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Abstract 
 
The end conditions of piano strings can be approximated by the input 
admittance at the bridge. Proper measurements of this value are therefore 
required. A method of validation of admittance measurements on simple 
structures is proposed in this paper. High resolution signal analysis 
performed on string’s vibrations yields an estimate for the input 
admittance. This method is implemented on a simplified device composed 
of a piano string coupled to a thin steel beam. 
 

 
INTRODUCTION 

 
The research of a trade-off between loudness and sustain (duration) is a major 

issue for piano designers and manufacturers. The way the energy of vibration is 
transferred from the piano string to the soundboard depends on the end conditions of the 
strings at the bridge: these conditions can be approximated by the input admittance at 
the connecting point between the string and the resonator. Therefore, proper 
measurements of this value are needed. 

Given this, we propose here a method of validation of admittance measurements 
on simple structures. Parameters such as frequencies and damping factors of the string 
partials depend directly on the end conditions. The analysis of the vibratory signal of the 
string, based on high resolution estimation methods (ESPRIT algorithm), allows us to 
evaluate efficiently those parameters and leads to the calculation of the input admittance. 
This method is implemented on a simplified device composed of a piano string coupled 
to a thin steel beam. The comparative study of two experimental cases (isolated string 
vs. coupled string) leads us to the input admittance. This value, derived from vibratory 
measurements of the string is compared to direct admittance measurements performed 
on the beam, and to theoretical predictions, in order to validate the method.  
 

STRING-SOUNDBOARD COUPLING IN PIANOS 
 

Summary of piano acoustics 
 

The vibrations of the piano string are coupled to the soundboard (which radiates 
the sound) via the bridge (Figure 1). This coupling determines the tone duration and the 
sound power. The boundary conditions of the string must ensure a compromise between 
sound power efficiency (high transverse velocity for a given string force) and tone 
duration (low soundboard velocity).  
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Figure 1: Principal sketch of the piano,  

with the main components. [Askenfelt, 1990] 
 

Review of the linear model 
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 (where T is the tension of the string). Figure 2 shows these 

vectors at the end of the string.  
 

 
 
 
 
 
 

 
Figure 2: Force and velocity at the bridge 

 
A proper model of this coupling leads us to consider the mean mechanical power 

transmitted from the string to the soundboard for a steady state excitation of the 
soundboard at angular frequency :  
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The input admittance (at the bridge side) is the ratio between the applied force 
and the velocity of the soundboard at point Lx  (see figure 2) :  
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the string side), with 
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c  the celerity of the transverse waves in the string and the 

linear density of the string. 
Proper measurements of Y are therefore needed. Previous measurements of 

soundboard impedance Z have been done (Figure 3) but need to be reconsidered 
especially in the upper frequency range.   
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Figure 3: Previous measurements of soundboard impedance  
a. [Wogram,1984]    b. [Giordano,1998] 

 
In particular, the fact that the modulus of the impedance decreases with frequency 

(above 1 kHz for Wogram’s results and above 7kHz for Giordano’s ones) seems to 
contradicts the theory which predicts a constant asymptotical value (see for example 
[Busch-Vishniac, 1981] ): 
 

hDZ p 8)(    (3) 

where p  is the density of material, h  the thickness, ])1(12[ 23  EhD the 

rigidity of an isotropic plate, E the Young’s modulus and   the Poisson’s ratio. Notice 
that for an orthotropic plate, a similar result applies where E needs to be replaced 

by 21EE . 

From a physical point of view, the fact that the impedance decreases would 
mean that the mobility of the soundboard increases in the upper frequency range, which 
is rather questionable. 

The soundboard impedance is defined as the inverse of the soundboard 
admittance. For a single polarisation of the string we have: 
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String model 
 

The soundboard is a moving end for the string which modifies its 
eigenfrequencies nf  and damping factors n  in 1s  (inverse of decay times).  

 An usual transmission line model yields the admittance of the string at the end: 
LkjYY nc tan)(    (4) 

 where 
c

c Z
Y

1
  is the characteristic admittance of the string and nk the wave number. 

With a first-order approximation 
c
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where 
L

c 1  is the angular frequency for the first transverse mode of the string. 

a. b.



ISMA 2007  End conditions of piano strings 

This finally yields the perturbation of the eigenfrequencies (real part) and to the 
damping factors (imaginary part): 
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The method and its validation 
 

Since these modifications of string’s eigenfrequencies and decay times are 
directly related to the soundboard admittance, we propose to measure these quantities in 
order to derive the soundboard admittance. In addition, direct measurement of the 
admittance at the bridge will allow to check whether the admittance derived from 
string’s measurements is really the one that is “seen” by the string.  

 
The validation of the method is divided in four steps: 

(a) Measurements of eigenfrequencies and decay times on an isolated string. 
(b) Same measurements with the string loaded at one end by a known admittance. 
(c) Derive the end admittance from these measurements. 
(d) Compare the results with calculated or directly measured load admittance. 
 

EXPERIMENTAL SET-UP 
 

The prototype 
 
The experimental device is composed of a piano string stretched out between two ends 
screwed to a massive support (an aluminum plate). Two cases are considered: the first, 
Figure 4a, is an isolated string (with two fixed ends assuming to have an infinite 
admittance) ; the second, Figure 4b, is a string  coupled to a thin steel beam (with a 
known load admittance). 
 
 
  
 
 
 
 
 
 

 
 
 
 

Figure 4: The prototype 
a. Isolated string    
     

b. String loaded at one end by 
a known admittance (thin beam)

 
Experimental difficulties 
 

The main difficulties result from the fact that we have to compare two 
experimental cases. Fist of all we must keep exactly the same length and the same 
tension of the string in both experimental cases: with and without the beam. This is 
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critical as long as a small error of one of these two parameters directly affects the 
eigenfrequencies of the string. Another difficulty is that when attached to the string, the 
beam is prestressed, which modifies its properties compared to the isolated beam. 

 
An additional source of experimental difficulty lies in the fact that we must 

avoid exciting the horizontal polarization of the string, otherwise we get double peaks.  
 
Finally, because the frequency shifts due to the load are very small, we have the 

necessity of using powerful estimation methods (see the next Section). 
 

RESULTS 
 

Influence of the string on the load and influence of the load on the string 
 

The system under study is a string coupled to the beam at one end. The aim of 
the first series of measurements consists in investigating the influence of one 
component of the system onto the other one. For both the string and beam, we compare 
measurements done for the uncoupled components (in blue on the figures below) to 
measurements performed on the coupled system (in red). 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Influence of the coupling

a. Beam Admittance (beam alone in blue, beam coupled to the string in red) 
b. String’s spectrum (below 3.5 kHz) (isolated string in blue, string loaded in red) 

 
Figure 5a shows the beam admittance at the bridge point for the two cases. 

These direct measurements were conducted with an impedance head screwed to a 
mechanical shaker. The comparison of the admittances in both cases shows that the 
normal flexion modes frequencies have been slightly increased after the coupling. This 
can be explained by the fact that the prestressing of the beam due to the tension of the 
string adds stiffness to the system. 

The influence of the load on the string is showed in Figure 5b. These spectra are 
obtained by mean of the Fast Fourier Transform (FFT) applied to the recorded 
transverse velocity of the string (isolated and coupled) at a given point with the help of 
a laser vibrometer. Two features can be pointed out: the string’s eigenfrequencies are 
slightly shifted up after the loading and new spectral components appear. The first three 
components (at 105 Hz, 390 Hz and 972 Hz respectively) are the first flexural modes of 
the beam; the component at 1530 Hz is a torsional mode of the beam. 

 

a. b. 
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An alternative to Fourier analysis: the ESPRIT algorithm 
  

As it has been underlined earlier (Figure 5b) the frequency shifts due to the load 
are very small. Therefore, the usual FFT analysis does not appear to be the most 
appropriate tool for estimating the string’s eigenfrequencies and damping factors. 

 
Here, another estimation method has been used: the ESPRIT algorithm. It is a 

high-resolution estimation method which presents interesting alternatives to classical 
Fourier transform. This method is based on the assumption that the analyzed 
signal ][nx sampled at frequency eF  is composed of damped sinusoids (equation 7). This 

finally yields estimates for the following parameters: frequencies ( enn Ff  ), damping 

factors ( enn F  ), amplitudes nA  and phases n . 
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For more details of this method, we invite the reader to refer to [Roy et al., 1986] 

and [Roy et al.,1989]. 
 
Another method has also been applied: the Hilbert method. This classical 

method is based on a demodulation technique. Assuming that each components of the 
signal can be isolated from the others by bandpass filtering (equation 8), a complex 
signal is associated to the damping sinusoids by means of Hilbert transform (equation 9).  
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  (8) 

 
and the associated complex signal is given by: 
 

)2(])[(][ kkk nin
kkk eeAnxny  

    (9) 

 
Amplitude and phase detection finally leads to the estimations of the sinusoids 
components through linear regression: 
 

nAny kkk  ln][ln   (10) 

kkk nny  2][arg   (11) 

 
Damping factors 
 

Using the analysis tools presented above, we are now able to determine the 
complex eigenfrequencies of the string. Figure 6 shows the damping factors obtained 
for the string’s partials in both cases of our study. These data are given in the Table 
below.  
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Figure 6: Damping factors of the string partials (obtain via ESPRIT method)
a. Frequency range [0-18 kHz] (isolated string in blue, string loaded in red) 

b. Zoom-in. Frequency range [0-5.5 kHz] (isolated string in blue, string loaded in red) 

 1n  2n  3n  4n  5n  6n  
Isolated string nf  (Hz) 810  1621 2433 3247 4064 4886 

Coupled string nf  (Hz) 807  1628 2437 3252 4070 4893 

Isolated string n  ( 1s ) 0.43   1.38   6.24   1.12   1.97   5.24 

Coupled string n  ( 1s )  3.36   5.92 17.77   1.06 2.03    7.65 

Isolated string nA  0.0246  0.0221  0.0154  0.0124   0.0227   0.0032 

Coupled string nA  0.0211  0.0051 0.0043 0.0117 0.0099    0.0041 

It can be observed in Figure 6b and in the Table that the first partials of the 
coupled string are more damped than the other ones. Furthermore, the amplitudes are 
lowered compared to the isolated string. It means that, in this frequency range, there is 
an energy transfer between string and beam. For the first partial of the string (the 

fundamental), the decay time 
1

1

1


   is only of 0.3 seconds for the coupled string 

whereas it is equal to 2.3 seconds for the isolated string. Finally, the high damping 
factors for the upper partials (more than 120 s above 10 kHz) are mainly due to intrinsic 
dissipation in the string.  

 
Load admittance: comparison between direct measurements and calculation 

 
From measurements of damping factors and frequency shifts, we can derive the 

load admittance for each complex frequency n : 
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The results, presented in Figure 7, are important. The good agreement (for 
frequencies smaller than 7 kHz) between direct measurements, theory, and admittance 
derived from calculation validates the method. These comparisons also confirm that 
the measured isolated load is the one that is “seen” by the string. Such an approach 
should be of interest for future measurements on piano soundboard, since, due to the 
complexity of string-soundboard coupling, one crucial question is to know without 
ambiguity whether or not measurements performed on the soundboard itself are of real 
significance with regard to string’s behavior and, in turn, to piano sound. 

b. a. 
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Figure 7: Load (“soundboard”) admittance – Comparison between three methods
Direct measurements conducted with a mechanical shaker: in red.  

Calculation derived from coupled string’s spectrum (equation 12): black points 
Theoretical asymptotic value (derived from equation 3): in green  

CONCLUSIONS  

In this paper a method for validating admittance measurements on simple 
coupled structures has been presented. A prototype composed of a single piano string, 
isolated or coupled to a thin steel beam, has been designed. High resolution signal 
analysis performed on string’s vibrations yields an estimate for the input admittance. 
This method gives accurate results and should be now applied to measurements on 
piano strings mounted on real pianos in order to derive soundboard admittance and 
validate direct measurements. 
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