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Abstract

With the progress of measurement apparatus and the development of automatic
sensors it is not unusual anymore to get thousands of samples of observations taking
values in high dimension spaces such as functional spaces. In such large samples of
high dimensional data, outlying curves may not be uncommon and even a few indi-
viduals may corrupt simple statistical indicators such as the mean trajectory. We focus
here on the estimation of the geometric median which is a direct generalization of the
real median and has nice robustness properties. The geometric median being defined as
the minimizer of a simple convex functional that is differentiable everywhere when the
distribution has no atoms, it is possible to estimate it with online gradient algorithms.
Such algorithms are very fast and can deal with large samples. Furthermore they also
can be simply updated when the data arrive sequentially. We state the almost sure con-
sistency and the L2 rates of convergence of the stochastic gradient estimator as well
as the asymptotic normality of its averaged version. We get that the asymptotic dis-
tribution of the averaged version of the algorithm is the same as the classic estimators
which are based on the minimization of the empirical loss function. The performances
of our averaged sequential estimator, both in terms of computation speed and accuracy
of the estimations, are evaluated with a small simulation study. Our approach is also
illustrated on a sample of more 5000 individual television audiences measured every
second over a period of 24 hours.

Keywords. CLT, functional data, geometric quantiles, high dimension, L1-median, online
algorithms, recursive estimation, Robbins-Monro algorithm, spatial median.
MSC2010 classification. 62L20, 62G05, 62G35, 60B12, 68W27

1 Introduction

With the progress of measurement apparatus, the development of automatic sensors and
the increasing storage performances of computers it is not unusual anymore to get thou-
sands of samples of functional observations. For example Cardot et al. (2010a) analyse
more than 18000 electricity consumption curves measured every half hour over a period of
two weeks. Our study is motivated by the estimation of the central point of a sample of
n = 5423 vectors of R

d, with d = 86400, which correspond to individual television audi-
ences measured every second over a period of 24 hours.
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In such large samples of high dimensional data, outlying curves may not be uncom-
mon and a even few individuals may corrupt simple statistical indicators such as the mean
trajectory or the principal components (Gervini (2008)). Detecting these atypical curves au-
tomatically is not straightforwards in such a high dimensional and large sample context
and considering directly robust techniques is an interesting alternative. There are many ro-
bust location indicators in the multivariate setting (Small (1990)) but most of them require
high computational efforts to be estimated, even for small sample sizes, when the dimen-
sion is relatively large. For example, Fraiman and Muniz (2001) have extended the notion of
trimmed means to a functional context in order to get robust estimators of the mean profile.
In order to deal with the dimensionality issue and to reduce the computation time, Cuevas
et al. (2007) have proposed random projection approaches in the context of maximal depth
estimators and studied their properties via simulation studies. Note that sub-sampling ap-
proaches based on survey sampling techniques have also been proposed in the literature in
order to reduce the sample size with a controlled probabilistic procedure and thus reduce
the computational time (Chaouch and Goga (2010)).

We focus here on the geometric median, also called L1-median or spatial median, which
is a direct generalization of the real median proposed by Haldane (1948) and whose prop-
erties have been studied in details by Kemperman (1987). As noted in Small (1990), one
drawback of the geometric median is that it is not affine equivariant. Nevertheless, it is in-
variant to translation and scale changes and thus is well adapted to functional data which
are observed with the same units at each instant of time. In a functional context, consis-
tent estimators of the L1-median have been proposed by Kemperman (1987), Cadre (2001)
and Gervini (2008). Iterative estimation algorithms have been developed by Gower (1974),
Vardi and Zhang (2000) in the multivariate setting and by Gervini (2008) for functional data.
This latter algorithm requires to invert at each step matrices whose dimension is equal to
the dimension d of the data and thus need important computational efforts. The algorithm
proposed by Vardi and Zhang (2000) is much faster and only requires O(nd) operations at
each iteration, where n is the sample size. Nevertheless, these estimation procedures are not
adapted when the data arrive sequentially, they need to store all the data and they cannot
be simply updated.

In this paper, we explore another direction. The geometric median being defined as the
minimizer of a simple functional that is differentiable everywhere when the distribution
has no atoms, it is possible to estimate it with online gradient algorithms. Such algorithms
are very fast and can be simply updated when the data arrive sequentially. There is a vast
literature on stochastic gradient algorithms which mainly focus on the multivariate case
(Kushner and Clark (1978), Ruppert (1985), Benveniste et al. (1990), Ljung et al. (1992),
Duflo (1997), Kushner and Yin (2003), Bottou (2010)). The literature is much less abundant
when one has to consider online observations taking values in a functional space (usually
an infinite dimensional Banach or Hilbert space) and most works focus on linear algorithms
(Walk (1977), Dippon and Walk (2006), Smale and Yao (2006)).

It is known in the multivariate setting that averaging procedures can lead to efficient
estimation procedure under additional assumptions on the noise and when the target is
defined as the minimizer of a strictly convex function (Polyak and Juditsky (1992), Pelletier
(2000)). There is little work on averaging when considering random variables taking values
in Hilbert spaces and, as far as we know, they only deal with linear algorithms (Dippon
and Walk (2006)). Nevertheless, it has been noted in an empirical study whose aim was to
estimate the geometric median with functional data (Cardot et al. (2010a)) that averaging
could improve in an important way the accuracy of the estimators.

The paper is organized as follows. We first fix notations, give some properties of the
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geometric median and present our stochastic gradient algorithm as well as its averaged ver-
sion. We also note that our study extends directly to the estimation of geometric quantiles
defined by Chaudhuri (1996). In a third section we state the almost sure consistency and
the L2 rates of convergence of the stochastic gradient estimators as well as the asymptotic
normality of its averaged version. We get that the asymptotic distribution of the averaged
version of the algorithm is the same as the classic estimators. A fourth section is devoted to
a small simulation study which aims at comparing the performances of our estimator with
the static algorithm developed by Vardi and Zhang (2000). The comparison is performed
according to two points of view, for the same sample size and for the same computation
time. We also analyze a real example with a large sample of individual television audiences
measured every second over a period of 24 hours. The proofs are gathered in Section 6.

2 The algorithms and some properties of the geometric median

2.1 Definitions and assumptions

Let H be a separable Hilbert space (think H = R
d or H = L2(I), for some closed interval

I ⊂ R). We denote by 〈., .〉 its inner product and by ‖·‖ the associated norm.
The geometric median m of a random variable X taking values in H is defined by (see

Kemperman (1987)),
m := arg min

u∈H
E [‖X − u‖ − ‖X‖] . (1)

Note that the general definition (1) does not assume the existence of the first order moment
of ‖X‖ . We suppose from now on that the following assumptions are fulfilled.

A1. The random variable X is not concentrated on a straight line: for all v ∈ H, there is
w ∈ H such that 〈v, w〉 = 0 and

Var(〈w, X〉) > 0. (2)

A2. The law of X is a mixing of two “nice” distributions : µX = λµc + (1 − λ)µd, where

– µc is not strongly concentrated around single points: if B(0, A) is the ball {α ∈
H, ‖α‖ ≤ A},

∀A, ∃CA ∈ [0, ∞), ∀α ∈ B(0, A), E

[
‖X − α‖−1

]
≤ CA. (3)

– µd is a discrete measure, µd = ∑i piδαi
, which does not charge the median m. We

denote by D the support of µd.

As shown in Kemperman (1987), assumption (A1) ensures that the median m is uniquely
defined.

The second assumption could probably be relaxed, but it is general enough for most
natural examples. The conditions on µc, for example, are satisfied when H = R

d, with
d ≥ 2, whenever µc has a bounded density on every compact subset of R

d (as noted in
Chaudhuri (1992)). More precisely, this property is closely related to small ball probabilities
since

E

[
‖X − m‖−1

]
=
∫ ∞

0
P

[
‖X − m‖ ≤ t−1

]
dt.

If P [‖X − m‖ ≤ ǫ] ≤ Cǫd, for small ǫ and some positive constant C, it is easy to check that

E

[
‖X − m‖−β

]
< ∞,
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whenever 0 ≤ β < d.
When H = L2(I), the dimension is not finite and small ball probabilities have been

derived for some particular classes of Gaussian processes (see Nazarov (2009) for a recent
reference). In this case, by symmetry of the distribution, the median m is equal to the mean,
and many processes satisfy, for positive constants C1, C2, C3 and a constant C4 which de-
pend on the process under study,

P [‖X − m‖ ≤ ǫ] ≤ C1ǫC4 exp(−C2ǫ−C3), (4)

so that E

[
‖X − m‖−β

]
< ∞, for all positive β.

2.2 Some convexity and robustness properties of the median

Recalling the definition of the median (eq. (1)), let us denote by G : H 7→ R the function we
would like to minimize:

G(α) := E [‖X − α‖ − ‖X‖] . (5)

This function is convex since it is a convex combination of convex functions. To ensure the
convergence of the algorithm, we will need quantitative bounds on its convexity.

Under assumptions (A1) and (A2) this function can be decomposed in two parts:

G(α) = λGc(α) + (1 − λ)Gd(α),

where we isolate the discrete part Gd(α) = ∑i pi(‖xi − α‖ − ‖xi‖). The first part is Fréchet
differentiable everywhere (Kemperman (1987)), so G is differentiable except on D, the sup-
port of the discrete part µd . We denote by Φ = λΦc + (1 − λ)Φd its Fréchet derivative,

Φ(α) := ∇αG = −E

[
X − α

‖X − α‖

]
. (6)

Remark 1. It will be useful to define Φ on the set D. If x ∈ D, we define Gx by “forgetting” x,

Gx(y) = ∑
i,xi 6=x

pi(‖xi − y‖ − ‖xi‖).

This function is Fréchet differentiable in x, and we let

Φd(x) = ∑
i,xi 6=x

pi
x − xi

‖x − xi‖
.

In other words, up to a multiplicative constant (accounting for the loss of the mass px), Φ(α) is just
Φ computed for a different law of X, the one where we delete the Dirac mass pαδα.

In the vocabulary of convex analysis, what we have done is just to choose one particular subgra-
dient of G on the set D of non-differentiability. In particular, it is easily seen (we give a short proof
in the annex) that:

∀x, y, G(y)− G(x) ≥ 〈Φ(x), y − x〉
(which asserts that Φ is a subgradient).

The median m is then the unique solution of the nonlinear equation,

Φ(α) = 0. (7)

To exhibit some useful strong convexity and robustness properties of the median we
need to introduce the Hessian of functional G, for α ∈ H \ D. It is denoted by Γα, maps H
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to H and it is easy to check (see Koltchinskii (1997) for the multivariate case and Gervini
(2008) for the functional one) that

Γα = E

[
1

‖X − α‖

(
IH − (X − α)⊗ (X − α)

‖X − α‖2

)]
, (8)

where IH is the identity operator in H and u ⊗ v(h) = 〈u, h〉 v, for u, v and h belonging to

H. Operator Γα is not compact but it is bounded when E

[
‖X − α‖−1

]
< ∞.

Let us look at 〈h, Γαh〉: if we define h̄ = h/ ‖h‖, and Ph the projection onto the orthogonal
complement of h,

〈h, Γαh〉 = ‖h‖2
E

[
1

‖α − X‖

(
1 −

〈
h̄, α − X

〉2

‖α − X‖2

)]

= ‖h‖2
E

[
1

‖α − X‖
‖Ph̄(α − X)‖2

‖α − X‖2

]
. (9)

We can now state a strong convexity property of functional G which can be seen as an
extension to an infinite dimensional setting of Proposition 4.1 in Koltchinskii (1997).

Proposition 2.1. Recall that B(0, A) is the ball of radius A in H. Under assumptions A1 and A2,
there is a strictly positive constant cA, such that:

∀α ∈ B(0, A) \ D, ∀h ∈ H, cA ‖h‖2 ≤ 〈h, Γαh〉 ≤ CA ‖h‖2 .

In other words, G is strictly convex in H and it is strongly convex on any bounded set,
as shown in the following corollary.

Corollary 2.2. Assume hypotheses of Proposition 2.1 are fulfilled. For any strictly positive A, there
is a strictly positive constant cA such that:

∀α1, α2 ∈ B(0, A)2, 〈Φ(α2)− Φ(α1), α2 − α1〉 ≥ cA ‖α2 − α1‖2 .

As a particular case of Proposition 2.1, we get that there are two strictly positive con-

stants 0 < cm ≤ Cm ≤ E

[
‖X − m‖−1

]
< ∞, such that

cm ‖h‖2 ≤ 〈h, Γmh〉 ≤ Cm ‖h‖2 . (10)

As noted in Kemperman (1987), the geometric median has a 50 % breakdown point.
Furthermore, an immediate consequence of (10) is that operator Γm has a bounded inverse.
Thus, the gross error sensitivity, which is also a classical indicator of robustness (see Huber
and Ronchetti (2009)), is bounded for the median in a separable Hilbert space. Indeed,
thanks to the expression derived in Gervini (2008), it is bounded as follows,

sup
z∈H

∥∥∥∥Γ−1
m

(
z − m

‖z − m‖

)∥∥∥∥ ≤ 1

cm
. (11)

2.3 The algorithms

When observing a sample X1, X2, . . . , Xn of n independent realizations of X, a natural esti-
mator of m is the solution m̂n of the empirical version of (7),

n

∑
i=1

Xi − m̂n

‖Xi − m̂n‖
= 0. (12)
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The solution m̂n is defined implicitly and is found by iterative algorithms.
We propose now an alternative and simple estimation algorithm which can be seen as a

stochastic gradient algorithm (Ruppert (1985); Duflo (1997)) and is defined as follows

Zn+1 = Zn + γn
Xn+1 − Zn

‖Xn+1 − Zn‖
(13)

= Zn − γnUn+1, (14)

with a starting point that can be random and bounded, e.g. Z0 = X01{‖X0‖≤M} for some
positive constant M fixed in advance, or deterministic. If Xn+1 = Zn, we set Un+1 = 0
and Zn+1 = Zn so the algorithm does not move Zn+1. The sequence of descent steps γn

controls the convergence of the algorithm. The direction Un+1 is an “estimate” of the
gradient Φ of G at Zn since the conditional expectation given the sequence of σ-algebra
Fn = σ(Z1, . . . , Zn) = σ(X1, . . . , Xn) satisfies

E [Un+1|Fn] = Φ(Zn). (15)

Note that our particular choice of a subgradient Φ on the points where there is a mass was
done to ensure that this equality always holds.

Defining now by ξ the sequence of “errors” in these estimates,

ξn+1 = Φ(Zn)− Un+1, (16)

algorithm (13) can also be seen as a non linear Robbins-Monro algorithm,

Zn+1 = Zn + γn (−Φ(Zn) + ξn+1) . (17)

Thanks to (15) and (16), the sequence (ξn) is a sequence of martingale differences. Let us
note that the bracket of the associated martingale satisfies,

E

[
‖ξn+1‖2

∣∣∣Fn

]
= E

[
‖Un+1‖2

∣∣∣Fn

]
− ‖Φ(Zn)‖2 (18)

= 1 − ‖Φ(Zn)‖2 ≤ 1. (19)

Our second algorithm consists in averaging all the estimated past values,

Zn+1 = Zn +
1

n + 1

(
Zn+1 − Zn

)

with Z0 = 0, so that Zn = 1
n ∑

n
i=1 Zi.

Remark 2. An extension of the notion of quantiles in Euclidean and Hilbert space has been proposed
by Chaudhuri (1996), the geometric median being a particular case. Consider a vector v ∈ H, such
that ‖v‖ < 1. The geometric quantile of X, say mv, corresponding to direction v, is defined, uniquely
under previous assumptions, by

mv = arg min
u∈H

E [‖X − u‖+ 〈X − u, v〉] .

It is characterized by
Φu(m

v) = Φ(mv)− v = 0,

so that it can be estimated with the following stochastic algorithm

m̂v
n+1 = m̂v

n + γn

(
Xn+1 − m̂v

n

‖Xn+1 − m̂v
n‖

+ v

)
,

as well as with its averaged version.
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3 Convergence results

3.1 Almost sure convergence of the stochastic gradient algorithm

We first state the almost sure consistency of our sequence of estimators Zn under classical
and general assumptions on the descent steps γn.

Proposition 3.1. If (A1) and (A2) hold, and if (γn)n∈N satisfies the usual conditions:

∑
n≥1

γn = ∞, ∑
n≥1

γ2
n < ∞,

then
lim
n→∞

‖Zn − m‖ = 0, a.s.

3.2 Rates of convergence and asymptotic normality

We study now the rates of convergence of the stochastic gradient algorithm as well as the
asymptotic distribution of its averaged version. For these results, we restrict ourselves to
more specific sequences (γn) given by γn = cγn−α, where cγ is a positive constant and
α ∈ ( 1

2 , 1).
The following proposition states that, on events of arbitrarily high probability, the func-

tional estimator Zn attains the classical rates of convergence in quadratic mean (see (Duflo,
1997, theorem 2.2.12) for the multivariate case) up to a logarithmic factor.

Proposition 3.2. Assume (A1)-(A2) and suppose that there is a positive constant A such that

∃CA ∈ [0, ∞), ∀h ∈ B(0, A), E

[
‖X − (m + h)‖−2

]
≤ CA. (20)

Then, there exist an increasing sequence of events (ΩN)N∈N, and constants CN, such that Ω =⋃
N∈N ΩN, and

∀N, E

[
1ΩN

‖Zn − m‖2
]
≤ CNγn ln

(
n

∑
k=1

γk

)
≤ CN

ln(n)

nα
.

The additional assumption, suph∈B(0,A) E

[
‖X − (m + h)‖−2

]
< ∞, is not restrictive

when the dimension is strictly larger than two as discussed in (4). Hypothesis (20) is needed
to bound the difference between G and its quadratic approximation, in a neighborhood of
m as stated in the following Lemma.

Lemma 3.3. Suppose there is a positive constant A such that

∃CA ∈ [0, ∞), ∀h ∈ B(0, A), E

[
‖X − (m + h)‖−2

]
≤ CA.

Then,

Φ(m + h) = Γm(h) + O
(
‖h‖2

)
.
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Finally, Proposition 3.4 stated below probably gives the most important result of this
work. It is shown that the averaged estimator Zn and the classic static estimator m̂n have
the same asymptotic distribution. Consequently, for large sample sizes, it is possible to
get, very quickly, estimators which are as efficient, at first order, as the slower static one
m̂n. Note that the asymptotic distribution of m̂n has been derived in the multivariate case
by Haberman (1989), Theorem 6.1. For variables taking values in a Hilbert space, such
asymptotic distribution has only been proved for a particular case, when the support of X
is a finite dimensional space (Theorem 6 in Gervini (2008)).

Proposition 3.4. Assume (A1)-(A2) and suppose that for some positive constant A,

sup
h∈B(0,A)

E

[
‖X − (m + h)‖−2

]
< ∞.

Then, √
n
(
Zn − m

) L−−−→
n→∞

N
(

0, Γ−1
m ΣΓ−1

m

)
,

with,

Σ = E

[
(X − m)

‖X − m‖ ⊗ (X − m)

‖X − m‖

]
.

Note that with (10), operator Γ−1
m is well defined, it is bounded and positive. The proofs

of Lemma 3.3 and Propositions 3.2 and 3.4 are given in Section 6.

4 An illustration on simulated and real data

4.1 A simulation study

A simple simulation study is performed to check the good behavior of the averaging es-
timator and we make a comparison of our approach with the static estimator developed
by Vardi and Zhang (2000) considering two points of view. The first classic one consists in
evaluating the performances of these two different approaches for different sample sizes.
The second one, which is the point of view that should be adopted when computation time
matters, consists in comparing the accuracy of both approaches when the allocated com-
putation time is fixed in advance. The Vardi & Zhang estimator is computed thanks to the
function spatial.median from the library ICSNP.

For simplicity, we consider random variables taking values in R
3 and make simulations

of Gaussian random vectors with median m = (0, 0, 0) and covariance matrix:

Γ =




3 2 1
2 4 −0.5
1 −0.5 2


 .

In order to compare the algorithms, we evaluate the estimation error of an estimator m̂,
with the following criterion:

R(m̂) = ‖m̂ − m‖ . (21)

Our averaged estimator depends on the tuning parameters α and cγ which control the
descent steps γk = cγk−α. It is well known that for the particular case α = 1, the choice
of parameter cγ is crucial for the convergence and depends on the second derivative of G
in m which is unknown in practice. As usually done for such procedures, we fix α = 3/4
and focus on the choice of cγ. Taking advantage of the rapidity of our recursive algorithm,
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we decide to adopt the following strategy; run in parallel the algorithm for 10 initial points
chosen randomly in the sample and then select the best estimate m̂ which corresponds to
the minimum value of the empirical version of (1), that is the minimum value of

1

n

n

∑
i=1

(‖Xi − m̂‖ − ‖Xi‖) .

4.1.1 Fixed sample sizes

We perform 1000 simulations for different sample sizes, n = 250, n = 500 and n = 2000.
Table 1 presents the estimation error (first quartile Q1, median and third quartile Q3), ac-
cording to criterion (21), for the algorithm by Vardi and Zhang (2000) and our averaged
procedure considering different values for cγ ∈ {0.2, 0.6, 1, 2, 5, 10, 15, 25, 50, 75}.

Table 1: Comparison of the estimation errors for different sample sizes

n=250 n=500 n=2000

Estimator [Q1 median Q3] [Q1 median Q3] [Q1 median Q3]

cγ = 0.2 0.45 0.60 0.80 0.38 0.53 0.69 0.25 0.35 0.47
cγ = 0.6 0.21 0.29 0.40 0.15 0.21 0.29 0.06 0.09 0.12
cγ = 1 0.15 0.22 0.31 0.11 0.16 0.21 0.05 0.08 0.10
cγ = 2 0.15 0.21 0.30 0.09 0.15 0.20 0.05 0.07 0.10
cγ = 5 0.13 0.19 0.25 0.09 0.13 0.18 0.04 0.06 0.09

cγ = 10 0.13 0.18 0.25 0.09 0.13 0.18 0.04 0.06 0.09
cγ = 15 0.12 0.18 0.25 0.09 0.13 0.18 0.04 0.06 0.08
cγ = 25 0.13 0.19 0.26 0.09 0.13 0.18 0.04 0.06 0.09
cγ = 50 0.13 0.19 0.26 0.09 0.13 0.18 0.04 0.06 0.09
cγ = 75 0.14 0.20 0.27 0.09 0.14 0.19 0.05 0.07 0.09

Vardi & Zhang 0.12 0.18 0.25 0.09 0.12 0.17 0.04 0.06 0.08

At first, we can note that even for moderate sample sizes the averaged procedure per-
forms well in comparison with the Vardi and Zhang estimator which only performs slightly
better. We can also remark that the averaged stochastic estimator is not much sensitive to
the value of the tuning parameter cγ which can take values in the interval [2, 75] without
modifying the performances of the estimator. As a matter of fact, we noted on simulations
that interesting values for cγ are around or above E [‖X − m‖] , which is about 2.7 for this
particular simulation study.

4.1.2 Fixed computation time

Even if both algorithms require computation times which are O(nd), the averaged stochas-
tic gradient approach is much faster (on the same computer, with procedures coded in the
same language). For example, in previous simulations, if the sample size is n = 1000,
the averaged estimator is about 30 times faster. When the dimension gets larger, as seen in
the real data example, the difference is even more impressive. If the audience is measured
every minute over a period of 24 hours, we get vectors of dimension d = 1440 and then,
for a sample size n = 6000, the averaged estimator takes about 1 second, whereas it takes
66 seconds for the estimator proposed by Vardi & Zhang. When one has measurements
every second, so that d = 86400, it takes about 60 seconds for our procedure to estimate the
median.
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Let us suppose the allocated time for computation is limited and fixed in advance, say 1
second, and compare the sample sizes that can be handled by the different algorithms. The
static estimator by Vardi and Zhang (2000) can deal with n = 150 observations, whereas
our recursive algorithm, coded in the language, can take account of n = 4500, so that
it gives much better estimates of the median, as seen in Table 1. Finally, if the algorithm is
coded in C and called from , then it is at least 20 times faster than its analogue, so that
it can deal with at least n = 90000 observations, during the same second.

4.2 Estimation of the median television audience profile

The analysis of audience profiles for different channels, or different days of the year, is an
essential tool to understand the consumers’ habits as regards television. The French society
Médiamétrie provides official television audience rates in France. Médiamétrie works with
a panel of about 9000 individuals; the television sets of these individuals are equipped with
sensors that measure the audience of the different channels.

A sample of around 7000 people is drawn every day in this panel and the television
consumption of the people belonging to this sample is recorded every second. The data
are then sent to Médiamétrie during the night. Thus recursive techniques are well adapted
to deal with such kind of data. Moreover, Médiamétrie has noted in these samples the
presence of some atypical behaviors so that robust techniques may be helpful.

We focus our study on the estimation of the television audience profile during the 6th
september 2010. After removing people from the sample that have not watched television
at all on that day, we finally get a sample of size n = 5423. For each element i of the sample,
we have a vector Xi ∈ {0, 1}86400 , where 86400 is the number of seconds within a day, and
zero values correspond to seconds during the day where i is not watching television.

A classical audience indicator is given by the mean profile, drawn in Figure 1, which is
simply the proportion of people watching television at every second over the considered
period of time. We compare this classical indicator with the geometric median, whose esti-
mation is drawn in black in Figure 1. We can first note that both estimators have the same
shape along time, showing three peaks of audience during the day with higher audience
rates between 8 and 10 PM. Estimated values are smaller for the geometric median which
is less sensitive to small perturbations and outliers. This also indicates that the distribution
of the individual audience curves is not symmetric around the mean profile.

From a computational point of view, it takes less than one minute for our algorithm to
converge. The value of the tuning parameter was chosen to be cγ = 400, it leads to a value
of about 92 for the empirical loss criterion.

5 Concluding remarks

The experimental results confirm that averaged recursive estimators of the geometric me-
dian relying on stochastic gradient approaches are of particular interest when one has to
deal with large samples of data and potential outliers. Furthermore, when the allocated
computation time is limited and fixed in advance and the data arrive online these tech-
niques can deal, in a recursive way, with larger sample sizes and finally provide estima-
tions that are much more accurate than static estimation procedures. We have also noted
that they are not very sensitive to the values of the tuning parameters cγ that control the
gain.

One could imagine many directions for future research that certainly deserve further
attention. Taking advantage of the rapidity of our estimation procedures, one could use
resampling techniques, similar to the bootstrap, in order to approximate the asymptotic

10



Figure 1: Estimations of the mean and and the geometric median audiences, at a second
scale, during the 6th september 2010.

distribution of the estimator given in Proposition 3.4 and then build pointwise confidence
intervals. Proving rigorously the validity of such techniques is far beyond the scope of this
paper.

Our procedure can also be extended readily for online clustering, adapting the well
known MacQueen algorithm (MacQueen (1967)) to the L1 context. Even if the criterion to
be optimized is not convex anymore, it can be proved that stochastic gradient approaches
converge almost surely to the set of stationary points (Cardot et al. (2010b)) and thus are
interesting candidates for online clustering.

Another direction of interest is online estimation of the conditional geometric median
when real covariates are available. For instance, the age or the size of the city where indi-
vidual live are known by Médiamétrie and it can be possible to take such information into
account in order to get varying time regression models that can also be estimated in a very
fast way thanks to sequential approaches.

11



6 Proofs

6.1 Convexity — Proofs of Proposition 2.1 and corollary 2.2

We first show that Φ is a subgradient of G. For points x /∈ D, it is clear (since G is Fréchet
differentiable).

Pick a point x in D (say it is x0). We will show that Φd is a subgradient of Gd, where we
have defined Φd(x0) = ∑i pi

x−xi

‖x−xi‖ . This follows from a simple computation:

〈Φd(x0), y − x0〉 = ∑
i 6=0

pi
〈x0 − xi, y − x0〉

‖x0 − xi‖

= ∑
i 6=0

pi
〈x0 − xi, y − xi〉

‖x0 − xi‖
− ∑

i 6=0

pi ‖x0 − xi‖

≤ ∑
i 6=0

pi ‖y − xi‖ − ∑
i 6=0

pi ‖x0 − xi‖

≤ Gd(y)− Gd(x0).

The upper bound in proposition 2.1 follows immediately from (9) and the assumption (A2).
For the lower bound, thanks to (9), we only need to prove:

∀α ∈ B(0, A), ∀u, ‖u‖ = 1, 〈u, Γαu〉 = E

[
‖Pu(X − α)‖2

‖X − α‖3

]
≥ cA , (22)

where Pu is the projection on the orthogonal of u. This quantity is small when X − α is in
span(u).

Recall that (by (A1)), X is not supported on a line. Consider the set of subspaces K ⊂ H
satisfying: ∀x ∈ K, Var(〈x, X〉) = 0. Suppose that this set is non-empty, and let H′ be
a maximal element in it (this exists by Zorn’s lemma). The orthogonal of H′ has at least
dimension 2 (otherwise, we get a contradiction to A1). Let v1, v2 be two orthogonal vectors
in H′ ⊥. Let vt = cos(t)v1 + sin(t)v2. The map

t 7→ Var(〈vt , X〉)

is continuous on a compact set. Its minimum cannot be zero (since this would contradict
the maximality of H′). Therefore there exists a c such that, for all unit v in the plane spanned
by (v1, v2), Var(〈X, v〉) ≥ c.

The orthogonal of u (an hyperplane) and the (2-dimensional) plane spanned by v1 and
v2 necessarily intersect: there exists a unit vector v ∈ span(v1, v2) such that 〈u, v〉 = 0.

Therefore, for all x ∈ H, ‖Pu(x − α)‖2 ≥ 〈x, v〉2.
Suppose first that X is a.s. bounded by K. Then

E

[
〈v, X − α〉2

‖X − α‖3

]
≥ 1

(A + K)3
E

[
〈v, X − α〉2

]
.

It is easily seen that the last term is bounded below by Var(〈v, X〉) ≥ c and (22) holds with

cA =
1

(K + A)3
c.

To get rid of the boundedness assumption on X, we can just choose K large enough so that
Var(

〈
v, X1‖X‖≤K

〉
) is strictly positive for v = v1, v2.
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The corollary is a consequence of the proposition 2.1 and the fact that Φ is a subgradient.
Indeed, the inequality holds for Φc by interpolation: for an elementary proof, define αt =

(1 − t)α1 + tα2, and write Φ(α2)− Φ(α1) =
∫ t

0 f ′(t)dt where f (t) = Φ(αt). One can then

apply (22), t by t, with α = αt and u = α2−α1

‖α2−α1‖ .

Moreover,

〈Φd(α2)− Φd(α1), α2 − α1〉 = 〈Φd(α2), α2 − α1〉+ 〈Φd(α1), α1 − α2〉
≥ G(α2)− G(α1) + G(α1)− G(α2)

= 0.

Since Φ = λΦc + (1 − λ)Φd, the corollary 2.2 is proved.

6.2 Proof of Proposition 3.1.

The proof of Proposition 3.1 follows a classical strategy and consists of two steps.

Lemma 6.1. Under the hypotheses of Proposition 3.1, there is a random variable V such that,
E
[|V|2] < ∞, and

lim
n→∞

‖ Zn − m ‖2 = V, a.s.

Proof of Lemma 6.1. Let us consider Vn := ‖Zn − m‖2 . Recall that Zn+1 = Zn − γnΦ(Zn) +
γnξn+1 (cf. (17)). Therefore

Vn+1 = ‖Zn − m − γnΦ(Zn)‖2 + γ2
n ‖ξn+1‖2 + 2γn 〈ξn+1, Zn − γnΦ(Zn)〉 .

If we condition with respect to Fn, the last term disappears since (ξn) is a martingale dif-
ference sequence and it comes:

E [Vn+1|Fn] = ‖Zn − m − γnΦ(Zn)‖2 + γ2
nE

[
‖ξn+1‖2

∣∣∣Fn

]

= ‖Zn − m‖2 − 2γn 〈Zn − m, Φ(Zn)〉+ γ2
n

(
‖Φ(Zn)‖2 + E

[
‖ξn+1‖2

∣∣∣Fn

])

= Vn − 2γn 〈Zn − m, Φ(Zn)〉+ γ2
n, (23)

where we used the definition of Vn and (19) for the last term. Since G is convex, using
Corollary 2.2, we get:

〈Zn − m, Φ(Zn)〉 = 〈Zn − m, Φ(Zn)− Φ(m)〉 ≥ 0.

Therefore, for all n, E [Vn+1|Fn] ≤ Vn + γ2
n. From the Robbins Siegmund theorem (see for

instance (Duflo, 1997, page 18)), we deduce that (Vn) converges almost surely to V. More-
over, we note that Zn − m is bounded in L2,

∀n, Vn = E

[
‖Zn − m‖2

]
≤ E

[
‖Z0 − m‖2

]
+

∞

∑
k=1

γ2
k < ∞, (24)

whenever E

[
‖Z0 − m‖2

]
< ∞, which is satisfied for example if Z0 = X01{‖X0‖≤M}, with

M < ∞.

We can now give the proof the proposition.
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Proof of proposition 3.1. Lemma 6.1 shows that the sequence Vn converges almost surely. Let
us check now that its limit is zero. Let us take expectations in equation (23):

E [Vn+1] = E [Vn] + γ2
n − 2γnE [〈Φ(Zn), Zn − m〉]

= E [V0] +
n

∑
k=1

γ2
k − 2

n

∑
k=1

γkE [〈Φ(Zk), Zk − m〉] . (25)

The sequence ∑
n
k=1 γkE [〈Φ(Zk), Zk − m〉] has positive terms, and is bounded above by

E [V0] + ∑
∞
k=1 γ2

k , therefore it converges. This implies in particular that

∞

∑
n=1

γn 〈Φ(Zn), Zn − m〉 < +∞ a.s. (26)

This convergence cannot happen unless Zn converges to m. Indeed, for each ǫ ∈]0, 1[, let us
introduce the set

Ωǫ =
{

ω ∈ Ω : ∃nǫ(ω) ≥ 1, ∀n ≥ nǫ(ω), ǫ2
< Vn(ω) < ǫ−2

}
.

For ω ∈ Ωǫ, we have with Corollary 2.2,

∑
n≥1

γn 〈Φ(Zn(ω)), Zn(ω)− m〉 ≥
(

∑
n≥nǫ(ω)

γn

)
inf

ǫ<‖α−m‖<ǫ−1
〈Φ(α), α − m〉 = ∞,

which contradicts (26) unless P(Ωǫ) = 0. Since Vn converges a.s. to a finite limit, and
{lim Vn ∈ [c, c−1]} ⊂ Ωc/2, the only possible limit is zero:

lim ‖Zn − m‖ = 0, a.s.

6.3 Proof of Lemma 3.3 and Proposition 3.2

Proof of Lemma 3.3. Consider, for h ∈ B(0, A), the function fh(t) = Φ(m + th), defined for
t ∈ [0, 1]. We have fh(0) = Φ(m) = 0 and fh(1) = Φ(m + h). It is also clear that the
first order derivative f ′h(t) of function fh satisfies f ′h(t) = Γm+th. Consequently, a Taylor
expansion with integral remainder of fh about t = 0 gives us

Φ(m + h) = Φ(m) +
∫ 1

0
Γm+th(h) dt.

By Lemma 5.7 in Chaudhuri (1992), there is a constant MA such that for all t ∈ [0, 1],

‖Γm+th − Γm‖L ≤ MA ‖h‖

where ‖.‖L is the usual norm for bounded linear operators. Since Φ(m) = 0, one gets

‖Φ(m + h)− Γm(h)‖ ≤ sup
t∈[0,1]

‖Γm+th − Γm‖L ‖h‖ ≤ MA ‖h‖2 ,

and this concludes the proof.

Proof of Proposition 3.2. The proof is composed of 5 steps.
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Step 1 — a spectral decomposition. Recall that Γm is:

Γm = E

[
1

‖X − m‖

(
IH − (X − m)⊗ (X − m)

‖X − m‖2

)]

= E

[
‖X − m‖−1

]
IH − E

[
1

‖X − m‖

(
(X − m)⊗ (X − m)

‖X − m‖2

)]

= E

[
‖X − m‖−1

]
IH − Tm. (27)

Since Γm is bounded and symmetric, it is self-adjoint. Moreover, the operator Tm defined by
(27) is trace class: it is self-adjoint, non negative, and if (ej) is an orthonormal basis,

∑
j

〈
ej, Tmej

〉
= ∑

j

E

[〈
X − m, ej

〉2

‖X − m‖3

]

≤ E

[
1

‖X − m‖

]
< ∞.

Therefore Tm is compact, and there is an increasing sequence of eigenvalues (λj), with
possible repetitions, and an orthonormal basis (vj) of eigenvectors in H such that:

∀j ∈ N, Γmvj = λjvj,

λj
j→∞−−→ E

[
‖X − m‖−1

]
,

σ(Γm) = {λj , j ∈ N} ∪
{

E

[
‖X − m‖−1

]}
.

Moreover, thanks to (10), the smallest eigenvalue λmin of Γm is strictly positive. For simplic-
ity of notation, we rewrite this decomposition as follows,

Γmx = ∑
λ∈Λ

λ 〈eλ, x〉 eλ, x ∈ H,

where Λ is the multiset {λj , j ∈ N}, that can account for eigenspaces of dimension larger
than 1.

In the following, we will need the operators:

αk = IH − γkΓm, βn = αnαn−1 · · · α1. (28)

Since Γm is bounded, these operators are well defined. Introducing the sequence of real
functions, for n ∈ N,

fn(x) =
n

∏
k=1

(1 − γkx),

we see that fn(·) and f−1
n (·) are well defined on σ(Γm), provided γnE

[
‖X − m‖−1

]
< 1,

which we can assume without loss of generality. Elementary analysis shows that there exist
constants c1, C2, C3 such that:

∀x ∈ σ(Γm), c1 exp (−snx) ≤ fn(x) ≤ C2 exp (−snx) , (29)∣∣∣∣sn −
cγ

1 − α
n1−α

∣∣∣∣ ≤ C3, (30)

where we recall that sn = ∑
n
k=1 γk, and γk = cγk−α. Then each operator βn can be also

expressed as follows:

βnx = ∑
λ∈Λ

fn(λ) 〈eλ, x〉 eλ, x ∈ H, (31)

their inverses are bounded operators, and satisfy: β−1
n x = ∑λ∈Λ f−1

n (λ) 〈eλ, x〉 eλ.
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Step 2 — Decomposition of the algorithm. Let us rewrite the algorithm in the following
way

Zn+1 = Zn + γnξn+1 − γnΦ(Zn)

= Zn + γnξn+1 − γn(Γm(Zn − m) + δn)

where δn = Φ(Zn)− Γm(Zn − m) is the difference between the gradient of G and the gradi-
ent of its quadratic approximation. Therefore:

∀k, Zk+1 − m = αk(Zk − m) + γkξk+1 − γkδk (32)

Rewriting αn−1αn−2 · · · αk+1 as βn−1β−1
k , we get by induction,

Zn − m = βn−1(Z1 − m) + βn−1Mn − βn−1Rn−1, (33)

where

Rn =
n−1

∑
k=1

γkβ−1
k δk Mn =

n−1

∑
k=1

γkβ−1
k ξk+1.

The first two terms of (33) are what we would get if G was exactly quadratic: a deterministic
gradient part going to m, and a noise part; Rn is the error term. We will look at each of these
terms in turn.

Step 3 — The deterministic term. We want to bound βn−1(Z1 − m). The asymptotic be-
haviour of fn in eq. (29) implies that

‖βn−1‖ ≤ C2 exp (−snλmin) ,

where λmin > 0 is the smallest eigenvalue of Γm. Therefore

E

[
‖βn−1(Z1 − m)‖2

]
≤ C exp

(
−2n1−α

)
E

[
‖Z1 − m‖2

]
. (34)

Step 4 — The martingale. The fact that the βk are operators (instead of real numbers)
makes matters more complicated. To deal with this problem, we use the spectral decompo-
sition of the sequence of self-adjoint operators (βk).

More precisely, we decompose Mn = ∑λ∈Λ 〈eλ, Mn〉 eλ = ∑λ Mλ
n eλ. For each λ ∈ Λ, Mλ

n

is a martingale, and

E[(Mλ
n )

2] = ∑
k≤n−1

γ2
k f−2

k (λ)E
[
〈ξk+1, eλ〉2

∣∣∣Fk

]
,

since E [〈ξk′ , eλ〉 〈ξk+1, eλ〉|Fk] = 0 when k′ < k + 1. Summing now over λ ∈ Λ, we get:

E

[
‖βn−1Mn‖2

]
= ∑

λ

f 2
n−1(λ)E

[
(Mλ

n )
2
]

,

≤ ∑
λ

∑
k≤n−1

γ2
k

(
fn−1(λ)

fk(λ)

)2

E

[
〈ξk+1, eλ〉2

]
. (35)

However, for any k, n, and any λ ∈ Λ,

fn−1(λ)

fk(λ)
≤

n−1

∏
j=k+1

(
1 − λγj

) ≤ fn−1(λmin)

fk(λmin)
.
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This uniformity in λ allows us to reconstruct E

[
‖ξk+1‖2

]
, which is bounded by 1, thanks

to (19). We obtain:

E

[
‖βn−1Mn‖2

]
≤ ∑

k≤n−1

γ2
k

(
fn−1(λmin)

fk(λmin)

)2

∑
λ

E

[
〈ξk+1, eλ〉2

]
,

≤ ∑
k≤n−1

γ2
k

(
fn−1(λmin)

fk(λmin)

)2

E

[
‖ξk+1‖2

]
,

≤ ∑
k≤n−1

γ2
k

(
fn−1(λmin)

fk(λmin)

)2

.

Now we use the bounds (29) on βn:

E

[
‖βn−1Mn‖2

]
≤ C2

2

c2
1

∑
k≤n−1

γ2
k exp

(
−

n

∑
j=k+1

γj

)

≤ C ∑
k≤n−1

γ2
k exp

(
− 1

1 − α

(
n1−α − k1−α

))
. (36)

The exponential terms are very small when k is much smaller than n, therefore we isolate
the last terms. To do that, we choose l(n) such that,

l(n)1−α = n1−α − cα ln(n) , (37)

with cα to be chosen later. The first part of the sum (36) (for k ≤ l(n)) gives us:

∑
k≤l(n)

γ2
k exp

(
− 1

1 − α

(
n1−α − k1−α

))
≤ ∑

k≤l(n)

γ2
k exp

(
− cα

1 − α
ln(n)

)

≤ c2
γ ∑

k≤n

k−2α− cα
1−α . (38)

This can be made smaller than any prescribed inverse power of n, if we choose cα large
enough. In the second part of the sum (36), for k > l(n), we bound the exponential by 1
and γk by γl(n):

∑
k>l(n)

γ2
k exp

(
− 1

1 − α

(
n1−α − k1−α

))
≤ (n − l(n))γ2

l(n).

The number of terms n − l(n) is equivalent to cα
1−α ln(n)nα, and γl(n) ∼ cγn−α. Therefore,

the whole second term is equivalent to c ln(n)n−α, where c depends on cα and cγ. For cα

large enough, this dominates the first term (38). Finally we get:

E

[
‖βn−1Mn‖2

]
≤ C

ln(n)

nα
. (39)

Step 5 — the error term and the conclusion. The error term is βn−1 ∑
n
k=1 γkβ−1

k δk, where
δk = Φ(Zk)− Γm(Zk − m). With Lemma 3.3, we get that

∃r, Cr ∀k, ‖Zk − m‖ ≤ r =⇒ ‖δk‖ ≤ Cr ‖Zk − m‖2 . (40)
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Since Zn converges a.s. to m, we deduce two things about δk: it is almost surely bounded,
and (40) becomes a.s. eventually true. To use these facts we introduce the following se-
quence of events:

ΩN =

{
ω,

∀n ≥ N, ∀k ≥ n − l(n), ‖Zk − m‖ ≤ 1/K and ‖δk‖ ≤ Cr ‖Zk − m‖2

∀k, ‖δk‖ ≤ N.

}
.

for a value of K to be chosen later, and l(n) defined by (37). This sequence is increasing and⋃
ΩN = Ω; from now on we work on ΩN .

Once more, since βn−1β−1
k is very small when k is much smaller than n, only the last

terms in the sum defining Rn matter. This is why we re-use the definition of l(n) and cut
the sum in two parts. For ω ∈ ΩN , and n ≥ N,

‖βn−1Rn‖2 ≤
(

n

∑
k=1

γk

∥∥∥βn−1β−1
k

∥∥∥ ‖δk‖
)2

≤ 2N2

(
l(n)

∑
k=1

γk

∥∥∥βn−1β−1
k

∥∥∥
)2

+ 2C2
r

(
n

∑
k=l(n)+1

γk ‖Zk − m‖2

)2

≤ 2N2

(
l(n)

∑
k=1

γk

∥∥∥βn−1β−1
k

∥∥∥
)2

+ 2
C2

r

K2
(n − l(n))γl(n)

n

∑
k=l(n)+1

γk ‖Zk − m‖2 .

where we used the crude bound ‖δk‖ ≤ N in the first part, and for the second part,∥∥∥βn−1β−1
k

∥∥∥ ≤ 1 and the definition of ΩN .

As before, it is easy to see that the first term is bounded by any prescribed inverse power
of n, say n−42. For the second term, we already know that (n − l(n))γl(n) is bounded.
Therefore, on ΩN and for n ≥ N,

‖βn−1Rn‖2 ≤ CN2

n42
+

C

K2

n

∑
k=l(n)+1

γk ‖Zk − m‖2 . (41)

Combining now (33), (34), (39) and (41), we get, for n ≥ N and some new constant C

E

[
1ΩN

‖Zn − m‖2
]
≤ C ln(n)

nα
+

C

K2

n

∑
k=l(n)+1

γkE

[
1ΩN

‖Zk − m‖2
]

≤ C ln(n)

nα
+

C′

K2
sup

l(n)<k≤n

E

[
1ΩN

‖Zk − m‖2
]

.

Let us choose K such that K2 ≥ 2C′. Then

∀n ≥ N, E

[
1ΩN

‖Zn − m‖2
]
≤ C ln(n)

nα
+

1

2
max

l(n)<k≤n
E

[
1ΩN

‖Zk − m‖2
]

.

The fact that l(n) is close enough to n allows us to prove by induction that, for some constant
C′,

∀n ≥ N′ , E

[
1ΩN

‖Zn − m‖2
]
≤ C′ ln(n)

nα
.

This concludes the proof of Proposition 3.2.
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6.4 Proof of Proposition 3.4

We use the same decomposition as in Pelletier (2000). It consists in linearizing the target
function Φ around the true value m. Recall the following decomposition of the error (32),

∀k, Zk+1 − m = (IH − γkΓm)(Zk − m) + γkξk+1 − γkδk,

where ξk is a martingale difference sequence and δk are error terms, δk := Φ(Zk)− Γm(Zk −
m). Defining now,

Tn := Zn − m, Tn := Zn − m and Mn+1 :=
n

∑
k=1

ξk+1,

and rearranging the previous expression, we obtain:

ΓmTk = ξk+1 − δk +
1

γk
(Tk − Tk+1) .

Summing these equalities, it comes,

nΓmTn =
n

∑
k=1

1

γk
(Tk − Tk+1)−

n

∑
k=1

δk + Mn+1.

Applying Abel’s transform, and dividing by
√

n yields:

√
nΓmTn =

1√
n

(
T1

γ1
− Tn+1

γn
+

n

∑
k=2

Tk

[
1

γk
− 1

γk−1

]
−

n

∑
k=1

δk

)
+

1√
n

Mn+1.

To prove that last term is a martingale for which the CLT holds,

Mn√
n

L−−−→
n→∞

N (0, Σ) ,

we need to check that the assumptions of Theorem 5.1 in (Jakubowski, 1988) are fulfilled.
We first have that the martingale difference sequence is a.s. bounded, ∀n ‖ξn‖ ≤ 2. Let us
define

Σn = E [ξn+1 ⊗ ξn+1|Fn] , (42)

which can also be decomposed as follows

Σn = E

[
(X − Zn)

‖X − Zn‖
⊗ (X − Zn)

‖X − Zn‖

∣∣∣∣Fn

]
− Φ(Zn)⊗ Φ(Zn). (43)

Since Φ(m) = 0, we have by a direct computation,

‖Φ(Zn)‖ ≤ E

[
2

‖X − m‖

]
‖Zn − m‖ .

Using now, for (a, b) ∈ H × H, the inequality ‖a ⊗ b‖L ≤ ‖a‖ ‖b‖ , where ‖a ⊗ b‖L is the
usual the norm for linear operators, we directly get, with Proposition 3.1,

‖Φ(Zn)⊗ Φ(Zn)‖L → 0, a.s.

With similar arguments, it is easy to show that
∥∥∥∥Σ − E

[
(X − Zn)

‖X − Zn‖
⊗ (X − Zn)

‖X − Zn‖

∣∣∣∣Fn

]∥∥∥∥
L

≤ 2E

[∥∥∥∥
(X − Zn)

‖X − Zn‖
− (X − m)

‖X − m‖

∥∥∥∥
∣∣∣∣Fn

]

≤ 4E

[
1

‖X − m‖

]
‖Zn − m‖ ,
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so that ‖Σn − Σ‖L → 0 a.s., when n tends to infinity. Then condition 5.2 in (Jakubowski,
1988) is satisfied and is a consequence of a direct application of Chow’s Lemma, see for
instance (Duflo, 1997, page 22).

Now, it remains to prove that

1√
n

(
Tn+1

γn
−

n

∑
k=2

Tk

[
1

γk
− 1

γk−1

]
+

n

∑
k=1

δk

)
P−−−→

n→∞
0. (44)

Let us denote by An, Bn and Cn the three terms. We will use on each term the following
lemma:

Lemma 6.2. Let ΩN be such that ΩN ↑ Ω, and let Xn be a sequence of random variables such that,
for all N,

E [1ΩN
· ‖Xn‖] −−−→

n→∞
0.

Then Xn
P−−−→

n→∞
0.

Proof of lemma. The convergence in L1 implies that, for all N, 1ΩN
Xn converges in probabil-

ity to zero. Then

lim sup
n

P [‖Xn‖ > ǫ] ≤ P [Ωc
N ] + lim sup

n
P [1ΩN

‖Xn‖ > ǫ] ≤ 1 − P [ΩN ] .

Since this holds for all N, the lemma is proved.

Recall that E

[
1ΩN

‖Tn‖2
]
≤ CN

ln(n)
nα , thanks to Proposition 3.2.

For the first term An = Tn+1√
nγn

, we have:

E

[
1ΩN

‖An‖2
]
≤ C′

Nn2α−1 ln(n)2

n2α
=

C′
N ln(n)2

n

so An
P−−−→

n→∞
0.

Let us turn to the second term Bn. Since γ−1
k − γ−1

k−1 ≤ 2αc−1
γ kα−1,

E [‖Bn‖ 1ΩN
] ≤

2αc−1
γ√
n

∑
k≤n

E [1ΩN
‖Tk‖] kα−1

≤ C0√
n

∑
k≤n

√
ln(k)kα/2−1

≤ κ
√

ln(n)nα/2−1/2,

which goes to zero since α < 1 (C0 and κ stand for two positive constants). Therefore

Bn
P−−−→

n→∞
0.

Finally, for the last term Cn, since there exists a positive constant C1 such that ‖δk‖ ≤
C1 ‖Zk − m‖2, we have:

E [1ΩN
‖Cn‖] ≤

1√
n

∑
k≤n

E

[
1ΩN

‖Tk‖2
]

≤ CN√
n

∑
k≤n

ln(k)k−α .
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Since the right hand side term converges to zero (as can be seen e.g. by Kronecker’s lemma,

using the fact that α > 1/2), Cn
P−−−→

n→∞
0, therefore (44) holds, and proposition 3.4 is finally

proved.
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