic gear.

CONCLUSION
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Fig. 18. Electromagnetic torque exerted on theeimotor (a), and on the

outer rotor (b).

a
o

— Analytical « FEM

)
)

N

w
o
o

n
o

-
=)

Maximum torque of inner rotor (Nm)

o

0 0.1 0.2 0.3 0.4 05 0.6 07 0.8 0.9 1
Slot opening to tooth pitch ratio

Fig. 19. Maximal torque on the inner rotor vs.otsbpening to tooth pitch”

ratio.

APPENDIX

For the determination of the integration coeffitg&gnwe
have to calculate integrals of the form

6 +8

f(k,n,i) = j coshd) (o —(9 9)] (A1)
8
6+p
g(k,n,i) = I sm(n@)m:o{—(ﬁ e)j (A.2)
&
8+p
F(n,i) = jcos(ne)me (A.3)
3
8+p
s(n,i) = jsin(ne)me (A.4)
8

The development of (A.1) and (A.2) gives the foliogv
functions that will be used in the expressionshefintegration
coefficients

- for ki # ng

(i) == 4“”1?:;“_"1:22 S
-+ n82(-2" cosn(g+4) ~cose)))

g(k,n,i) = gy (A.6)

- for kir=ng

f(k,n,i)= ﬁ(coshé’ﬁiﬂ(smn(e +2,8) sin(né’i))j
(A7)
N _ B 1
g(k,m)—E(sm(ne)— ﬂ(cosn(e +2,6’) cosﬁ&l))]
(A.8)

The development of (A.3) and (A.4) gives the foliogv
functions

r(n,i) :%(sin(nei +np) -sin(8)) (A.9)

s(nii) =%(— cosh8 +np) +cosha)) (A.10)

« Expressions of the coefficient , B!, C!' and D, for

the inner air-gap sub-domain
The development of (19) and (21) gives
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N E(RyR)

R, A(R,R) +Xn(Rp)codng, ) (A.11)

A=A

Cr|1| =c! LM+ x;](Rz)sin(nqlﬁi)

n (A.12)
R, A(R,R)

The coefficientB!! and C! defined in (20) and (22) can

be written as

Q 6+8

o2 A

B! _ZHZI | [ospe) e (A.13)
i=l g r=Rs
Q G+8

I A i

D! _ZHZI N Einee) e (A.14)

i=1 g r=Rg

where Q is the number of rotor slots. The develagnod
(A.13) and (A.14) gives

Q i
B! :Z% [ (n,i)

= TR
+ii i k Ple/,G(R?: )
g BRs Eyyry p(Re,Ry)

iQ wlB )
ZZ Evri p(Rs,Ry)

i=1 k=1

Of (k,n,i) (A.15)

ﬂ% OF (k,n,i)

o i
D! = ZB—‘I’ 3(n,i)
n ’ 7R !
i= 73
kK Aaip(RaRy)

+ZZ R, Ekmﬁ(Rs,RA)

i=1 k=1

i=1 k=1

y(k,n,i) (A.16)

Co(k,n,i)

ﬂR kﬂ/ﬂ(R3'R4)

« Expressions of the coefficien®' , B)' , C!' and D"

for the outer air-gap sub-domain
The development of (35) and (37) gives

B = AV %—i"((g:;‘:)) +Y,(Rs)codng, ) (A.17)

—cv N E(RR) (A.18)
" Rs A(Rs,Rs) '

D, +Y,(Rs)sin(ng, )

The coefficientB!' and C!' defined in (34) and (35) can .

be written as

w_2 oA
A _2”; (! - mosqqe)me (A.19)
Q +
ct -2 i BinMé) Mo (A.20)
2m ; ;[ M lr=r,

where Q is the number of rotor slots. The develognud
(A.19) and (A.20) gives

m — N i(i) ;
Al Zn& [ (n,i)

i=1

Q 2 .
— < [F(k,n, A21
+21; Ry Eoryp (R Ry LM (A-21)
L&k Rorp(ReRs) _
k,n,
ZkZ:; BRy Eyyrr p(Re,Ry) Teni)
Q i
mo_ By :
c! _iZ:l:—IRA 03(n,i)
+ii”¢—k 2 __ykni) (A.22)
izl k=1 ﬂRA Ekn/ﬁ(R31R4) o .
&< i k Fl’<ﬂlﬁ(R4’R3) .
- B k,n,
LB e Ryry M

« Expressions of the coefficient, and C,, for the inner

PMs sub-domain (44) and (45)

Il Rz P(Rz’Rs) B” RS 2 A.23

Ah A1 n E(RzyRs) " n En(R3,R2) ( ' )

cl=cl R ARR) o R 2 (A.24)
A ! n En(R21R3) " n En(R3’R2)

« Expressions of the coefficien” and C!¥ , for the outer
PMs sub-domain (52) and (53)

mR 2 g B AR, Ry) A.25
A=A N ERLR) " N E,(RRy) (429
cVochR_ 2 +p B AR Ry) (A.26)

" 7" n £ RLR) " n E(R,Ry)

« Expression of the coefficientsy,, B, A, and B, for the

i-th slot sub-domain
The treatment of (12) and (13) yields to the follagviinear
relations
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1 2Ry 2 B" 2R; A(RyR) 3 (K,
A= Z(A" 08 E.(RuRy) " nB Ey(RuRy ™)
V2R, 2 W 2R ARuR))
Zf "8 EnRRy) | " 0B Ey(ReRy) 0™
(A.27)
i 2Ry A(RuRs) g 2Rs 2 B (ki
Zl(p“ 08 ExReR) " n En(RRy ™)
ch 2R, A(RyRs)  ym 2Rs 2 ki
+Zl( 08 E,RuR) " nB Ey(RRy) D™
(A.28)

The treatment of (10) and (11) yields to the follogviinear
relations

%+%m%:M

+Z(A‘I n,BE(szRs) 52;((2 FF?Z)))E("') (A29)
Z( " rFfEE(Rzz.Ra) "JRZ?((FQZ’E’QH )

Ay +ByInR, = Ay

*2“’“” JRZEP iiilii? B ) ) (430

We have to solve a system of linear equations thithsame
number of unknowns. By rewriting the above equatiam
matrix and vectors form, a numerical solution carfdund by
using mathematical software (Matlab or Maple).
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