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Abstract: 
 
One of the biggest challenges in designing computer assisted language learning (CALL) 
applications that provide automatic feedback on pronunciation errors consists in reliably detecting 
the pronunciation errors at such a detailed level that the information provided can be useful to 
learners. In our research we investigate pronunciation errors frequently made by foreigners 
learning Dutch as a second language. In the present paper we focus on the velar fricative /x/ and 
the velar plosive /k/. We compare four types of classifiers that can be used to detect erroneous 
pronunciations of these phones: two acoustic-phonetic classifiers (one of which employs linear-
discriminant analysis (LDA)), a classifier based on cepstral coefficients in combination with 
LDA, and one based on confidence measures (the so-called Goodness Of Pronunciation score). 
The best results were obtained for the two LDA classifiers which produced accuracy levels of 
about 85-93%. 
 
 
Keywords: pronunciation error detection, acoustic-phonetic classification, computer assisted 
pronunciation training, computer assisted language learning. 
 
 
1. Introduction 
 
Computer assisted language learning (CALL) applications and, more specifically, computer 
assisted pronunciation training (CAPT) applications for language learning that make use of 
automatic speech recognition (ASR) have received considerable attention in recent years. Most of 
the literature on pronunciation assessment in language learning has focused on pronunciation 
grading (or scoring), while less attention has been paid to error detection (or localization). 
Pronunciation grading usually refers to a procedure used to calculate a global pronunciation score 
at the speaker or utterance level, which, for that matter, could also be a weighted average of local, 
phoneme scores. Error detection, on the other hand, requires calculating a score at a local (e.g. 
phoneme) level, for each individual realization of a given phone. Although this explanation might 
suggest that error detection is simply a specific sub-task of pronunciation grading, in fact these 
are two different tasks, with different goals and different outcomes. The distinction between 
pronunciation scoring and error detection becomes clear when we consider the specific goals for 
which they are employed. Pronunciation scoring is typically used in pronunciation testing 
applications to calculate global scores (whether or not obtained by averaging local scores) to 
provide an indication of the candidate's proficiency. Such global scores are usually not 
informative enough for applications like pronunciation training where students usually prefer to 
have more specific information on the nature of their pronunciation mistakes. Therefore, in 
pronunciation training, information should at least be provided at phoneme level for individual 
realizations of the various phones, so that learners can focus their attention on the most 
problematic sounds. 

Automatic error detection at the phoneme level is often done by calculating so-called 
confidence measures (CMs) that can be derived from an ASR system based on Hidden Markov 
Models (HMM). Various types of CMs have been studied (e.g., Neumeyer et al., 2000). One of 
the best known examples is probably the Goodness Of Pronunciation (GOP) algorithm (Witt, 
1999; Witt and Young, 2000), which has also been adopted by other authors (e.g. Mak et al., 
2003; Neri et al., 2006a). CMs indicate how certain the recognizer is that a given target sound 
was pronounced correctly: the lower the confidence, the higher the chance that the sound (or 
utterance) was mispronounced. These CMs have the advantage that they can be obtained fairly 
easily with an ASR system, and they can be calculated in similar ways for all speech sounds. 
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To be of value in computer assisted pronunciation training systems, this type of 
evaluation should reflect human judgments of the same speech. However, correlations between 
CMs and human judgments are usually lower when they are computed for individual sounds than 
when they are computed over relatively long stretches of speech, e.g. a few utterances (e.g., 
Neumeyer et al., 2000). The smaller correlations observed at phoneme level may be explained by 
the lack of specificity that characterizes CMs, which are calculated using similar procedures for 
the same set of features for all the sounds, while this might not be the optimal approach to detect 
all pronunciation errors.  

In a study of pronunciation errors in Dutch as a second language (L2), we found that 
learners of Dutch have problems with vowel length, and fricatives vs. plosives (Neri et al., 2004, 
2006b). This study was aimed at selecting the pronunciation errors that should be addressed in an 
ASR-based pronunciation training program for Dutch L2 called Dutch-CAPT. The aim of this 
training program was to help correct salient pronunciation problems that might hamper 
communication. The program addressed pronunciation errors that were selected on the basis of 
the following six criteria: 

1. Common across speakers of various L1’s 
2. Perceptually salient  
3. Potentially hampering communication 
4. Frequent  
5. Persistent 
6. Suitable for robust automatic detection 
 
Pronunciation errors that result in the realization of a Dutch phoneme different from the 

intended one and which lead to a different word being uttered are likely to hamper 
communication as they might result in a different message being understood. This might be the 
case when a long vowel is realized instead of a short one, thus producing the word /m��n/ (moon) 
instead of /m�n/ (man), or, analogously, when a velar plosive is realized instead of a velar 
fricative, for instance in words such as /���s/ (gauze) and /��s/ (gas), thus leading to the 
realization of the words /k��s/ (cheese) and /k�s/ (cash desk), respectively. 

It is well known that HMMs are not very powerful devices to discriminate between 
sounds that are spectrally similar and differ mainly in duration; and HMMs are also not very well 
suited to discriminate between fricatives and plosives, since the difference between plosives and 
fricatives is coded in subtle differences in the amplitude envelope of the sound (Weigelt et al., 
1990), a feature that does not figure prominently in HMMs. One could think that by focusing 
more on these specific acoustic-phonetic details it might be possible to train classifiers that better 
discriminate mispronounced sounds from the correct, target sounds. This is where algorithms 
aimed at discrimination between specific phonetic classes, e.g. fricatives vs. plosives (Weigelt et 
al., 1990), can come in handy. 

Within the framework of our research on automatic pronunciation training for Dutch as a 
second language (DL2), we decided to explore the potential of specific acoustic phonetic feature 
analysis for automatic pronunciation error detection. We studied classifiers to discriminate long 
vs. short vowels, and fricatives vs. plosives (Truong, 2004). Here we focus on the discrimination 
of a typical pronunciation error in DL2 which is the substitution of the Dutch velar fricative /x/ 
with the velar plosive /k/. To select the specific acoustic phonetic features needed for this 
discrimination task, we draw on a previous study by Weigelt et al. (1990) which describes an 
algorithm that was able to discriminate voiceless fricatives from voiceless plosives with high 
accuracy.  

We implemented and tested four different classifiers: [1] the GOP method; [2] a method 
based on Weigelt et al. (1990); [3] the LDA-APF method in which acoustic-phonetic features 
(APF) based on Weigelt et al. (1990) are combined with linear discriminant analysis (LDA); and 
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[4] the LDA-MFCC method in which LDA is combined with Mel-Frequency Cepstrum 
Coefficients (MFCCs). The MFCCs are standard features which are generally used in ASR 
systems, e.g. for computing GOP-scores. Methods 1 and 4 are thus based on MFCCs, while 
methods 2 and 3 are based on acoustic-phonetic features; and methods 3 and 4 use LDA, while 
this is not the case for methods 1 and 2. 
 These four classifiers are described in section 2.3, which is the main part of section 2 
‘Material and method’. The classifiers were compared in a series of experiments of which the 
results are presented in section 3. These results open up new avenues of research and new 
possibilities of applications of these types of algorithms to automatic error detection in computer 
assisted pronunciation training. These and other issues are touched upon in section 4 entitled, 
‘Discussion and conclusions’. 
 
2. Material and method 
 
2.1. Material 
 
All four classifiers used the same material for training and testing (see Table 1). We trained with 
native speech data taken from the Polyphone database (Den Os et al., 1995): read sentences, 
sampled at 8 kHz (telephone speech). For testing, we used two different conditions: [A] native 
speech from the same Polyphone database, and [B] non-native speech from the DL2N1 corpus 
(Dutch as Second Language, Nijmegen corpus 1). The DL2N1 corpus was collected in a previous 
study (Cucchiarini et al., 2000). In this corpus, 60 non-native speakers called from their home and 
read 10 Dutch phonetically rich sentences over the telephone. The subjects were sufficiently 
varied with respect to their mother tongue and proficiency level in Dutch. The speech (sampled at 
8 kHz) was orthographically transcribed and automatically segmented by a speech recognizer. 

The speech of 31 low-proficient non-native speakers of Dutch was annotated on 
pronunciation errors by a trained linguist. Because annotations of pronunciation errors are labour-
intensive and costly, we decided to have one expert carry out the task. Since it is well known that 
phonetic transcriptions may contain an element of subjectivity (Cucchiarini 1996), we tried to 
minimize the problem by choosing a qualified annotator who had previously carried out similar 
tasks following a consensus procedure with other experts. To determine whether the degree of 
subjectivity in our annotations was acceptable, we asked this annotator and five other Dutch 
experts to transcribe errors for a subset of the speech fragments and then compared the 
annotations pairwise using the transcription alignment program described in Cucchiarini (1996). 
The degree of agreement between our annotator and the five experts was generally very high: M = 
89.3%, SD = 2.57. More details on the procedure adopted to check the reliability of the 
annotations are provided in Neri et al., (2006b)  
 
 

Table 1. Number of tokens used to train and test the models 
 Training 

(native, Polyphone) 
Testing condition A 
(native, Polyphone) 

Testing condition B 
(non-native, DL2N1) 

 male female male female male female 
/x/ 1000 1000 2348 2279 155 230 
/k/ 1000 1000 1892 1975 162 249 

 
The phonemes /x/ and /k/ were automatically extracted from the signals based on a segmentation 
that was obtained by carrying out a forced alignment with the automatic speech recognition 
(ASR) system described in Section 2.2. The same automatic segmentation was used for all 
experiments. 



ACCEPTED MANUSCRIPT 

PED-Strik-EtAl-v02.doc   Page 5 of 14 

 
2.2. Automatic speech recognition system 
 
The ASR system consists of 37 context independent monophone hidden Markov phone models, 
and was implemented in the Hidden Markov Models Toolkit (HTK; Young et al., 2000). The 
phone set includes a general speech model to account for unintelligible speech as well as a silence 
and a short pause model. Except for the short pause model, each hidden Markov model (HMM) 
has three states and 32 Gaussian mixtures per state. The single state of the short pause model is 
tied to the central state of the silence model. The HMMs are gender-dependent and were trained 
on 15.000 (7.500 male and 7.500 female) phonetically rich sentences from the Polyphone corpus 
(Den Os et al., 1995). The sentences were chosen such that the training material included at least 
1.000 tokens for each phone. 
 
2.3. Classifiers 
 
In this section we describe four different methods to perform pronunciation error detection. 
 
2.3.1. Method GOP: Goodness-Of-Pronunciation 
 
The CMs that are derived from the ASR system, are obtained by a method suggested by Witt and 
Young (2000). Gender-dependent HMMs are trained on native training data and are used to 
perform free phone and forced recognition for each utterance. The Goodness-Of-Pronunciation 
(GOP) score is subsequently derived at phone level. The GOP score for each phone corresponds 
to the frame normalized ratio between the log-likelihood score of its forced and free phone 
recognition. If the GOP score of a specific phone falls below a certain threshold, the 
pronunciation of the phone is accepted as a correct instance of the phone and vice versa. The 
GOP score is calculated in the same way for each phone, without taking specific properties of the 
phone into account. 

According to the method proposed in Witt and Young (2000), the mean and variance of 
the GOP scores obtained from the training data can be used to choose an appropriate threshold for 
each phone. However, the resulting range of threshold values did not yield meaningful thresholds 
for our data. We therefore carried out an exhaustive search for values in the range between 0 and 
10. We used the same optimization criterion that was used by Witt and Young (2000), i.e. 
maximizing the Scoring Accuracy (Correct Acceptance + Correct Rejection) for a given 
maximum level of False Acceptances, 10% in our case (see section 2.4 on evaluation). 

Ideally, one should have enough non-native data available to derive the thresholds from 
real target data. Unfortunately, we did not have such a corpus available and therefore had to use 
artificial data that were generated on the basis of information obtained from the studies on 
pronunciation errors made by L2 learners of Dutch reported on in Neri et al. (2006b). These 
studies indicated that, for instance, /�/, /�/, /�/ and /�/ are often replaced by: /k/, /��/, /�/ 
and /�/, respectively. The artificial data were created by introducing errors into the 
pronunciation dictionary: for the present study incorrect pronunciations were “created” by 
changing the transcriptions of the phonemes /x/ and /k/. 
 
2.3.2. Method Weigelt: Decision-tree 
 
In Weigelt et al. (1990), an algorithm is described that successfully discriminates voiceless 
fricatives from voiceless plosives. We adopted this algorithm in our study to discriminate the 
voiceless velar fricative /x/ from the voiceless velar plosive /k/. Since the gross spectral shapes of 
plosives and fricatives are similar, several other cues to discriminate between these classes have 
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been investigated, most of them based on the amplitude envelope. Weigelt’s algorithm is based 
on three measures that can be obtained relatively easily and quickly: log rms (root-mean-square) 
energy, the first-order derivative of log rms energy, and zero-crossing rate. The main feature is 
the so-called Rate Of Rise (ROR) which is calculated by determining the derivative of the 
logarithm of rms energy. A 24 ms window n is shifted every 1 ms over the acoustic signal and for 
each window n, the energy is measured by computing the logarithm of the rms over window n:  
 

�
�

�
�
�

�×=
00002.0

10log20 n
n

rms
E  

ROR, the energy derivative, is then computed as: 
 

( )
t
EE

ROR nn
n ∆

−= −1  

 
where �t is the time step in which the window n is shifted, in our case 1 ms. 
 

 
Figure 1. Log rms (top) and ROR (bottom) contours of /k/ (left) and /x/ (right). 

 
The zero-crossing rate is defined as the number of times the signal crosses the axis. Since the 
release of the burst of the plosive causes an abrupt rise in amplitude, the ROR values of plosives 
are usually much higher than those of fricatives (see Figure 1). Consequently, the magnitude of 
the largest peak in the ROR contour can be used to discriminate plosives from fricatives. An ROR 
threshold can be set to classify sounds that have an ROR peak value above this threshold as 
plosives, and those sounds that are characterized by an ROR peak value under this threshold, as 
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fricatives. In Weigelt et al. (1990), this threshold is heuristically set at 2240 dB/s. However, large 
peaks in the ROR contour can also be the result of other speech (e.g., vowel onset) or non-speech 
sounds (e.g., lip smacks). Therefore, the algorithm by Weigelt et al. (1990) uses four criteria to 
distinguish non-significant ROR peaks (i.e. those belonging to other speech/non-speech sounds) 
from significant ROR peaks (i.e. those that do belong to the release of the burst of the plosive). 
Starting with the largest peak, each criterion is examined: 1) for the 49-ms period following the 
peak, the value of En must never fall below the value of E at the peak, 2) the maximum value of 
En for the following 49 ms must be at least 12 dB above the value of E at the peak, 3) the 
maximum zero-crossing rate over the 49-ms period after the peak must be higher than 2000 zero 
crossings per second, and 4) the zero-crossing rate at exactly 49 ms after the peak must be no 
more than 100 crossings per second below the zero-crossing rate 20 ms before the peak. The 
derivative of log rms energy is a natural candidate for a measure that may capture differences in 
abrupt and slow rises of energy. Zero-crossing rates are used to discard peaks related to other 
speech/non-speech sounds. The duration of an energy pulse is examined to ensure that it is large 
enough in both amplitude and duration to be considered a speech sound. If any of these criteria 
fails, then the peak is labeled as non-significant and the phoneme is classified as a voiceless 
fricative. If the peak is significant and its ROR value is above the predetermined threshold, then 
the phoneme is classified as a voiceless plosive. All criteria were set and tuned by training and 
testing the algorithm using all possible combinations of values for the criteria. During this tuning 
stage, criterion four appeared to be too strict and was therefore not used in our adapted algorithm. 
The algorithm was optimized by adopting the same criterion that we applied in the GOP method, 
i.e. maximize the scoring accuracy for a False Acceptance level of maximally 10%. All acoustic 
measurements were carried out automatically in the program Praat (Boersma, 2001) and were 
based on the same automatic segmentation that was used to compute the GOP measures. Figure 2 
summarizes the adopted Weigelt binary decision-tree used in our study: 
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Figure 2. Summary of decision-tree Weigelt, each criterion has to pass a certain threshold T. 
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2.3.3. Method LDA-APF: Linear Discriminant Analysis with Acoustic-Phonetic Features 
 
The relatively simple algorithm by Weigelt et al. (1990) proved to be successful in discriminating 
plosives from fricatives with energy as the primary acoustic-phonetic feature. However, in our 
adapted Weigelt’s binary decision-tree, all criteria have the same weights. If any of the proposed 
criteria fails, then the phoneme is classified as a fricative, regardless of the importance of that 
criterion. In Linear Discriminant Analysis (LDA), weights are assigned to each feature in order to 
find the linear combination of features which best separates two or more classes. We use ROR 
and log rms energy, the main features in Weigelt’s algorithm, as discriminative features in LDA 
to discriminate /x/ from /k/. The magnitude of the highest ROR peak, irrespective of its 
significance, is used, including 4 rms energy measurements that are made around that peak at 5 
ms before (i1) and at 5 ms (i2), 10 ms (i3) and 20 ms (i4) after the peak (see Figure 1). In addition 
to these energy features, duration, either raw (dur) or normalized (normdur) is optionally added 
as a feature. Duration could be a discriminative cue since plosives are typically short acoustic 
events, while fricatives tend to be somewhat longer in duration. As non-natives tend to have 
lower articulation rates and longer segment durations (Cucchiarini et al., 2000) duration was 
normalized for articulation rate (articulation rate is defined as the number of sounds divided by 
the total duration of the utterance without internal pauses). Duration normalization per speaker 
was achieved by computing the product of the articulation rate per speaker and segment duration: 
 

durationsegmentrateonarticulatidurationnormalized ×=  
 
All acoustic measurements were made in Praat and were based on the same automatic 
segmentation that was used for the other methods. The LDA models were trained using the same 
optimization criterion as in the GOP method. 
 
2.3.4. Method LDA-MFCC: Linear Discriminant Analysis with Mel-Frequency Cepstrum 
Coefficients 
 
The CMs calculated in method GOP are based on Mel-Frequency Cepstrum Coefficients 
(MFCCs). It is standard practice in ASR systems to use MFCCs, together with their first and 
second-order derivatives (which are often referred to as delta and delta-delta, respectively). In 
order to enable a fairer comparison between the LDA-APF and GOP classifiers, we decided to 
develop another classifier, i.e. LDA-MFCC, in which LDA is combined with MFCCs. Twelve 
MFCCs and one energy feature are calculated at the same moments that i1, i3 and i4 were 
extracted in method LDA-APF, together with their first and second-order derivatives. These 39 
MFCC features were used to train (again using the same optimization criterion) and test the 
classifiers. 
 
2.4. Evaluation 
 
A classification algorithm like the GOP can produce four types of outcomes: 1) correctly 
accepted (CA) phone realizations, i.e. phones that were pronounced correctly and were also 
judged as correct; 2) correctly rejected (CR) phone realizations, i.e. phones that were pronounced 
incorrectly and were also judged as incorrect; 3) mispronunciations that were falsely judged as 
being correct (FA: False Accept) and 4) correct pronunciations that were falsely flagged as 
mispronunciations (FR: False Reject). To achieve optimal performance the algorithm should 
detect the mispronunciations and, at the same time, it should not flag as mispronunciations those 
realizations that were actually correct. For this reason both the amount of correctly rejected (CR) 
and correctly accepted (CA) realizations are important in the performance calculation. 
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The performance levels of the classifiers are evaluated by calculating the scoring 
accuracy, which is defined as: 
 

��
�

�
��
�

� +×=
tokensofnumberTotal

ectionsRejCorrectcesntaAccepCorrect
AccuracyScoring 100  

 
All four classifiers were optimized using the same criterion, i.e. maximizing the Scoring 
Accuracy (Correct Acceptance + Correct Rejection) while trying to keep the level of False 
Acceptances below 10%. 
 
3. Results 
 
The four different classifiers, all trained on native speech, were tested on native (condition A) and 
non-native speech (condition B), for data of male and female speakers. This makes a total of 16 
different combinations: 4 classifiers x 2 test conditions x 2 genders. The scoring accuracy (SA) 
values of these 16 different combinations are presented in Figure 3. The statistical significance of 
the differences between the different test conditions was determined by performing a z-test for the 
difference between independent proportions. Bonferroni correction for multiple testing was 
incorporated in the test. These results are presented in Table 2. 

In Figure 3 it can be observed that all SA scores are quite high. In all four cases (male 
and female, test condition A & B) the classifiers can be ordered according to decreasing SA in the 
following way: two LDA methods, GOP, and Weigelt. The scores for the two LDA methods are 
similar. In condition B (mismatch: trained on native speech, tested on non-native speech of 
another corpus) the scores for LDA-APF are somewhat higher than those of LDA-MFCC, while 
in condition A (no mismatch) it is the other way around. However, these differences are not 
statistically significant. For test condition A, the SA scores are always higher for the data of the 
female speakers; these differences (between the male and female results) are significant for all the 
methods except GOP. Mixed results are obtained for condition B: higher SA scores for female 
data for the methods Weigelt and LDA-MFCC. Although the differences in SA are quite big, they 
are not significant in this case. This observation can be explained by the fact that the number of 
samples in the test population is much smaller in condition B than in condition A. Absolute 
differences in SA therefore need to be much bigger in condition B in order to be significant. 
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Figure 3. Results of classification experiments, /x/ vs. /k/, for male (top) and female (bottom) speakers 
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Table 2. Statistical significance of the differences observed in Figure 3. Terminology: ‘=’: 
difference is not significant, ‘>’ or ‘<’: significantly (p < 0.05) smaller or larger, respectively. 
 
Table 2a. Test condition A.  

 GOP LDA-APF LDA-MFCC 
 m f m f m f 

Weigelt < < < < < < 
GOP   = < < < 

LDA-APF     = = 
 
Table 2b. Test condition B. 

 GOP LDA-APF LDA-MFCC 
 m f m f m f 

Weigelt < = < < < < 
GOP   = < = < 

LDA-APF     = = 
 
 
4. Discussion & conclusions 
 
4.1. Discussion 
 
Several classifiers for automatic pronunciation error detection were developed and compared. 
These classifiers were developed for cases that are known to be problematic for foreigners that 
have to learn Dutch (Neri et al., 2004, 2006b): vowel length (e.g., /A/ vs /a:/, /Y/ vs /u,y/), and 
pronunciation of fricatives such as the /x/ (which is often mispronounced as the plosive /k/). In 
the present study, we focus on the mispronunciation of /x/ as /k/; results for other types of 
pronunciation errors can be found in (Truong, 2004). Four different methods to discriminate 
between /x/ and /k/ were compared to each other: two methods based on commonly used MFCC 
features (GOP and LDA-MFCC), and two other methods based on acoustic-phonetic features 
(Weigelt and LDA-APF). 
 In practice, the amount of non-native speech data, and especially the amount of non-
native pronunciation errors, is not sufficient for reliable training and testing of classifiers. Witt 
proposed a method to introduce pronunciation errors in native data artificially, and used these 
artificial errors for developing the GOP classifier (Witt, 1999). In this study we also artificially 
introduced errors in native speech. These artificially introduced errors were based on errors that 
are really made by non-natives, e.g. the incorrect pronunciation of /x/ as /k/. The test on native 
speech (condition A) was carried out to examine how well the discrimination between /x/ and /k/ 
could be made in “normal” native speech: the outcomes could serve as an upper-limit in 
performance. The test on non-native speech (condition B) was carried out to examine how well 
this distinction was made in non-native speech and to investigate whether the thresholds obtained 
with artificial errors in native speech were also suitable for non-native speech. The expectation 
was that the discrimination between /x/ and /k/ would be more difficult to make in non-native 
speech since non-native speakers usually utter speech sounds with a certain foreign accent that 
does not sound native-like, thus making the distinction between /x/ and /k/ less clear-cut. 
However, the results in Fig. 3 indicate that this is not the case, which suggests that foreign 
pronunciation errors can be detected using models that are trained with artificial errors in native 
speech. This is a considerable advantage given that data sparseness is a common problem in 
research on ASR-based L2 pronunciation error detection.  
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 The results (Fig. 3) indicate that both LDA-APF and LDA-MFCC perform better than 
GOP and Weigelt. In Linear Discriminant Analysis (LDA), weights are assigned to each feature 
in order to find the linear combination of features which best separates the classes, while in the 
two other classifiers (that do not use LDA) all criteria have the same weights. For instance, in the 
LDA-MFCC classifier the largest weights are those of the energy features; LDA is thus capable 
of selecting those features that are most relevant. Apparently, this is an important advantage of 
the LDA-based classifiers compared to the other classifiers. When we look more closely at the 
differences between LDA-APF and LDA-MFCC we can observe that 1) LDA-APF performs 
better than LDA-MFCC in the condition B, but not in the condition A, and 2) the differences in 
performance between LDA-APF and LDA-MFCC are rather small and not statistically 
significant. Although LDA-APF and LDA-MFCC appear to achieve similar performance, from 
an efficiency and informative point of view, we prefer LDA-APF to LDA-MFCC: LDA-APF 
uses fewer features than LDA-MFCC, the features of LDA-APF are more intuitive (compared to 
MFCC’s), and they can be useful for both learner (to provide meaningful feedback) and teacher 
(to make clear what the problematic pronunciation aspects are). 

Furthermore, note that in condition B the test data were taken from a different corpus, 
and although this corpus also contains telephone speech, the (acoustic) properties of the signals 
can be slightly different. Since the APF features are more specific for a given speech sound, while 
the MFCC features are more general in nature, it is to be expected that when there is larger 
mismatch between training and test data/conditions, the APF features should perform better. 
Being more robust to training-test mismatches is another advantage of the APF-based classifiers. 

In general, the advantage of an LDA-APF classifier is that one can focus on specific 
aspects of the error it has to detect, using features that are most suitable, making use of existing 
knowledge. However, an important disadvantage is that a specific classifier has to be developed 
for every pronunciation error. On the other hand, MFCCs are already available in the ASR 
system, and GOP scores can easily be obtained for all phones using similar procedures. However, 
the LDA-MFCC and GOP methods are also phone/error specific in that a phone-specific LDA 
matrix needs to be derived and a GOP threshold determined for each new pronunciation error that 
needs to be investigated. To increase the applicability of APF-based classifiers to other 
pronunciation errors, a more generic method to obtain acoustic-phonetic classifiers for these 
errors is needed. One of the directions that can be followed in future research is to develop 
training schemes that can automatically select the features that are most suitable for detecting 
each specific error. 
  
 
4.2. Conclusions  
 
The results of this study have shown that, for the correct classification of the velar fricative /x/ 
and the velar plosive /k/, both the LDA-APF and the LDA-MFCC methods yield better results 
than classification based on GOP scores and the decisions tree in Weigelt’s method. 
 
Although the LDA-APF method does not consistently outperform the LDA-MFCC method, it is 
more appealing from an efficiency and informative point of view because LDA-APF uses fewer 
features, the features that are used are relatively easy to extract and, in contrast to MFCCs, there 
is a clear link between feature properties and pronunciation errors. 
 
 
Acknowledgements 
 
We would like to thank the two anonymous reviewers for their useful comments. 
 



ACCEPTED MANUSCRIPT 

PED-Strik-EtAl-v02.doc   Page 14 of 14 

 
References 
 
Boersma, P., 2001. Praat, a system for doing phonetics by computer. Glot International 5:9/10, 
341-345. 
 
Cucchiarini, C. (1996). Assessing transcription agreement: Methodological aspects. Clinical 
Linguistics and Phonetics 102: 131–155. 
 
Cucchiarini, C., Strik, H., Boves, L., 2000. Quantitative assessment of second language learners' 
fluency by means of automatic speech recognition technology. J. Acoust. Soc. Am. 107, 989-999. 
 
Den Os, E.A., Boogaart, T.I., Boves, L., Klabbers, E., 1995. The Dutch Polyphone corpus. 
Proceedings of Eurospeech, 825-828. 
 
Mak, B.S., Ng, M., Tam, Y-C., Chan, Y-C., Chan, K-W., Leung, K.Y., Ho, S., Chong, F.H., 
Wong, J., Lo, J., 2003. PLASER: Pronunciation Learning via Automatic Speech Recognition. 
Proceedings of HLT-NAACL, 23-29. 
 
Neri, A., Cucchiarini, C., Strik, H., 2004. Segmental errors in Dutch as a second language: How 
to establish priorities for CAPT. Proceedings of the InSTIL/ICALL Symposium, 13-16. 
 
Neri, A., Cucchiarini, C., Strik, H., 2006a. ASR corrective feedback on pronunciation: Does it 
really work?. Proceedings of Interspeech, 1982-1985. 
 
Neri, A., Cucchiarini, C., Strik, H., 2006b. Selecting segmental errors in L2 Dutch for optimal 
pronunciation training. IRAL - International Review of Applied Linguistics in Language 
Teaching 44, 357-404. 
 
Neumeyer, L., Franco, H., Digalakis, V., Weintraub, M., 2000. Automatic scoring of 
pronunciation quality. Speech Communication 30, 83-94.  
 
Truong, K.P., 2004. Automatic pronunciation error detection in Dutch as a second language: an 
acoustic-phonetic approach. MA thesis, Utrecht University. 
 
Weigelt, L.F., Sadoff, S.J., Miller, J.D., 1990. Plosive/fricative distinction: the voiceless case. J. 
Acoust. Soc. Am. 87, 2729-2737. 
 
Witt, S.M., 1999. Use of speech recognition in Computer-assisted Language Learning, PhD 
thesis, Department of Engineering, University of Cambridge. 
 
Witt, S.M., Young, S., 2000. Phone-level Pronunciation Scoring and Assessment for Interactive 
Language Learning. Speech Communication 30, 95-108. 
 
Young, S., Kershaw, D., Odell, J., Ollason, D., Valtchev, V., Woodland, P., 2000. The HTK 
Book Version 3.0. Cambridge, Cambridge University. 
 
 




