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This paper deals with the Helmholtz-Hodge decomposition of a vector field in bounded domain. We present a practical algorithm to compute this decomposition in the context of divergence-free and curlfree wavelets satisfying suitable boundary conditions. The method requires the inversion of divergence-free and curl-free wavelet Gram matrices. We propose an optimal preconditioning which allows to solve the systems with a small number of iterations. Finally, numerical examples prove the accuracy and the efficiency of the method.

Introduction

Vector fields analysis is ubiquitous in engineering, physics or applied mathematics. Most of the solutions of problems arising from these domains are vector fields and they have some compatibility properties related to the nature of the problem. This is the case in the numerical simulation of incompressible fluid flows where the velocity field is divergence-free or in electromagnetism where the electric field contained in the electromagnetic field is curl-free.

The Helmholtz-Hodge decomposition, under certain smoothness assumptions, allows to separate any vector field into the sum of three uniquely defined components : divergence-free, curl-free and gradient of a harmonic function. Thus, the Helmholtz-Hodge decomposition provides a powerful tool for several applications such as the resolution of partial differential equations [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF], aerodynamic design [START_REF] Tong | Discrete multiscale vector field decomposition[END_REF], detection of flow features [START_REF] Polthier | Identifying Vector Field Singularities using a Discrete Hodge Decomposition[END_REF] or computer graphics [START_REF] Petronetto | Meshless Helmholtz-Hodge decomposition[END_REF]. Therefore, it is important to have at hand an efficient algorithm to deal with such decomposition numerically.

In case of periodic boundary conditions, Fourier domain offers an ideal setting to compute the Helmholtz-Hodge decomposition, thanks to the Leray projector ⋆. Laboratoire Jean Kuntzmann, University of Grenoble, BP 53 Grenoble Cedex 9, France which writes explicitly [START_REF] Deriaz | Orthogonal Helmholtz decomposition in arbitrary dimension using divergence-free and curl-free wavelets[END_REF]. For more general (physical) boundary conditions, this decomposition is usually achieved by solving a Poisson equation relative to each field component : this is the case when using finite element or finite difference methods [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF]. The well known drawback of these methods is their cost, for example in particle-based physical simulations. Then, one resorts to mesh-less method [START_REF] Petronetto | Meshless Helmholtz-Hodge decomposition[END_REF] or methods leading to variational equations [START_REF] Polthier | Identifying Vector Field Singularities using a Discrete Hodge Decomposition[END_REF].

In wavelet setting the Helmholtz-Hodge decomposition will not use the resolution of a Poisson equation, since one knows explicit bases for the divergence-free and curl-free function spaces [START_REF] Lemarié-Rieusset | Analyses multi-résolutions non orthogonales, commutation entre projecteurs et dérivation et ondelettes vecteurs à divergence nulle[END_REF][START_REF] Urban | Wavelet Bases in H(div) and H(curl)[END_REF][START_REF] Dodu | Irrotational or Divergence-Free Interpolation[END_REF][START_REF] Deriaz | Divergence-free and curl-free wavelets in 2D and 3D, application to turbulent flows[END_REF]. In this context, Urban [START_REF] Urban | Wavelets in Numerical Simulation[END_REF], and latter Deriaz and Perrier [START_REF] Deriaz | Orthogonal Helmholtz decomposition in arbitrary dimension using divergence-free and curl-free wavelets[END_REF] introduced methods to compute the orthogonal projections onto divergence-free and curl-free wavelet bases. These wavelet methods have for main interest to provide accuracy for a small number of degrees of freedom, due to the good nonlinear approximation property provided by wavelet bases [START_REF] Cohen | Numerical Analysis of Wavelet Methods[END_REF]. However, the works of [START_REF] Urban | Wavelets in Numerical Simulation[END_REF][START_REF] Deriaz | Orthogonal Helmholtz decomposition in arbitrary dimension using divergence-free and curl-free wavelets[END_REF] are limited to periodic boundary conditions for lack of suitable bases.

The main objective of this paper is to extend the works of [START_REF] Urban | Wavelets in Numerical Simulation[END_REF][START_REF] Deriaz | Orthogonal Helmholtz decomposition in arbitrary dimension using divergence-free and curl-free wavelets[END_REF] to more general physical boundary conditions. We first present the principles of tensorproduct divergence-free and curl-free wavelet construction on the cube. This construction was detailed in [START_REF] Kadri-Harouna | Divergence-free and Curl-free Wavelets on the Square for Numerical Simulation[END_REF] in the 2D case (see also [START_REF] Kadri-Harouna | Ondelettes pour la prise en compte de conditions aux limites en turbulence incompressible[END_REF]). Then we propose an effective method for the Helmholtz-Hodge decomposition based on the computation and inversion of corresponding Gram matrices. The tensor structure of the bases is fully exploited to reduce the computational complexity. Moreover the system is solved with a low complexity, thanks to an optimal preconditioning. The layout of this paper is as follows. In section 2, we recall the theoretical definition and mathematical background of the Helmholtz-Hodge decomposition on a bounded domain of R d . In section 3 we explicit the construction of divergencefree and curl-free wavelets on [0, 1] d with desired boundary conditions. Section 4 is devoted to the description of the numerical method for the Helmholtz-Hodge decomposition, and numerical examples will illustrate its performance.

Helmholtz-Hodge decomposition

We recall in this section some definitions related to the Helmholtz-Hodge decomposition on a bounded domain Ω of R d [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF]. We assume that Ω is an open subset of R d , bounded and connected with Lipschitz-continuous boundary Γ (see [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF][START_REF] Amrouche | Vector potentials in three dimensional nonsmooth domains[END_REF]).

Definitions

The Helmholtz-Hodge decomposition theorem [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF][START_REF] Chorin | A Mathematical Introduction to Fluid Mechanics[END_REF] states that any vector field u ∈ (L 2 (Ω)) d can be uniquely decomposed into the sum of its divergencefree, curl-free and gradient of harmonic function components :

u = u div + u curl + u har (1) 
with :

∇ • u div = 0 and ∇ × u curl = 0 (2)
The last component u har is both divergence-free and irrotational :

∇ • u har = 0 and ∇ × u har = 0 (3) 
Following [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF][START_REF] Amrouche | Vector potentials in three dimensional nonsmooth domains[END_REF], this decomposition may alternatively be written using vector and scalar potentials. There exist a vector potential (scalar if d = 2) Ψ ∈ (H 1 0 (Ω)) d , a scalar potential q ∈ H 1 0 (Ω) and a harmonic potential h ∈ H 1 (Ω) such as :

u div = curl(Ψ) u curl = ∇q u har = ∇h
Moreover, Ψ, q and h are uniquely defined.

In terms of spaces, the decomposition (1) corresponds to an orthogonal splitting of (L 2 (Ω)) d :

(L 2 (Ω)) d = H div (Ω) ⊕ H curl (Ω) ⊕ H har (Ω) (4) 
where H div (Ω) is the space of divergence-free vector functions of (L 2 (Ω)) d with vanishing tangential boundary condition :

H div (Ω) = {u ∈ (L 2 (Ω)) d : div(u) = 0, u • n| Γ = 0} (5) 
which also coincides (for d = 2, 3) with the curl of potential space :

H div (Ω) = {u = curl(Ψ) : Ψ ∈ (H 1 0 (Ω)) d } (6) (Ψ ∈ H 1 0 (Ω) if d = 2
). On the other side, the space H curl corresponds to the gradient of H 1 (Ω)-potentials which vanish on Γ :

H curl (Ω) = {u = ∇q : q ∈ H 1 0 (Ω)} (7) 
Finally, H har corresponds to the gradient of H 1 (Ω)-harmonic potentials :

H har (Ω) = {u = ∇q : q ∈ H 1 (Ω), ∆q = 0} (8) 
Other splittings exist, for example in (H 1 0 (Ω)) d to incorporate homogeneous boundary conditions [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF].

In the whole space R d or with periodic boundary conditions, the decomposition (1) is explicit in Fourier domain and the third term vanishes : u har = 0 (one obtains the Helmholtz decomposition in this case [START_REF] Deriaz | Orthogonal Helmholtz decomposition in arbitrary dimension using divergence-free and curl-free wavelets[END_REF][START_REF] Urban | Wavelets in Numerical Simulation[END_REF]). In the wavelet context, an iterative procedure was proposed by Deriaz and Perrier [START_REF] Deriaz | Orthogonal Helmholtz decomposition in arbitrary dimension using divergence-free and curl-free wavelets[END_REF]. The purpose here is to extend such method with boundary conditions for the spaces H div (Ω), H curl (Ω) and H har (Ω) introduced in (5, 7, 8).

3 Divergence-free and curl-free wavelets on [0, 1] d This section introduces the principles of the construction and main properties of divergence-free and curl-free wavelets on the hypercube [0, 1] d . The two dimensional case d = 2 has been detailed in [START_REF] Kadri-Harouna | Divergence-free and Curl-free Wavelets on the Square for Numerical Simulation[END_REF], we develop below the extension to more general dimensions. Our construction is based on 1D multiresolution analysis generators (ϕ 1 , φ1 ) and (ϕ 0 , φ0 ) linked by differentiation / integration, and introduced by Lemarié-Rieusset and collaborators in original works [START_REF] Lemarié-Rieusset | Analyses multi-résolutions non orthogonales, commutation entre projecteurs et dérivation et ondelettes vecteurs à divergence nulle[END_REF][START_REF] Jouini | Analyse multirésolution biorthogonale sur l'intervalle et applications[END_REF]. It follows two steps, described in the two forthcoming sections :

(i) Construction of two biorthogonal MRAs of L 2 (0, 1) linked by differentiation / integration.

(ii) Construction of MRAs and wavelet bases of H div (Ω) and H curl (Ω).

3.1 Multiresolution analyses of L 2 (0, 1) linked by differentiation / integration

The construction of regular biorthogonal multiresolution analyses (BMRA) on the interval [0, 1] is now classical (see [START_REF] Cohen | Wavelets on the Interval and Fast Wavelet Transforms[END_REF][START_REF] Chiavassa | On the Effective Construction of Compactly Supported Wavelets Satisfying Homogeneous Boundary Conditions on the Interval[END_REF][START_REF] Monasse | Orthogonal Wavelet Bases Adapted For Partial Differential Equations With Boundary Conditions[END_REF][START_REF] Grivet-Talocia | Wavelet on the interval with optimal localization[END_REF]). It begins with a pair of biorthogonal compactly supported scaling functions (ϕ 1 , φ1 ) [START_REF] Cohen | Biorthogonal bases of compactly supported wavelets[END_REF] of L 2 (R), with some r polynomial reproduction :

x ℓ = k∈Z x ℓ , φ1 (x -k) ϕ 1 (x -k) for 0 ≤ ℓ ≤ r -1 (9) 
and similarly for φ1 , with r polynomial reproduction.

Following classical constructions, one define finite dimensional biorthogonal multiresolution spaces :

V 1 j = span{ϕ 1 j,k ; 0 ≤ k ≤ N j -1} and Ṽ 1 j = span{ φ1 j,k ; 0 ≤ k ≤ N j -1} (10) 
whose dimension N j ≃ 2 j depends on some free integer parameters (δ 0 , δ 1 ). The scaling functions ϕ 1 j,k satisfy ϕ 1 j,k = 2 j/2 ϕ 1 (2 j x -k) "inside" the interval [0, 1], but this is no more true near the boundaries 0 and 1 (idem for φ1 j,k ). In practice, the scale index j must be great than some index j min , to avoid boundary effects. The biorthogonality between bases writes : < ϕ 1 j,k / φ1 j,k ′ >= δ k,k ′ The approximation order provided by such MRA (V 1 j ) in L 2 (0, 1) is r :

∀ f ∈ H s (0, 1), inf fj ∈V 1 j f -f j L 2 (0,1) ≤ C2 -js , 0 ≤ s ≤ r (11) 
whereas ( Ṽ 1 j ) has for approximation order r.

Homogeneous Dirichlet boundary conditions can be simply imposed on (V 1 j ) by removing one scaling function at each boundary 0 and 1 :

V D j = V 1 j ∩ H 1 0 (0, 1) = span{ϕ 1 j,k ; 1 ≤ k ≤ N j -2} (12) 
A possibility to adjust the dimension of the biorthogonal space is also to impose Ṽ D j = Ṽ 1 j ∩ H 1 0 (0, 1), and Ṽ D j rewrites (keeping the same notation for the basis functions, which have changed after biorthogonalization) :

Ṽ D j = span{ φ1 j,k ; 1 ≤ k ≤ N j -2} (13) 
As usual, biorthogonal wavelet spaces (W 1 j , W 1 j ) are defined by :

W 1 j = V 1 j+1 ∩ ( Ṽ 1 j ) ⊥ W 1 j = Ṽ 1 j+1 ∩ (V 1 j ) ⊥ (14) 
and generated by finite dimensional wavelet bases on the interval [START_REF] Monasse | Orthogonal Wavelet Bases Adapted For Partial Differential Equations With Boundary Conditions[END_REF][START_REF] Grivet-Talocia | Wavelet on the interval with optimal localization[END_REF] :

W 1 j = span{ψ 1 j,k ; 0 ≤ k ≤ 2 j -1} and W 1 j = span{ ψ1 j,k ; 0 ≤ k ≤ 2 j -1} (15) 
The difficulty now is to derive a new biorthogonal MRA (V 0 j , Ṽ 0 j ) of L 2 (0, 1) such that :

d dx V 1 j = V 0 j
The existence of such biorthogonal MRA was already proved by Jouini and Lemarié-Rieusset [START_REF] Jouini | Analyse multirésolution biorthogonale sur l'intervalle et applications[END_REF] and it should be based on generators (ϕ 0 , φ0 ) introduced in [START_REF] Lemarié-Rieusset | Analyses multi-résolutions non orthogonales, commutation entre projecteurs et dérivation et ondelettes vecteurs à divergence nulle[END_REF] satisfying :

(ϕ 1 (x)) ′ = ϕ 0 (x) -ϕ 0 (x-1) and ( φ0 (x)) ′ = φ1 (x+1) -φ1 (x) (16) 
In [START_REF] Kadri-Harouna | Divergence-free and Curl-free Wavelets on the Square for Numerical Simulation[END_REF], we proposed a practical construction of spaces (V 0 j , Ṽ 0 j ) :

V 0 j = span{ϕ 0 j,k ; 0 ≤ k ≤ N j -2} and Ṽ 0 j = span{ φ0 j,k ; 0 ≤ k ≤ N j -2} (17) 
satisfying the following proposition.

Proposition 1.

The two BMRAs (V ǫ j , Ṽ ǫ j ) ǫ=0,1 of L 2 (0, 1) constructed in [START_REF] Kadri-Harouna | Divergence-free and Curl-free Wavelets on the Square for Numerical Simulation[END_REF] from biorthogonal generators (ϕ ǫ , φǫ ) ǫ=0,1 satisfying relation [START_REF] Petronetto | Meshless Helmholtz-Hodge decomposition[END_REF], verify :

(i) d dx V 1 j = V 0 j and d dx • P 1 j f = P 0 j • d dx f, ∀ f ∈ H 1 (0, 1) (ii) Ṽ 0 j = H 1 0 (0, 1) ∩ x 0 Ṽ 1 j and d dx • P0 j f = P1 j • d dx f, ∀ f ∈ H 1 0 (0, 1)
where (P ǫ j , Pǫ j ) are the biorthogonal projectors on (V ǫ j , Ṽ ǫ j ).

Wavelet bases of the biorthogonal MRA (V 0 j , Ṽ 0 j ) j≥jmin are simply defined by respectively differentiating and integrating the wavelets of (V 1 j , Ṽ 1 j ) j≥jmin , as stated by the following proposition [START_REF] Jouini | Analyse multirésolution biorthogonale sur l'intervalle et applications[END_REF][START_REF] Kadri-Harouna | Divergence-free and Curl-free Wavelets on the Square for Numerical Simulation[END_REF].

Proposition 2. [START_REF] Jouini | Analyse multirésolution biorthogonale sur l'intervalle et applications[END_REF][START_REF] Kadri-Harouna | Divergence-free and Curl-free Wavelets on the Square for Numerical Simulation[END_REF] Let {ψ 1 j,k } and { ψ1 j,k } be biorthogonal wavelet bases of respectively W 1 j and W 1 j . Then, the wavelets defined by :

ψ 0 j,k = 2 -j (ψ 1 j,k ) ′ and ψ0 j,k = -2 j x 0 ψ1 j,k (18) 
are respectively biorthogonal wavelet bases of W 0 j and W 0 j :

W 0 j = V 0 j+1 ∩ ( Ṽ 0 j ) ⊥ and W 0 j = Ṽ 0 j+1 ∩ (V 0 j ) ⊥ (19) 
3.2 Divergence-free scaling functions and wavelets on [0, 1] d

Le Ω be the hypercube Ω = [0, 1] d . The objective in this section is to derive wavelet bases of the space H div (Ω), with vanishing outward normal at the boundary Γ = ∂Ω. Following ( 5), H div (Ω) is the curl of the space (H 1 0 (Ω)) d (for d = 3, and H 1 0 (Ω) for d = 2) of vector (scalar for d = 2) stream functions. We begin with the description of basis functions in the 2D case (already detailed in [START_REF] Kadri-Harouna | Divergence-free and Curl-free Wavelets on the Square for Numerical Simulation[END_REF]), then we generalize the construction for d ≥ 3.

Two-dimensional case :

We start with the 2D MRA (V D j ⊗V D j ) j≥jmin of H 1 0 (Ω), where (V D j ) j≥jmin is the 1D MRA of H 1 0 (0, 1) defined in section 3.1 [START_REF] Grivet-Talocia | Wavelet on the interval with optimal localization[END_REF]. For each scale index j ≥ j min , divergence-free scaling functions on Ω = [0, 1] 2 are constructed by taking the curl of scaling functions of V D j ⊗ V D j :

Φ div j,k := curl[ϕ D j,k1 ⊗ ϕ D j,k2 ] = ϕ D j,k1 ⊗ (ϕ D j,k2 ) ′ -(ϕ D j,k1 ) ′ ⊗ ϕ D j,k2 , 1 ≤ k 1 , k 2 ≤ N j -2 (20)
The choice of space V D j ensures that the divergence-free scaling functions satisfy the boundary condition Φ div j,k • n = 0 by construction. Let V div j be the space spanned by these divergence-free scaling functions :

V div j = span{Φ div j,k }, 1 ≤ k 1 , k 2 ≤ N j -2 (21) 
By construction, the spaces V div j form a multiresolution analysis of H div (Ω), since it can be proven from proposition 1 that we have [START_REF] Kadri-Harouna | Divergence-free and Curl-free Wavelets on the Square for Numerical Simulation[END_REF] :

V div j = (V D j ⊗ V 0 j ) × (V 0 j ⊗ V D j ) ∩ H div (Ω) (22) 
In the same manner, the corresponding anisotropic divergence-free wavelets on Ω are defined by taking the curl of the three types of scalar anisotropic wavelets associated to V D j ⊗ V D j : for j = (j 1 , j 2 ), with j 1 , j 2 > j min ,

Ψ div,1 j,k := curl[ϕ D jmin,k ⊗ ψ D j2,k2 ], 1 ≤ k ≤ N jmin -2, 0 ≤ k 2 ≤ 2 j2 -1 Ψ div,2 j,k := curl[ψ D j1,k1 ⊗ ϕ D jmin,k ], 0 ≤ k 1 ≤ 2 j1 -1, 1 ≤ k ≤ N jmin -2 Ψ div,3 j,k := curl[ψ D j1,k1 ⊗ ψ D j2,k2 ], 0 ≤ k 1 ≤ 2 j1 -1, 0 ≤ k 2 ≤ 2 j2 -1 (ψ D j,k ) being the wavelet basis of W D j = V D j+1 ∩ ( Ṽ D j ) ⊥ .
Three-dimensional case : Divergence-free scaling functions and wavelets on Ω = [0, 1] 3 are constructed by taking the curl of suitable scaling functions and wavelets of (H 1 0 (Ω)) 3 . We will focus on the scaling function construction, since the same technique is used for wavelets. The divergence-free scaling functions are defined by :

Φ div 1,j,k := curl 0 0 ϕ D j,k1 ⊗ ϕ D j,k2 ⊗ (ϕ D j,k3 ) ′ = ϕ D j,k1 ⊗ (ϕ D j,k2 ) ′ ⊗ (ϕ D j,k3 ) ′ -(ϕ D j,k1 ) ′ ⊗ ϕ D j,k2 ⊗ (ϕ D j,k3 ) ′ 0 (23) Φ div 2,j,k := curl (ϕ D j,k1 ) ′ ⊗ ϕ D j,k2 ⊗ ϕ D j,k3 0 0 = 0 (ϕ D j,k1 ) ′ ⊗ ϕ D j,k2 ⊗ (ϕ D j,k3 ) ′ -(ϕ D j,k1 ) ′ ⊗ (ϕ D j,k2 ) ′ ⊗ ϕ D j,k3 (24) 
Φ div 3,j,k := curl

0 ϕ D j,k1 ⊗ (ϕ D j,k2 ) ′ ⊗ ϕ D j,k3 0 = -ϕ D j,k1 ⊗ (ϕ D j,k2 ) ′ ⊗ (ϕ D j,k3 ) ′ 0 (ϕ D j,k1 ) ′ ⊗ (ϕ D j,k2 ) ′ ⊗ ϕ D j,k3 (25) 
where 1 ≤ k 1 , k 2 , k 3 ≤ N j -2. These functions are contained in H div (Ω) by construction. The space V div j spanned by this family is included into the following standard BMRA of (L 2 (Ω)) 3 :

V j = V 1 j ⊗ V 0 j ⊗ V 0 j × V 0 j ⊗ V 1 j ⊗ V 0 j × V 0 j ⊗ V 0 j ⊗ V 1 j ( 26 
)
which makes it easy the coefficient computations on divergence-free bases. To each scaling function, we can associate 7 types of anisotropic divergence-free generating wavelets by taking respectively the curl of wavelets of

{0} × {0} × (V D j ⊗ V D j ⊗ V 0 j ), (V 0 j ⊗ V D j ⊗ V D j ) × {0} × {0} and {0} × (V D j ⊗ V 0 j ⊗ V D j ) × {0}.
As scaling functions Φ div 1,j,k , Φ div 2,j,k and Φ div 3,j,k , their corresponding divergencefree wavelets are also linearly dependent. To construct a multiresolution analysis and wavelet bases of H div (Ω), we need to keep only two scaling functions and their 14 corresponding generating wavelets.

The construction extends to larger dimensions d > 0 readily. As in the isotropic construction of Lemarié-Rieusset [START_REF] Lemarié-Rieusset | Analyses multi-résolutions non orthogonales, commutation entre projecteurs et dérivation et ondelettes vecteurs à divergence nulle[END_REF], we obtain in this case (d -1) types of linear independent divergence-free scaling functions and (d -1)(2 d -1) types of corresponding divergence-free wavelets. For 1 ≤ i ≤ d -1, the general formula of these scaling function is given by :

Φ div i,j,k := 0 . . . 0 arrow i → (ϕ D j,k1 ) ′ ⊗ • • • ⊗ (ϕ D j,ki-1 ) ′ ⊗ ϕ D j,ki ⊗ (ϕ D j,ki+1 ) ′ ⊗ • • • ⊗ (ϕ D j,k d ) ′ arrow i + 1 → -(ϕ D j,k1 ) ′ ⊗ • • • ⊗ (ϕ D j,ki ) ′ ⊗ ϕ D j,ki+1 ⊗ (ϕ D j,ki+2 ) ′ ⊗ • • • ⊗ (ϕ D j,k d ) ′ 0 . . . 0
(27) The scaling functions Φ div i,j,k satisfy the boundary condition : Φ div i,j,k • n = 0, by construction. The space V div j spanned by this family is included into the following standard BMRA of (L 2 (Ω)) d :

V j = V 1 j × • • • × V d j with V i j = V δ1,i j ⊗ • • • ⊗ V δ d,i j , 1 ≤ i ≤ d (28) 
δ i,j denotes the Kronecker symbol.

Curl-free scaling functions and wavelets on [0, 1] d

The construction of irrotational scaling functions and wavelets is easier than in the case of divergence-free functions, since it does not depend on the dimension d. According to the definition ( 7) of H curl (Ω), basis functions will be constructed by taking the gradient of scaling functions and wavelets of a multiresolution analysis of H 1 0 (Ω).

The starting point is again a regular multiresolution analysis of H 1 0 (Ω) given by d tensor-product of V D j :

V j = V D j ⊗ • • • ⊗ V D j (29) 
Then, the curl-free scaling functions of H curl (Ω) are defined by :

Φ ∇ j,k = ∇[ϕ D j,k1 ⊗ • • • ⊗ ϕ D j,k d ] and V ∇ j = span{Φ ∇ j,k } (30) 
where 1 ≤ k i ≤ N j -2 for 1 ≤ i ≤ d. By construction we have :

V ∇ j = ∇[V D j ⊗ • • • ⊗ V D j ]
The multiresolution decomposition of the space V ∇ j leads to :

V ∇ j = ∇   V D jmin ⊗ • • • ⊗ V D jmin jmin≤ji≤j-1   ω∈Ω * d W ω j     , 1 ≤ i ≤ d (31) 
with :

Ω * d = {0, 1} d \ (0, • • • , 0) and W ω j = W ω1 j1 ⊗ • • • ⊗ W ω d j d
where the spaces W ωi ji correspond to :

W ωi ji = W D ji if ω i = 1, W ωi ji = V D jmin if ω i = 0
Denoting by Ψ ω j,k the wavelets of W ω j , we define the curl-free wavelets and spaces by :

Ψ ω,∇ j,k = ∇ [Ψ ω j,k ] and W ω,∇ j = span{Ψ ω,∇ j,k } (32) 
where j i ≥ j min and 0

≤ k i ≤ 2 j -1, for 1 ≤ i ≤ d.
From proposition 1, the spaces spanned by these curl-free functions are contained in the following BMRA of (L 2 (Ω)) d :

V + j = V 1 j × • • • × V d j with V i j = V 1-δ1,i j ⊗ • • • ⊗ V 1-δ d,i j , 1 ≤ i ≤ d δ i,j
denotes the Kronecker symbol. This property allows fast coefficient computations on irrotational bases.

Since the spaces V j defined in (29) constitute a multiresolution analysis of H 1 0 (Ω), we get :

H 1 0 (Ω) = V jmin ji≥jmin   ω∈Ω * d W ω j   , 1 ≤ i ≤ d (33) 
Taking the gradient of relation (33) and using again proposition 1, we obtain :

H curl (Ω) = V ∇ jmin ji≥jmin   ω∈Ω * d W ω,∇ j   , 1 ≤ i ≤ d (34) 
This relation (34) was proved in [START_REF] Kadri-Harouna | Divergence-free and Curl-free Wavelets on the Square for Numerical Simulation[END_REF] in the case of 2D construction.

4 Wavelet Helmholtz-Hodge decomposition

Description of the method

The Helmholtz-Hodge decomposition, introduced in section 2, provides the orthogonal splitting of any vector field u ∈ (L 2 (Ω)) d into a divergence-free part, a curl-free part, and a gradient of a harmonic function :

u = u div + u curl + u har (35) 
where :

∇ • u div = 0 and u div • n = 0 ∇ × u curl = 0 and u curl • τ = 0 ∇ × u har = 0 and ∇ • u har = 0
n and τ are respectively the unit outward normal and tangent to the boundary ∂Ω.

Our aim in this section is to describe a practical way to compute the components u div and u curl . Our method uses the divergence-free and curl-free scaling functions and wavelet bases constructed in the previous section.

Since H div (Ω) = span{Ψ div j,k } and H curl (Ω) = span{Ψ ∇ j,k } (we adopt a unified notation for the wavelet bases), the components u div and u curl are searched under the form of their wavelet series :

u div = j,k d div j,k Ψ div j,k and u curl = j,k d ∇ j,k Ψ ∇ j,k (36) 
By orthogonality of the decomposition (35) in (L 2 (Ω)) d , we obtain :

u, Ψ div j,k = u div , Ψ div j,k and u, Ψ ∇ j,k = u curl , Ψ ∇ j,k (37) 
Accordingly the computation of coefficients (d div j,k ) and (d ∇ j,k ) is reduced to the resolution of two linear systems :

M div (d div j,k ) = ( u, Ψ div j,k ) and M curl (d ∇ j,k ) = ( u, Ψ ∇ j,k ) ( 38 
)
where M div and M curl are respectively the Gram matrices of the bases {Ψ div j,k } and {Ψ ∇ j,k }.

The above method is nothing but orthogonal projections from (L 2 (Ω)) d to H div (Ω) and H curl (Ω) respectively. In practice, u div is searched as u j div ∈ V div j for some j, and u curl as u j curl ∈ V curl j . Then we recover from the usual Jacksontype estimations :

∀ u ∈ H div (Ω) ∩ (H s (Ω)) d , u -u j div (L 2 (Ω)) d ≤ C2 -js , 0 ≤ s ≤ r -1 and ∀ u ∈ H curl (Ω) ∩ (H s (Ω)) d , u -u j curl (L 2 (Ω)) d ≤ C2 -js , 0 ≤ s ≤ r -1
where r denotes the approximation order provided by the generator ϕ 1 .

The last component u har of the decomposition ( 35) is computed by subtracting u div and u curl from u :

u har = u -u div -u curl (39)
4.2 Divergence-free and curl-free Gram matrices computation

In this section we present a practical computation of matrices M div and M curl . For easy reading, we focus on the matrix M curl in the 2D case. The extension to larger dimensions d > 2 follows readily from this two-dimensional case.

The key idea is to use the tensor structure of M curl to reduce the computation. Let M j and R j denote respectively the Gram and stiffness matrices of the 1D basis {ψ D j,k } :

[M j ] k,k ′ = ψ D j,k , ψ D j,k ′ and [R j ] k,k ′ = (ψ D j,k ) ′ , (ψ D j,k ′ ) ′ (40)
The tensor structure of the basis {Ψ ∇ j,k } allows to express the inner product Ψ ∇ j,k , Ψ ∇ j ′ ,k ′ in terms of matrix elements (40). By definition of the basis functions we get :

Ψ ∇ j,k , Ψ ∇ j ′ ,k ′ = (ψ D j 1 ,k 1 ) ′ ⊗ψ D j 2 ,k 2 , (ψ D j ′ 1 ,k ′ 1 ) ′ ⊗ψ D j ′ 2 ,k ′ 2 + ψ D j 1 ,k 1 ⊗(ψ D j 2 ,k 2 ) ′ , ψ D j ′ 1 ,k ′ 1 ⊗(ψ D j ′ 2 ,k ′ 2 ) ′
which rewrites :

Ψ ∇ j,k , Ψ ∇ j ′ ,k ′ = [M j ] k1,k ′ 1 • [R j ] k2,k ′ 2 + [R j ] k1,k ′ 1 • [M j ] k2,k ′ 2 (41)
Then M curl can be decomposed as :

M curl = M j ⊗ R j + R j ⊗ M j ( 42 
)
The tensorial decomposition (42) has for main interest to reduce a 2D matrixvector product with M curl to matrix-matrix products with M j and R j . More precisely, if (d ∇ j,k ) denotes the vector of curl-free wavelet coefficients of u curl , defined in (36), equation (42) leads to :

[M curl (d ∇ j,k )] = M j [d ∇ j,k ]R j + R j [d ∇ j,k ]M j (43) 
where [d ∇ j,k ] denotes the matrix of elements d ∇ j,k . In practice the matrices only needed to compute and to store are the 1D matrices M j and R j .

Finally, the matrix M curl has a sparse structure, due to the compact support of basis functions. Figure 1 shows the shape of M curl , for j = 6, in the case of Daubechies generators with r = 3 vanishing moments. Remark that in 2D M div = M curl (which is also the stiffness matrix of the Laplacian onto the wavelet basis {ψ D j1,k1 ⊗ ψ D j2,k2 }), since we have : 

∀ u, v ∈ H 1 0 (Ω); Ω curl(u) • curl(v) dx = Ω ∇u • ∇v dx (44) 

Right-hand side computations

To solve system (38), we need to compute efficiently inner products u, Ψ div j,k and u, Ψ ∇ j,k . This is achieved by using the decomposition of u in the wavelet bases in the suitable multiresolution analyses of (L 2 (Ω)) d that contain alternatively the divergence-free or curl-free functions. To illustrate, we will explain the computation of u, Ψ ∇ j,k in the two dimensional case.

Let (d 1 j,k ) and (d 2 j,k ) denote respectively the coefficients of the decomposition of u = (u 1 , u 2 ) on the wavelet basis of (V 0 j ⊗ V D j ) × (V D j ⊗ V 0 j ) :

u 1 = j,k d 1 j,k ψ 0 j1,k1 ⊗ ψ D j2,k2 u 2 = j,k d 2 j,k ψ D j1,k1 ⊗ ψ 0 j2,k2
The computation of inner product u, Ψ ∇ j ′ ,k ′ writes :

u, Ψ ∇ j ′ ,k ′ = j,k d 1 j,k ψ 0 j1,k1 ⊗ ψ D j2,k2 , (ψ D j ′ 1 ,k ′ 1 ) ′ ⊗ ψ D j ′ 2 ,k ′ 2 + j,k d 2 j,k ψ D j1,k1 ⊗ ψ 0 j2,k2 , ψ D j ′ 1 ,k ′ 1 ⊗ (ψ D j ′ 2 ,k ′ 2 ) ′ In terms of coefficient matrices [d 1 j,k ] and [d 1 j,k ], it becomes : [ u, Ψ ∇ j ′ ,k ′ ] = C 0 j [d 1 j,k ] M j + M j [d 2 j,k ] (C 0 j ) t
where C 0 j is the stiffness matrix of elements :

ψ 0 j,k , (ψ D j ′ ,k ′ ) ′ .
The computation of the Gram and stiffness matrices M j , C 0 j is classical [START_REF] Beylkin | On the representation of operator in bases of compactly supported wavelets[END_REF] (see also [START_REF] Monasse | Orthogonal Wavelet Bases Adapted For Partial Differential Equations With Boundary Conditions[END_REF][START_REF] Kadri-Harouna | Ondelettes pour la prise en compte de conditions aux limites en turbulence incompressible[END_REF]).

Divergence-free and curl-free Gram matrices preconditioning

The tensorial decomposition (42) of M curl is used to deduce a preconditioner from those of matrices M j ⊗ R j and R j ⊗ M j . Let I j be the identity matrix of dimension (N j -2) and I R be the diagonal matrix of R j :

[I j ] k,k ′ = δ k,k ′ and [I R ] k,k ′ = [R j ] k,k ′ δ k,k ′ , 1 ≤ k, k ′ ≤ N j -2
On one hand, as an optimal (and diagonal) preconditioner of R j is given by the inverse of I R (see [START_REF] Cohen | Numerical Analysis of Wavelet Methods[END_REF]), readily we deduce optimal diagonal preconditioners of matrices M j ⊗ R j and R j ⊗ M j by respectively the inverse of matrices I j ⊗ I R and I R ⊗ I j .

On the other hand, since M curl is the 2D stiffness matrix of a scalar Laplacian on the basis {ψ D j1,k1 ⊗ ψ D j2,k2 }, an optimal preconditioner is given by the inverse of its diagonal matrix [START_REF] Cohen | Numerical Analysis of Wavelet Methods[END_REF]. Then, the inverse of the diagonal matrix D j defined by :

D j = I j ⊗ I R + I R ⊗ I j
is an optimal diagonal preconditioner for M curl .

However, the matrix D j has the same size as M curl . To reduce the complexity, we replace the 2D matrix-vector product D j (d ∇ j,k ) by the following matrix-matrix products :

[D j (d ∇ j,k )] = [d ∇ j,k ]I R + I R [d ∇ j,k ] (45) 
Because of the diagonal structure of I R , equation ( 45) is then reduced to term by term matrix product :

[D j (d ∇ j,k )] k,k ′ = [d ∇ j,k ] k,k ′ • [I * R ] k,k ′ where [I * R ] k,k ′ = [I R ] k,k + [I R ] k ′ ,k ′ (46)
From equation (46), multiplying (d ∇ j,k ) by the matrix D -1 j is therefore equivalent to divide term by term the matrix [d ∇ j,k ] by I * R .

The preconditioner I * R is also valid for the matrix M div in dimension two (d = 2) since M div = M curl .

The performance of the above preconditioner for M curl was tested in two and three dimensions, using a preconditioned conjugate gradient method to solve system (43). Then we study the number of iterations needed to reach a given residual, first with respect to the dimension index j, second with respect to the regularity (approximation order r) of the basis functions. Figure 2 shows that the number of iterations does not increase significantly with the dimension index j, in the periodic and non periodic cases, which indicates that our preconditioner is quasi-optimal. 

Examples of Helmholtz-Hodge and Helmholtz decomposition

In this section, we carry out some experiments to illustrate and study the convergence rate of the Helmholtz-Hodge decomposition. First we show in dimension two, the Helmholtz decomposition of a vector field u (Figure 5), and its Helmholtz-Hodge decomposition (Figure 7). The vector field u was constructed analytically :

u 2D = u div + u curl + u har where :

u div = sin(2πx) 2 sin(4πy) -sin(4πx) sin(2πy) 2 , u curl = sin(4πx) sin(2πy) 2 sin(2πx) 2 sin(4πy) , u har = (1/2, -1/4)
The terms of the decompositions are computed using the method described previoulsy.

Then we investigate the convergence rate of the projection error onto the divergence-free vector space V div j , in two en three dimensions. The tests have been performed on analytic fields, which we know the exact solutions. We used u 2D in two dimensions and in three dimensions we used : u 3D = sin(2πx) 2 sin(4πy) sin(4πz) + sin(4πx) sin(2πy) 2 sin(2πz) 2 sin(4πx) sin(2πy) 2 sin(4πz) + sin(2πx) 2 sin(4πy) sin(2πz) 2 -2 sin(4πx) sin(4πy) sin(2πz) 2 + sin(2πx) 2 sin(2πy) 2 sin(4πz) (47) The solutions verify homogeneous Dirichlet boundary conditions by construction. Figure 7 plot the ℓ 2 -projection errors in terms of the dimension index j with generators of approximation order r = 3. For both experiments (2D and 3D), the convergence rate follows the theoretical law of -2 predicted in [START_REF] Girault | Finite element methods for Navier-Stokes equations[END_REF].

Conclusion

In this paper, we have presented a practical algorithm to compute the Helmholtz-Hodge decomposition of a vector field in the hypercube. Our method is based on the existence of divergence-free and irrotational wavelet bases satisfying boundary conditions. After presenting the principles of their construction in any dimension, we have detailed the computation of each term of the decomposition, which requires the inversion of divergence-free and curl-free wavelet Gram matrices. We have used the tensorial structure of the bases to propose an optimal and diagonal preconditioning, to invert the system using a preconditioned conjugate gradient. Numerical tests on 2D and 3D analytical vector fields illustrate the potential of the approach, in terms of complexity and storage. Since the Helmholtz-Hodge decomposition is a key ingredient for the analysis and simulation of incompressible flows, future works will present its application in numerical schemes for the Stokes and Navier-Stokes equations [START_REF] Kadri-Harouna | Ondelettes pour la prise en compte de conditions aux limites en turbulence incompressible[END_REF].
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