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Résumé This paper deals with the Helmholtz-Hodge decomposition of

a vector field in bounded domain. We present a practical algorithm to

compute this decomposition in the context of divergence-free and curl-

free wavelets satisfying suitable boundary conditions. The method requires

the inversion of divergence-free and curl-free wavelet Gram matrices. We

propose an optimal preconditioning which allows to solve the systems

with a small number of iterations. Finally, numerical examples prove the

accuracy and the efficiency of the method.

Keywords: Divergence-free and curl-free wavelets ; Helmholtz-Hodge
decomposition.

1 Introduction

Vector fields analysis is ubiquitous in engineering, physics or applied mathe-
matics. Most of the solutions of problems arising from these domains are vector
fields and they have some compatibility properties related to the nature of the
problem. This is the case in the numerical simulation of incompressible fluid
flows where the velocity field is divergence-free or in electromagnetism where
the electric field contained in the electromagnetic field is curl-free.

The Helmholtz-Hodge decomposition, under certain smoothness assumptions,
allows to separate any vector field into the sum of three uniquely defined compo-
nents : divergence-free, curl-free and gradient of a harmonic function. Thus, the
Helmholtz-Hodge decomposition provides a powerful tool for several applications
such as the resolution of partial differential equations [11], aerodynamic design
[22], detection of flow features [17] or computer graphics [16]. Therefore, it is im-
portant to have at hand an efficient algorithm to deal with such decomposition
numerically.

In case of periodic boundary conditions, Fourier domain offers an ideal setting
to compute the Helmholtz-Hodge decomposition, thanks to the Leray projector

⋆. Laboratoire Jean Kuntzmann, University of Grenoble, BP 53 Grenoble Cedex 9,
France
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which writes explicitly [9]. For more general (physical) boundary conditions,
this decomposition is usually achieved by solving a Poisson equation relative
to each field component : this is the case when using finite element or finite
difference methods [11]. The well known drawback of these methods is their
cost, for example in particle-based physical simulations. Then, one resorts to
mesh-less method [16] or methods leading to variational equations [17].

In wavelet setting the Helmholtz-Hodge decomposition will not use the reso-
lution of a Poisson equation, since one knows explicit bases for the divergence-free
and curl-free function spaces [14,23,18,10]. In this context, Urban [24], and latter
Deriaz and Perrier [9] introduced methods to compute the orthogonal projections
onto divergence-free and curl-free wavelet bases. These wavelet methods have for
main interest to provide accuracy for a small number of degrees of freedom, due
to the good nonlinear approximation property provided by wavelet bases [6].
However, the works of [24,9] are limited to periodic boundary conditions for lack
of suitable bases.

The main objective of this paper is to extend the works of [24,9] to more
general physical boundary conditions. We first present the principles of tensor-
product divergence-free and curl-free wavelet construction on the cube. This
construction was detailed in [20] in the 2D case (see also [19]). Then we propose
an effective method for the Helmholtz-Hodge decomposition based on the com-
putation and inversion of corresponding Gram matrices. The tensor structure of
the bases is fully exploited to reduce the computational complexity. Moreover the
system is solved with a low complexity, thanks to an optimal preconditioning.

The layout of this paper is as follows. In section 2, we recall the theoretical de-
finition and mathematical background of the Helmholtz-Hodge decomposition on
a bounded domain of Rd. In section 3 we explicit the construction of divergence-
free and curl-free wavelets on [0, 1]d with desired boundary conditions. Section 4
is devoted to the description of the numerical method for the Helmholtz-Hodge
decomposition, and numerical examples will illustrate its performance.

2 Helmholtz-Hodge decomposition

We recall in this section some definitions related to the Helmholtz-Hodge
decomposition on a bounded domain Ω of Rd [11]. We assume that Ω is an open
subset of Rd, bounded and connected with Lipschitz-continuous boundary Γ (see
[11,1]).

2.1 Definitions

The Helmholtz-Hodge decomposition theorem [11,5] states that any vector
field u ∈ (L2(Ω))d can be uniquely decomposed into the sum of its divergence-
free, curl-free and gradient of harmonic function components :

u = udiv + ucurl + uhar (1)
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with :

∇ · udiv = 0 and ∇× ucurl = 0 (2)

The last component uhar is both divergence-free and irrotational :

∇ · uhar = 0 and ∇× uhar = 0 (3)

Following [11,1], this decomposition may alternatively be written using vector
and scalar potentials. There exist a vector potential (scalar if d = 2) Ψ ∈
(H1

0 (Ω))d, a scalar potential q ∈ H1
0 (Ω) and a harmonic potential h ∈ H1(Ω)

such as :

udiv = curl(Ψ) ucurl = ∇q uhar = ∇h

Moreover, Ψ, q and h are uniquely defined.

In terms of spaces, the decomposition (1) corresponds to an orthogonal split-
ting of (L2(Ω))d :

(L2(Ω))d = Hdiv(Ω)⊕Hcurl(Ω)⊕Hhar(Ω) (4)

where Hdiv(Ω) is the space of divergence-free vector functions of (L2(Ω))d with
vanishing tangential boundary condition :

Hdiv(Ω) = {u ∈ (L2(Ω))d : div(u) = 0, u · n|Γ = 0} (5)

which also coincides (for d = 2, 3) with the curl of potential space :

Hdiv(Ω) = {u = curl(Ψ) : Ψ ∈ (H1
0 (Ω))d} (6)

(Ψ ∈ H1
0 (Ω) if d = 2). On the other side, the space Hcurl corresponds to the

gradient of H1(Ω)-potentials which vanish on Γ :

Hcurl(Ω) = {u = ∇q : q ∈ H1
0 (Ω)} (7)

Finally, Hhar corresponds to the gradient of H1(Ω)-harmonic potentials :

Hhar(Ω) = {u = ∇q : q ∈ H1(Ω), ∆q = 0} (8)

Other splittings exist, for example in (H1
0 (Ω))d to incorporate homogeneous

boundary conditions [11].

In the whole space R
d or with periodic boundary conditions, the decompo-

sition (1) is explicit in Fourier domain and the third term vanishes : uhar = 0
(one obtains the Helmholtz decomposition in this case [9,24]). In the wavelet
context, an iterative procedure was proposed by Deriaz and Perrier [9]. The pur-
pose here is to extend such method with boundary conditions for the spaces
Hdiv(Ω), Hcurl(Ω) and Hhar(Ω) introduced in (5, 7, 8).
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3 Divergence-free and curl-free wavelets on [0, 1]d

This section introduces the principles of the construction and main proper-
ties of divergence-free and curl-free wavelets on the hypercube [0, 1]d. The two
dimensional case d = 2 has been detailed in [20], we develop below the extension
to more general dimensions. Our construction is based on 1D multiresolution
analysis generators (ϕ1, ϕ̃1) and (ϕ0, ϕ̃0) linked by differentiation / integration,
and introduced by Lemarié-Rieusset and collaborators in original works [14,13].
It follows two steps, described in the two forthcoming sections :

(i) Construction of two biorthogonal MRAs of L2(0, 1) linked by differentia-
tion / integration.

(ii) Construction of MRAs and wavelet bases of Hdiv(Ω) and Hcurl(Ω).

3.1 Multiresolution analyses of L2(0, 1) linked by differentiation /
integration

The construction of regular biorthogonal multiresolution analyses (BMRA)
on the interval [0, 1] is now classical (see [8,4,15,12]). It begins with a pair of
biorthogonal compactly supported scaling functions (ϕ1, ϕ̃1) [7] of L2(R), with
some r polynomial reproduction :

xℓ =
∑

k∈Z

〈xℓ, ϕ̃1(x− k)〉 ϕ1(x− k) for 0 ≤ ℓ ≤ r − 1 (9)

and similarly for ϕ̃1, with r̃ polynomial reproduction.

Following classical constructions, one define finite dimensional biorthogonal
multiresolution spaces :

V 1
j = span{ϕ1

j,k ; 0 ≤ k ≤ Nj−1} and Ṽ 1
j = span{ϕ̃1

j,k ; 0 ≤ k ≤ Nj−1} (10)

whose dimension Nj ≃ 2j depends on some free integer parameters (δ0, δ1). The
scaling functions ϕ1

j,k satisfy ϕ1
j,k = 2j/2ϕ1(2jx − k) ”inside” the interval [0, 1],

but this is no more true near the boundaries 0 and 1 (idem for ϕ̃1
j,k). In practice,

the scale index j must be great than some index jmin, to avoid boundary effects.
The biorthogonality between bases writes : < ϕ1

j,k/ϕ̃
1
j,k′ >= δk,k′

The approximation order provided by such MRA (V 1
j ) in L

2(0, 1) is r :

∀ f ∈ Hs(0, 1), inf
fj∈V 1

j

‖f − fj‖L2(0,1) ≤ C2−js, 0 ≤ s ≤ r (11)

whereas (Ṽ 1
j ) has for approximation order r̃.

Homogeneous Dirichlet boundary conditions can be simply imposed on (V 1
j )

by removing one scaling function at each boundary 0 and 1 :

V D
j = V 1

j ∩H1
0 (0, 1) = span{ϕ1

j,k ; 1 ≤ k ≤ Nj − 2} (12)
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A possibility to adjust the dimension of the biorthogonal space is also to impose
Ṽ D
j = Ṽ 1

j ∩H1
0 (0, 1), and Ṽ

D
j rewrites (keeping the same notation for the basis

functions, which have changed after biorthogonalization) :

Ṽ D
j = span{ϕ̃1

j,k ; 1 ≤ k ≤ Nj − 2} (13)

As usual, biorthogonal wavelet spaces (W 1
j , W̃

1
j ) are defined by :

W 1
j = V 1

j+1 ∩ (Ṽ 1
j )

⊥ W̃ 1
j = Ṽ 1

j+1 ∩ (V 1
j )

⊥ (14)

and generated by finite dimensional wavelet bases on the interval [15,12] :

W 1
j = span{ψ1

j,k ; 0 ≤ k ≤ 2j−1} and W̃ 1
j = span{ψ̃1

j,k ; 0 ≤ k ≤ 2j−1} (15)

The difficulty now is to derive a new biorthogonal MRA (V 0
j , Ṽ

0
j ) of L

2(0, 1)
such that :

d

dx
V 1
j = V 0

j

The existence of such biorthogonal MRA was already proved by Jouini and
Lemarié-Rieusset [13] and it should be based on generators (ϕ0, ϕ̃0) introduced
in [14] satisfying :

(ϕ1(x))′ = ϕ0(x) − ϕ0(x−1) and (ϕ̃0(x))′ = ϕ̃1(x+1) − ϕ̃1(x) (16)

In [20], we proposed a practical construction of spaces (V 0
j , Ṽ

0
j ) :

V 0
j = span{ϕ0

j,k ; 0 ≤ k ≤ Nj−2} and Ṽ 0
j = span{ϕ̃0

j,k ; 0 ≤ k ≤ Nj−2} (17)

satisfying the following proposition.

Proposition 1.
The two BMRAs (V ǫ

j , Ṽ
ǫ
j )ǫ=0,1 of L2(0, 1) constructed in [20] from biorthogonal

generators (ϕǫ, ϕ̃ǫ)ǫ=0,1satisfying relation (16), verify :

(i)
d

dx
V 1
j = V 0

j and
d

dx
◦ P1

j f = P0
j ◦

d

dx
f, ∀ f ∈ H1(0, 1)

(ii) Ṽ 0
j = H1

0 (0, 1) ∩

∫ x

0

Ṽ 1
j and

d

dx
◦ P̃0

j f = P̃1
j ◦

d

dx
f, ∀ f ∈ H1

0 (0, 1)

where (Pǫ
j , P̃

ǫ
j ) are the biorthogonal projectors on (V ǫ

j , Ṽ
ǫ
j ).

Wavelet bases of the biorthogonal MRA (V 0
j , Ṽ

0
j )j≥jmin

are simply defined

by respectively differentiating and integrating the wavelets of (V 1
j , Ṽ

1
j )j≥jmin

, as
stated by the following proposition [13,20].
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Proposition 2. [13,20]
Let {ψ1

j,k} and {ψ̃1
j,k} be biorthogonal wavelet bases of respectively W 1

j and W̃ 1
j .

Then, the wavelets defined by :

ψ0
j,k = 2−j(ψ1

j,k)
′ and ψ̃0

j,k = −2j
∫ x

0

ψ̃1
j,k (18)

are respectively biorthogonal wavelet bases of W 0
j and W̃ 0

j :

W 0
j = V 0

j+1 ∩ (Ṽ 0
j )

⊥ and W̃ 0
j = Ṽ 0

j+1 ∩ (V 0
j )

⊥ (19)

3.2 Divergence-free scaling functions and wavelets on [0, 1]d

Le Ω be the hypercube Ω = [0, 1]d. The objective in this section is to de-
rive wavelet bases of the space Hdiv(Ω), with vanishing outward normal at the
boundary Γ = ∂Ω. Following (5), Hdiv(Ω) is the curl of the space (H1

0 (Ω))d (for
d = 3, and H1

0 (Ω) for d = 2) of vector (scalar for d = 2) stream functions. We
begin with the description of basis functions in the 2D case (already detailed in
[20]), then we generalize the construction for d ≥ 3.

Two-dimensional case :
We start with the 2D MRA (V D

j ⊗V D
j )j≥jmin

of H1
0 (Ω), where (V D

j )j≥jmin
is the

1D MRA of H1
0 (0, 1) defined in section 3.1 (12). For each scale index j ≥ jmin,

divergence-free scaling functions on Ω = [0, 1]2 are constructed by taking the
curl of scaling functions of V D

j ⊗ V D
j :

Φdiv
j,k := curl[ϕD

j,k1
⊗ ϕD

j,k2
] =

∣

∣

∣

∣

∣

∣

ϕD
j,k1

⊗ (ϕD
j,k2

)′

−(ϕD
j,k1

)′ ⊗ ϕD
j,k2

, 1 ≤ k1, k2 ≤ Nj − 2 (20)

The choice of space V D
j ensures that the divergence-free scaling functions satisfy

the boundary condition Φdiv
j,k · n = 0 by construction. Let Vdiv

j be the space

spanned by these divergence-free scaling functions :

Vdiv
j = span{Φdiv

j,k}, 1 ≤ k1, k2 ≤ Nj − 2 (21)

By construction, the spaces Vdiv
j form a multiresolution analysis of Hdiv(Ω),

since it can be proven from proposition 1 that we have [20] :

Vdiv
j = (V D

j ⊗ V 0
j )× (V 0

j ⊗ V D
j ) ∩Hdiv(Ω) (22)

In the same manner, the corresponding anisotropic divergence-free wavelets
on Ω are defined by taking the curl of the three types of scalar anisotropic



Helmholtz-Hodge Decomposition by Divergence-free and Curl-free Wavelets 7

wavelets associated to V D
j ⊗ V D

j : for j = (j1, j2), with j1, j2 > jmin,

Ψdiv,1

j,k
:= curl[ϕD

jmin,k
⊗ ψD

j2,k2
], 1 ≤ k ≤ Njmin

− 2, 0 ≤ k2 ≤ 2j2 − 1

Ψdiv,2

j,k
:= curl[ψD

j1,k1
⊗ ϕD

jmin,k
], 0 ≤ k1 ≤ 2j1 − 1, 1 ≤ k ≤ Njmin

− 2

Ψdiv,3

j,k
:= curl[ψD

j1,k1
⊗ ψD

j2,k2
], 0 ≤ k1 ≤ 2j1 − 1, 0 ≤ k2 ≤ 2j2 − 1

(ψD
j,k) being the wavelet basis of WD

j = V D
j+1 ∩ (Ṽ D

j )⊥.

Three-dimensional case :
Divergence-free scaling functions and wavelets on Ω = [0, 1]3 are constructed by
taking the curl of suitable scaling functions and wavelets of (H1

0 (Ω))3. We will
focus on the scaling function construction, since the same technique is used for
wavelets. The divergence-free scaling functions are defined by :

Φdiv
1,j,k := curl

∣

∣

∣

∣

∣

∣

0
0
ϕD
j,k1

⊗ ϕD
j,k2

⊗ (ϕD
j,k3

)′
=

∣

∣

∣

∣

∣

∣

ϕD
j,k1

⊗ (ϕD
j,k2

)′ ⊗ (ϕD
j,k3

)′

−(ϕD
j,k1

)′ ⊗ ϕD
j,k2

⊗ (ϕD
j,k3

)′

0

(23)

Φdiv
2,j,k := curl

∣

∣

∣

∣

∣

∣

(ϕD
j,k1

)′ ⊗ ϕD
j,k2

⊗ ϕD
j,k3

0
0

=

∣

∣

∣

∣

∣

∣

0
(ϕD

j,k1
)′ ⊗ ϕD

j,k2
⊗ (ϕD

j,k3
)′

−(ϕD
j,k1

)′ ⊗ (ϕD
j,k2

)′ ⊗ ϕD
j,k3

(24)

Φdiv
3,j,k := curl

∣

∣

∣

∣

∣

∣

0
ϕD
j,k1

⊗ (ϕD
j,k2

)′ ⊗ ϕD
j,k3

0
=

∣

∣

∣

∣

∣

∣

−ϕD
j,k1

⊗ (ϕD
j,k2

)′ ⊗ (ϕD
j,k3

)′

0
(ϕD

j,k1
)′ ⊗ (ϕD

j,k2
)′ ⊗ ϕD

j,k3

(25)

where 1 ≤ k1, k2, k3 ≤ Nj − 2. These functions are contained in Hdiv(Ω) by
construction. The spaceVdiv

j spanned by this family is included into the following

standard BMRA of (L2(Ω))3 :

Vj =
(

V 1
j ⊗ V 0

j ⊗ V 0
j

)

×
(

V 0
j ⊗ V 1

j ⊗ V 0
j

)

×
(

V 0
j ⊗ V 0

j ⊗ V 1
j

)

(26)

which makes it easy the coefficient computations on divergence-free bases. To
each scaling function, we can associate 7 types of anisotropic divergence-free
generating wavelets by taking respectively the curl of wavelets of {0} × {0} ×
(V D

j ⊗V D
j ⊗V 0

j ), (V
0
j ⊗V D

j ⊗V D
j )×{0}×{0} and {0}× (V D

j ⊗V 0
j ⊗V D

j )×{0}.

As scaling functions Φdiv
1,j,k, Φ

div
2,j,k and Φdiv

3,j,k, their corresponding divergence-

free wavelets are also linearly dependent. To construct a multiresolution analysis
and wavelet bases of Hdiv(Ω), we need to keep only two scaling functions and
their 14 corresponding generating wavelets.

The construction extends to larger dimensions d > 0 readily. As in the iso-
tropic construction of Lemarié-Rieusset [14], we obtain in this case (d− 1) types
of linear independent divergence-free scaling functions and (d− 1)(2d − 1) types
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of corresponding divergence-free wavelets. For 1 ≤ i ≤ d−1, the general formula
of these scaling function is given by :

Φdiv
i,j,k :=

0
...
0

arrow i → (ϕD
j,k1

)′ ⊗ · · · ⊗ (ϕD
j,ki−1

)′ ⊗ ϕD
j,ki

⊗ (ϕD
j,ki+1

)′ ⊗ · · · ⊗ (ϕD
j,kd

)′

arrow i+ 1 → −(ϕD
j,k1

)′ ⊗ · · · ⊗ (ϕD
j,ki

)′ ⊗ ϕD
j,ki+1

⊗ (ϕD
j,ki+2

)′ ⊗ · · · ⊗ (ϕD
j,kd

)′

0
...
0

(27)
The scaling functions Φdiv

i,j,k satisfy the boundary condition : Φdiv
i,j,k · n = 0,

by construction. The space Vdiv
j spanned by this family is included into the

following standard BMRA of (L2(Ω))d :

Vj = V1
j × · · · ×Vd

j with Vi
j = V

δ1,i
j ⊗ · · · ⊗ V

δd,i
j , 1 ≤ i ≤ d (28)

δi,j denotes the Kronecker symbol.

3.3 Curl-free scaling functions and wavelets on [0, 1]d

The construction of irrotational scaling functions and wavelets is easier than
in the case of divergence-free functions, since it does not depend on the dimension
d. According to the definition (7) of Hcurl(Ω), basis functions will be constructed
by taking the gradient of scaling functions and wavelets of a multiresolution
analysis of H1

0 (Ω).

The starting point is again a regular multiresolution analysis of H1
0 (Ω) given

by d tensor-product of V D
j :

Vj = V D
j ⊗ · · · ⊗ V D

j (29)

Then, the curl-free scaling functions of Hcurl(Ω) are defined by :

Φ∇

j,k = ∇[ϕD
j,k1

⊗ · · · ⊗ ϕD
j,kd

] and V∇
j = span{Φ∇

j,k} (30)

where 1 ≤ ki ≤ Nj − 2 for 1 ≤ i ≤ d. By construction we have :

V∇
j = ∇[V D

j ⊗ · · · ⊗ V D
j ]

The multiresolution decomposition of the space V∇
j leads to :

V∇
j = ∇



V D
jmin

⊗ · · · ⊗ V D
jmin

⊕

jmin≤ji≤j−1





∑

ω∈Ω∗

d

Wω
j







 , 1 ≤ i ≤ d (31)
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with :

Ω∗
d = {0, 1}d \ (0, · · · , 0) and Wω

j =Wω1

j1
⊗ · · · ⊗Wωd

jd

where the spaces Wωi

ji
correspond to :

Wωi

ji
=WD

ji if ωi = 1, Wωi

ji
= V D

jmin
if ωi = 0

Denoting by Ψω
j,k the wavelets of Wω

j , we define the curl-free wavelets and spaces

by :

Ψω,∇

j,k
= ∇ [Ψω

j,k] and Wω,∇

j
= span{Ψω,∇

j,k
} (32)

where ji ≥ jmin and 0 ≤ ki ≤ 2j − 1, for 1 ≤ i ≤ d.

From proposition 1, the spaces spanned by these curl-free functions are
contained in the following BMRA of (L2(Ω))d :

V+
j = V1

j × · · · ×Vd
j with Vi

j = V
1−δ1,i
j ⊗ · · · ⊗ V

1−δd,i
j , 1 ≤ i ≤ d

δi,j denotes the Kronecker symbol. This property allows fast coefficient compu-
tations on irrotational bases.

Since the spaces Vj defined in (29) constitute a multiresolution analysis of
H1

0 (Ω), we get :

H1
0 (Ω) = Vjmin

⊕

ji≥jmin





∑

ω∈Ω∗

d

Wω
j



 , 1 ≤ i ≤ d (33)

Taking the gradient of relation (33) and using again proposition 1, we obtain :

Hcurl(Ω) = V∇
jmin

⊕

ji≥jmin





∑

ω∈Ω∗

d

Wω,∇

j



 , 1 ≤ i ≤ d (34)

This relation (34) was proved in [20] in the case of 2D construction.

4 Wavelet Helmholtz-Hodge decomposition

4.1 Description of the method

The Helmholtz-Hodge decomposition, introduced in section 2, provides the
orthogonal splitting of any vector field u ∈ (L2(Ω))d into a divergence-free part,
a curl-free part, and a gradient of a harmonic function :

u = udiv + ucurl + uhar (35)
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where :

∇ · udiv = 0 and udiv · n = 0

∇× ucurl = 0 and ucurl · τ = 0

∇× uhar = 0 and ∇ · uhar = 0

n and τ are respectively the unit outward normal and tangent to the boundary
∂Ω.

Our aim in this section is to describe a practical way to compute the compo-
nents udiv and ucurl. Our method uses the divergence-free and curl-free scaling
functions and wavelet bases constructed in the previous section.

Since Hdiv(Ω) = span{Ψdiv
j,k} and Hcurl(Ω) = span{Ψ∇

j,k} (we adopt a unified

notation for the wavelet bases), the components udiv and ucurl are searched under
the form of their wavelet series :

udiv =
∑

j,k

ddivj,k Ψdiv
j,k and ucurl =

∑

j,k

d∇j,k Ψ∇

j,k (36)

By orthogonality of the decomposition (35) in (L2(Ω))d, we obtain :

〈u, Ψdiv
j,k〉 = 〈udiv, Ψ

div
j,k〉 and 〈u, Ψ∇

j,k〉 = 〈ucurl, Ψ
∇

j,k〉 (37)

Accordingly the computation of coefficients (ddivj,k) and (d∇j,k) is reduced to the

resolution of two linear systems :

Mdiv(d
div
j,k) = (〈u, Ψdiv

j,k〉) and Mcurl(d
∇

j,k) = (〈u, Ψ∇

j,k〉) (38)

where Mdiv and Mcurl are respectively the Gram matrices of the bases {Ψdiv
j,k}

and {Ψ∇

j,k}.

The above method is nothing but orthogonal projections from (L2(Ω))d to
Hdiv(Ω) and Hcurl(Ω) respectively. In practice, udiv is searched as uj

div ∈ Vdiv
j

for some j, and ucurl as u
j
curl ∈ Vcurl

j . Then we recover from the usual Jackson-
type estimations :

∀ u ∈ Hdiv(Ω) ∩ (Hs(Ω))d, ‖u− uj
div‖(L2(Ω))d ≤ C2−js, 0 ≤ s ≤ r − 1

and

∀ u ∈ Hcurl(Ω) ∩ (Hs(Ω))d, ‖u− uj
curl‖(L2(Ω))d ≤ C2−js, 0 ≤ s ≤ r − 1

where r denotes the approximation order provided by the generator ϕ1.
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The last component uhar of the decomposition (35) is computed by subtrac-
ting udiv and ucurl from u :

uhar = u− udiv − ucurl (39)

4.2 Divergence-free and curl-free Gram matrices computation

In this section we present a practical computation of matricesMdiv andMcurl.
For easy reading, we focus on the matrix Mcurl in the 2D case. The extension to
larger dimensions d > 2 follows readily from this two-dimensional case.

The key idea is to use the tensor structure ofMcurl to reduce the computation.
Let Mj and Rj denote respectively the Gram and stiffness matrices of the 1D
basis {ψD

j,k} :

[Mj ]k,k′ = 〈ψD
j,k, ψ

D
j,k′〉 and [Rj ]k,k′ = 〈(ψD

j,k)
′, (ψD

j,k′)′〉 (40)

The tensor structure of the basis {Ψ∇

j,k} allows to express the inner product

〈Ψ∇

j,k, Ψ
∇

j′,k′〉 in terms of matrix elements (40). By definition of the basis functions

we get :

〈Ψ∇

j,k, Ψ
∇

j′,k′〉 = 〈(ψD
j1,k1

)′⊗ψD
j2,k2

, (ψD
j′
1
,k′

1
)′⊗ψD

j′
2
,k′

2
〉+〈ψD

j1,k1
⊗(ψD

j2,k2
)′, ψD

j′
1
,k′

1
⊗(ψD

j′
2
,k′

2
)′〉

which rewrites :

〈Ψ∇

j,k, Ψ
∇

j′,k′〉 = [Mj ]k1,k′

1
· [Rj ]k2,k′

2
+ [Rj ]k1,k′

1
· [Mj ]k2,k′

2
(41)

Then Mcurl can be decomposed as :

Mcurl = Mj ⊗Rj +Rj ⊗Mj (42)

The tensorial decomposition (42) has for main interest to reduce a 2D matrix-
vector product with Mcurl to matrix-matrix products with Mj and Rj . More
precisely, if (d∇j,k) denotes the vector of curl-free wavelet coefficients of ucurl,

defined in (36), equation (42) leads to :

[Mcurl(d
∇

j,k)] = Mj [d
∇

j,k]Rj +Rj [d
∇

j,k]Mj (43)

where [d∇j,k] denotes the matrix of elements d∇j,k. In practice the matrices only

needed to compute and to store are the 1D matrices Mj and Rj .
Finally, the matrix Mcurl has a sparse structure, due to the compact support

of basis functions. Figure 1 shows the shape of Mcurl, for j = 6, in the case
of Daubechies generators with r = 3 vanishing moments. Remark that in 2D
Mdiv = Mcurl (which is also the stiffness matrix of the Laplacian onto the wavelet
basis {ψD

j1,k1
⊗ ψD

j2,k2
}), since we have :

∀ u,v ∈ H1
0 (Ω);

∫

Ω

curl(u) · curl(v) dx =

∫

Ω

∇u · ∇v dx (44)
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Figure 1. Gram matrices of divergence-free scaling functions (left) and wavelets (right)
built from Daubechies generators with r = 3, jmin = 4, j = 6.

4.3 Right-hand side computations

To solve system (38), we need to compute efficiently inner products 〈u, Ψdiv
j,k〉

and 〈u, Ψ∇

j,k〉. This is achieved by using the decomposition of u in the wavelet

bases in the suitable multiresolution analyses of (L2(Ω))d that contain alterna-
tively the divergence-free or curl-free functions. To illustrate, we will explain the
computation of 〈u, Ψ∇

j,k〉 in the two dimensional case.

Let (d1j,k) and (d2j,k) denote respectively the coefficients of the decomposition

of u = (u1,u2) on the wavelet basis of (V 0
j ⊗ V D

j )× (V D
j ⊗ V 0

j ) :

u1 =
∑

j,k

d1j,k ψ0
j1,k1

⊗ ψD
j2,k2

u2 =
∑

j,k

d2j,k ψD
j1,k1

⊗ ψ0
j2,k2

The computation of inner product 〈u, Ψ∇

j′,k′〉 writes :

〈u, Ψ∇

j′,k′〉 =
∑

j,k

d1j,k 〈ψ0
j1,k1

⊗ ψD
j2,k2

, (ψD
j′
1
,k′

1
)′ ⊗ ψD

j′
2
,k′

2
〉

+
∑

j,k

d2j,k 〈ψD
j1,k1

⊗ ψ0
j2,k2

, ψD
j′
1
,k′

1
⊗ (ψD

j′
2
,k′

2
)′〉

In terms of coefficient matrices [d1j,k] and [d1j,k], it becomes :

[〈u, Ψ∇

j′,k′〉] = C0
j [d1j,k] Mj +Mj [d2j,k] (C

0
j )

t

where C0
j is the stiffness matrix of elements : 〈ψ0

j,k, (ψ
D
j′,k′)′〉. The computation

of the Gram and stiffness matrices Mj , C
0
j is classical [3] (see also [15,19]).
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4.4 Divergence-free and curl-free Gram matrices preconditioning

The tensorial decomposition (42) of Mcurl is used to deduce a preconditioner
from those of matrices Mj ⊗Rj and Rj ⊗Mj . Let Ij be the identity matrix of
dimension (Nj − 2) and IR be the diagonal matrix of Rj :

[Ij ]k,k′ = δk,k′ and [IR]k,k′ = [Rj ]k,k′δk,k′ , 1 ≤ k, k′ ≤ Nj − 2

On one hand, as an optimal (and diagonal) preconditioner of Rj is given by
the inverse of IR (see [6]), readily we deduce optimal diagonal preconditioners of
matrices Mj ⊗Rj and Rj ⊗Mj by respectively the inverse of matrices Ij ⊗ IR
and IR ⊗ Ij .

On the other hand, since Mcurl is the 2D stiffness matrix of a scalar Laplacian
on the basis {ψD

j1,k1
⊗ ψD

j2,k2
}, an optimal preconditioner is given by the inverse

of its diagonal matrix [6]. Then, the inverse of the diagonal matrix Dj defined
by :

Dj = Ij ⊗ IR + IR ⊗ Ij

is an optimal diagonal preconditioner for Mcurl.

However, the matrix Dj has the same size as Mcurl. To reduce the com-
plexity, we replace the 2D matrix-vector product Dj(d

∇

j,k) by the following

matrix-matrix products :

[Dj(d
∇

j,k)] = [d∇j,k]IR + IR[d∇j,k] (45)

Because of the diagonal structure of IR, equation (45) is then reduced to term
by term matrix product :

[Dj(d
∇

j,k)]k,k′ = [d∇j,k]k,k′ · [I∗
R
]k,k′ where [I∗

R
]k,k′ = [IR]k,k + [IR]k′,k′ (46)

From equation (46), multiplying (d∇j,k) by the matrix D−1
j is therefore equivalent

to divide term by term the matrix [d∇j,k] by I∗
R
.

The preconditioner I∗
R

is also valid for the matrix Mdiv in dimension two
(d = 2) since Mdiv = Mcurl.

The performance of the above preconditioner for Mcurl was tested in two and
three dimensions, using a preconditioned conjugate gradient method to solve
system (43). Then we study the number of iterations needed to reach a given
residual, first with respect to the dimension index j, second with respect to the
regularity (approximation order r) of the basis functions. Figure 2 shows that
the number of iterations does not increase significantly with the dimension index
j, in the periodic and non periodic cases, which indicates that our preconditioner
is quasi-optimal.
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Figure 2. Preconditioned conjugate gradient residual versus iteration number, for dif-
ferent values of the dimension index j : periodic case (left) and non periodic case (right).
Daubechies generators ψ1 with r = 3 vanishing moments, jmin = 3 in non periodic
(2D case).

Figure 3 (two-dimensional case) and figure 4 (three-dimensional case) high-
light that the approximation order r speed up the convergence of the resolution.
The behaviour of the slopes are less regular in the non periodic case, because of
the influence of the smallest scale jmin > 0.
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Figure 3. Preconditioned conjugate gradient residuals versus iteration number, for
different values of the approximation order r : periodic case (left) and non periodic
case (right). Daubechies generators ψ1 with r = 3 and r = 4 vanishing moments. The
resolution is j = 10 in two dimension (d = 2).
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Figure 4. Preconditioned conjugate gradient residuals versus iteration number, for
different values of the approximation order r : periodic case (left) and non periodic
case (right). Daubechies generators ψ1 with r = 3 and r = 4 vanishing moments. The
resolution is j = 7 in three dimension (d = 3).

4.5 Examples of Helmholtz-Hodge and Helmholtz decomposition

In this section, we carry out some experiments to illustrate and study the
convergence rate of the Helmholtz-Hodge decomposition. First we show in di-
mension two, the Helmholtz decomposition of a vector field u (Figure 5), and its
Helmholtz-Hodge decomposition (Figure 7). The vector field u was constructed
analytically :

u2D = udiv + ucurl + uhar

where :

udiv =

∣

∣

∣

∣

sin(2πx)2 sin(4πy)
− sin(4πx) sin(2πy)2

, ucurl =

∣

∣

∣

∣

sin(4πx) sin(2πy)2

sin(2πx)2 sin(4πy)
, uhar = (1/2,−1/4)

The terms of the decompositions are computed using the method described pre-
vioulsy.

Then we investigate the convergence rate of the projection error onto the
divergence-free vector space Vdiv

j , in two en three dimensions. The tests have
been performed on analytic fields, which we know the exact solutions. We used
u2D in two dimensions and in three dimensions we used :

u3D =

∣

∣

∣

∣

∣

∣

sin(2πx)2 sin(4πy) sin(4πz) + sin(4πx) sin(2πy)2 sin(2πz)2

sin(4πx) sin(2πy)2 sin(4πz) + sin(2πx)2 sin(4πy) sin(2πz)2

−2 sin(4πx) sin(4πy) sin(2πz)2 + sin(2πx)2 sin(2πy)2 sin(4πz)
(47)
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Figure 5. Example of Helmholtz decomposition.
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Figure 6. Example of Helmholtz-Hodge decomposition.

The solutions verify homogeneous Dirichlet boundary conditions by construction.
Figure 7 plot the ℓ2-projection errors in terms of the dimension index j with
generators of approximation order r = 3. For both experiments (2D and 3D),
the convergence rate follows the theoretical law of −2 predicted in (11).

5 Conclusion

In this paper, we have presented a practical algorithm to compute the Helmholtz-
Hodge decomposition of a vector field in the hypercube. Our method is based on
the existence of divergence-free and irrotational wavelet bases satisfying boun-
dary conditions. After presenting the principles of their construction in any di-
mension, we have detailed the computation of each term of the decomposition,
which requires the inversion of divergence-free and curl-free wavelet Gram ma-
trices. We have used the tensorial structure of the bases to propose an optimal
and diagonal preconditioning, to invert the system using a preconditioned conju-
gate gradient. Numerical tests on 2D and 3D analytical vector fields illustrate
the potential of the approach, in terms of complexity and storage.
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Figure 7. ℓ2-projection error ontoVdiv
j versus j. Two-dimensional case (left) and three-

dimensional case (right). The generators (ϕ1, ϕ̃1) correspond to biorthogonal splines
with : r = r̃ = 3.

Since the Helmholtz-Hodge decomposition is a key ingredient for the analysis
and simulation of incompressible flows, future works will present its application
in numerical schemes for the Stokes and Navier-Stokes equations [19].
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