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Abstract

We present a construction of divergence-free and curl-free wavelets on the square, that could
satisfy suitable boundary conditions. This construction is based on the existence of biorthogonal
multiresolution analyses (BMRA) on [0, 1], linked by differentiation and integration. We introduce
new BMRAs and wavelets for the spaces of divergence-free and curl-free vector functions on the
square. The interest of such constructions is illustrated on examples including the Helmholtz-Hodge
decomposition of vector flows and the Stokes problem.

1 Introduction

In many physical problems, like the numerical simulation of incompressible flows or in
electromagnetism, the solution has to fulfill a divergence-free condition. For the numer-
ical treatment of the relevant equations (Navier-Stokes equation in fluid mechanism or
Maxwell’s equation in electromagnetism) it is helpful to have at hand bases satisfying
a divergence-free or a curl-free condition. In the context of solution schemes for Partial
Differential Equations, wavelet bases provide very efficient algorithms, characterized by a
reduced computational complexity, with respect to standard methods[7]. Divergence-free
wavelet bases on R?, with compact support, were originally defined by Lemarié-Rieusset in
1992[20] and applied by Urban to the numerical solution of the Stokes-problem[25]. In the
periodic case, anisotropic divergence-free wavelets have been constructed in[15], and firstly
used to compute the numerical solution of the Navier-Stokes equation in velocity-pressure
formulation[14]. Such numerical scheme requires, at each time-step, the Helmholtz-Hodge
decomposition of the nonlinear term, which is no more divergence-free. In Fourier space,
this decomposition writes explicitly, whereas in wavelet domain, it can be computed using
divergence-free and curl-free wavelets [26, 13]. In the general case with physical bound-
ary conditions, it is the key of Navier-Stokes numerical simulations to have at hand an
explicit and efficient procedure to compute the Helmholtz-Hodge decomposition of the
nonlinear term.

Precisely, the Helmholtz-Hodge decomposition of a vector field u on the square €2 =
0, 1] consists in splitting u into a divergence-free part and a curl-free part[16]. A first
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formulation leading to an orthogonal splitting is the following: there exist a stream
function v and a potential field ¢ such that:

u=curly+Vqg in Q (1)
curl - v =0 on ['=00

where 7 is the outward normal to I'. This decomposition corresponds to the orthogonal
splitting of the space (L*())*:
(L3 ())? = Haio,r () @ Hgi, () (2)
where
Haiwr(Q) = {u € (L*(Q))? : div(u) =0, u- 7|r = 0}

is the divergence-free function space with velocity tangent to the boundary. It can also
be seen as the "curl” space:

Haiw(Q) = {u=curl ¥ ; ¥ € H}(Q)}
On the other side the space of gradient functions
Hiin(Q) = {Va; g€ H(Q)}
corresponds to a curl-free function space[16].

Other types of boundary conditions for the divergence-free space can be considered.
For instance, the decomposition:

(L*(Q))* = Hai(Q) ® {Vq ; q € Hy(Q)} (3)
where now
Hain(Q) = {u e (L*(Q))? : div(u) =0} = {u=curl ¢ ; v € H(Q)}

does not incorporate boundary condition on I'. In fluid mechanism, this type of boundary
condition is less considered since in general I' corresponds to a physical wall that cannot be
crossed by fluid particles (except for porous media). A more useful condition corresponds
to the homogeneous Dirichlet boundary condition on I', which leads to:

(Hy())* = Hain,0 () © Hgin o () (4)

where now

%div,O(Q) = %dw<Q) N (H(} (Q))2

while H;, o(2) is a subspace of H;, () N (Hj())?, see[16] for details. For sake of
simplicity, we will focus in this article to the divergence-free spaces being involved in
decompositions (3,4).

Accordingly, the objective of the present paper is to provide multiresolution analyses
and wavelet bases of the spaces Ha;,(2) and Hg (). We present in the next section
a new construction, based on wavelets on the interval [0, 1] that should satisfy homoge-
neous boundary conditions, like in [21]. The key idea of our construction is based on
a couple of wavelet bases on the interval, linked by differentiation, like in the theoret-
ical approach of Jouini-Lemarié-Rieusset[18]. The construction of divergence-free and
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curl-free approximation spaces and wavelets satisfying suitable boundary conditions are
then straightforward. Moreover, our method extends readily to the cube [0.1]¢ by tensor
product [22].

The outline of the paper is as follows. Section 2 details the principles of the con-
struction of divergence-free and curl-free BMRAs and wavelets on the square. Section
3 is dedicated to the description of the divergence-free fast wavelet transform. Finally,
section 4 presents two examples of use of these new wavelets in numerical simulations:
the Helmholtz decompositions and the Stokes problem.

2 Divergence-free and curl-free wavelets on the square

Divergence-free wavelets on the whole space R? have been firstly constructed by Battle-
Federbush [2] in the orthogonal case. Since these previous functions don’t have compact
support they where not implemented, contrarily to the biorthogonal bases arising from
the construction proposed by Lemarié-Rieusset in [20]. Urban was the first who used
them in a practical problem, the Stokes problem [25]. Later, Urban proposed to extend
this construction to derive curl-free wavelets [26]. An alternative fast decomposition into
divergence-free wavelets was proposed by Deriaz-Perrier, based on anisotropic (tensor-
product) wavelets in the periodic case [15]. The objective below is to extend these con-
structions to the square [0, 1]?, following the construction principle already exposed in
the theoretical work of Jouini-Lemarié-Rieusset [18].

2.1 Construction principle

The construction of divergence-free wavelets on the cube [0, 1]¢ uses the same arguments
as in the whole domain R? [20, 18]. The key ingredient is to have at hand two one-
dimensional multiresolution analyses (V}') and (V}) of L*(0, 1) linked by differentiation:

d .

0
dr 7 Vi (5)

On the interval [0, 1], following [18], the biorthogonal spaces should satisfy:
= monn [ 7={r: revimd 10)=10) -0} (6)

The existence of such spaces follows from the fundamental proposition of Lemarié-Rieusset,
used at the begining to construct divergence-free wavelets on the whole space R [20]:

Proposition 2.1
Let (V}(R)) be a multiresolution analysis (MRA) of L*(R), with differentiable and com-

pactly supported scaling function @' and associated wavelet 1'. Then there exists a MRA
(VP(R)), with associated scaling function ©° and wavelet ¢°, such that:

() (@) = ¢’(x) = ¢’(e—=1) and (') (2) = 4¢°(x) (7)
Similar relations hold for the dual functions (@171;1) and <g50,1;0> of the primal ones
(!, 1) and (% ¢°):

/xﬁwm:wm and  (@%)(2) = —4 §'(x) (8)



In [18], Jouini-Lemarié-Rieusset prove that from the scaling functions (!, @), (%, @%)
and wavelets (1, 11), (¢°,9%) of proposition 2.1, it is possible to exhibit multiresolution
analyses on the interval satisfying the relations (5,6).

Our objective in the present paper is first to provide an effective construction of such
multiresolution analyses, which enable boundary conditions, fast wavelet algorithms, ap-
proximation results and practical computations. This is done in section 2.2.1.

Then the construction of biorthogonal MRAs and wavelets bases of H,(£2) (with
suitable boundary conditions) and Hg;, (), are obtained by considering resp. the curl
of (V) ® V}'), and the grad of (V}! ® V}'). This will be described in section 2.3.

2.2 Construction of biorthogonal MRAs on [0, 1] linked by differentiation

We detail now the construction of spaces (V}', V1) and (V?, V?) satistying (5) and (6). We
proceed in two steps. The first step (construction of (V}', \N/jl), section 2.2.1) is classical and
based on biorthogonal multiresolution analyses on the interval reproducing polynomials
9, 11, 21, 17, 4], but it is needed to introduce the sekels. The second step (section 2.2.2)
introduces a practical and new way to provide spaces (Vjo, ‘7j0) and associated wavelets.

It is based on proposition 2.1.

2.2.1 Construction of (V}', f/]l) on [0,1] with polynomial reproduction (r,7)

We first recall the definition of a biorthogonal multiresolution analysis (BMRA) on [0, 1]
[18, 8]

Definition 2.1

The sequence (le,le), J = Jmin (Jmin € N*) is a biorthogonal MRA of approximation
order (r,7) on the interval [0,1] associated to the generators (o', @), if it satisfies:

(i) Vi c Vi, Vit Vi and Uss;, Vi = Ugzg,, Vi = L2(0,1).

(i) Vi C Vi C VIR oy, Vi € V) C VI (R)jpy-

(111) le and le are finite dimensional biorthogonal spaces spanned by biorthogonal bases
{ojp: kEA} and {@],: k€ Aj}< ), Pl >= Ok, ¥V kK € A

(iv) V}l and ‘7j1 have respectively r and 1 polynomial exactness.

In point (ii), V;'(R)[jo,1) means the restriction of V;'(R)-functions to the interval [0, 1],
whereas le’mt means interior functions of le (R), as introduced below (definitions 2.2,2.4),

and same for the biorthogonal spaces. The dimension A; & 27 of spaces le and f/jl will
be explicited later.

To construct such spaces (le, f/jl), as described in the numerous and now classical
approaches [9, 11, 21, 17, 4], we start with generators (!, $'), that are biorthogonal
scaling functions of a BMRA on R. We suppose that ¢! is compactly supported on

[Mmin, Mmaz] and reproduces polynomials up to degree r — 1:

¢ +oo
X -
0<t<r—1 =3 pk) ¢k 9)

k=—o0



with pj(k) = (%,@1(1‘ — k)). We suppose also that @' reproduces polynomials up to
degree 17 — 1:
¢ +oo

0<l<i—1, %: S (k) @z — k) (10)

k=—0c0
with pb(k) = (%, 9" (z — k).

To define a BMRA on [0, 1] we first define the set of interior scaling functions:

Definition 2.2
Let ¢6,, 0y € N be two fized parameters. For j > 0, interior scaling functions of le are

defined as scaling functions ¢}, (x) = 217%p' (272 — k) whose supports are included into

[%’1 - ;;_H - [071]'

If supp ©" = [Nmins Nmaz), they correspond to indices k such that:
8y = Tnin <k < 2 — 8y — Mg
The space generated by interior scaling functions is then given by:
le’mt = span{;, ; k =ky, 20—k}

with ky = 0, — Nnin and  ky = 04 + Nynga -

Similarly, let b, Sﬁ € N be two parameters. Interior scaling functions of f/jl are defined

as scaling functions ¢} () = 21/2¢Y (272 — k) whose supports are included into [S—*’ 1— %]

27
The space generated by interior scaling functions is then given by:

\~/j1’mt = span{ @}, ; k = ky, 20— ky}

with ky = 8 — fipin  and l;:ﬁ = Sﬁ + Tomaz, if the support of @ is [Fmin, Nmaz) -

Remark 1 o
The parameters (8, 03, 0, O4) are “free” parameters (chosen as small as possible), and
chosen in practice to adjust the dimension of the spaces le and le.

To preserve the polynomial reproduction (9, 10) on the interval [0, 1], we follow the
approach of [21, 4] and define edge scaling functions at the edge 0:

Definition 2.3
The edge scaling functions at the edge 0 are defined by:

ky—1
0<(<r—1, & @) = Y pik) oh(x) Xporoof

k=1—nmax
and the duals:
k,—1

0<(<i—1, ®@)= > pik) Phx) Xt

kzl*'ﬁmaz



At the edge 1, the edge scaling functions @}7’2 are constructed on | — 0o, 1] by symmetry,
using the transform 7'f(x) = f(1 — x).

As usual, one define the multiresolution spaces le on [0, 1], by the direct sum:
1_ 1/1b Lyint 14
Vi=ver ey, (1
where:

V!’ = span{27/?®)"(2x) ; £=0,--- ,r — 1}

le,ﬁ — span{Qj/2<I>;’ﬁ(2j(1 —2)); £=0,---,r—1}

are the edge spaces. In practice we have to choose j > jin Where J,,.:, is the smallest
integer which verifies:

jmin > 10g2 [nmax — Nnin + (Sﬁ + 5b]

This condition ensures that the supports of edge scaling functions at 0 do not intersect
the supports of edge scaling functions at 1.

The polynomial reproduction in le is then satisfied since, for 0 < ¢ <r—1and z € [0, 1]
we have:

2i/2 (97 . A
—(ﬂ ?) 2/2p )" (20 Z pr(k) @b p(@) + 2720527 (1 — 1)) (12)
) k=k,

Similarly, multiresolution spaces f/jl are defined with the same structure, allowing the
polynomial reproduction up to degree 7 — 1:

‘N/jl = Span{&);;}g:o’f,l @D f/jl,int D Span{é;’g}g:w,l (13)

In order to obtain the equality between dimensions of V! and f/jl, we have to adjust the
parameters Sb = ]N'ﬂ, — Nz and Sﬁ = l;ﬁ + Nnin 10 the definition 2.2 such that:

ky—r =k —7 and kzﬂ—r:l;:ﬁ—f (14)

We get:
dim(V}!) = dlm(V ) =27 — (8 4+ 6) — (Ninaz — Mmin) + 21 + 1

j
where (J,, d;) remain "free” parameters of the construction. Like for V;' we have to choose
32 Jmin With Joim > 108, [funaz — fomin + 0 + 6]

The last point of the construction lies in the biorthogonalization process of the new
basis functions, since edge scaling functions of \/}1 and le are not biorthogonal. Several
biorthogonalization methods exist [1, 11, 17, 21], here we apply on one hand the method
proposed by Dahmen and al. [11] when using B-spline generators, and on the other hand
a Gram-Schmidt process with Daubechies orthogonal generators [21]. In both cases, it
requires the inversion of the Gram matrix associated with the two systems, which for
orthogonal and B-Spline generators is non singular [11, 21].

Finally, the spaces (V}',V}'); constitute a biorthogonal MRA of L?(0,1) in
the sense of deﬁnitmn 2. 1

J >maX{]mzn,,7mzn} )



Moreover, homogeneous boundary conditions can be simply imposed to le, of the
form f™(a) =0 at point o = 0 or 1, with A =0, --- ,r — 1, by removing the edge scaling
function @}\’b if @ =0 or ®* if a = 1 in the definition 2.3 of edge spaces (see [21] for

more details). In such case, we also remove the function @}\’b or @}\’ﬁ from le prior to

biorthogonalization.

2.2.2 Construction of (Vjo, f/jo) on [0,1] linked by differentiation /integration with (V}', \7j1)

We will now construct spaces (V, f/jo), related to the spaces (V}', f/jl) of section 2.2.1 by
the relations (5,6) of differentiation/integration.

Given (¢!, ') biorthogonal scaling functions with approximation orders (r,7) (r > 1),
and compact Supports [Mmin, Mmaz)s [Fomin, Tmaz), We consider (¢°, ¢°) arising from propo-
sition 2.1. Then (¢, @°) satisfy some properties on R, that we recall below.

First, the scaling functions (¢, ¢°) are defined such that:

d

x+1
L@ =L@ a1 ad [P0 = (15)

This implies that ¢° has for compact support [Rmin, Mmaez — 1], and reproduces polynomials
up to degree r — 2:

? +00

0<t<r—2 %:Zp;?(k)@(’(x—k) (16)

k=—o00

with p9(k) = (%, @°(z — k).

Equation (8) implies: p)(k) = pjq(k) — pjpq(k—1) for £=10,--- ,r — 2.

In the same way ¢° has for compact support [fimin — 1, inaz], and reproduces polyno-
mials up to degree 7:

0<t<h =30 Bk k) (1)

with pf(k) = (%, ¢"(@ — k).

Equation (7) implies: pj(k) = p).(k+1) —pp, (k) for £ =1,--- 7.

Like for le, we first define the set of interior scaling functions of VjO:

Definition 2.4 ~ B
Let b,, 64 € N and ky = 0, — iy and  ky = Oy + Tunae be the parameters introduced

i definition 2.2. For j > 0, the interior scaling functions of V}O are defined as scaling
functions 7 () = 27/20%(27x — k) whose supports are included into (21— g—g] C [0,1].
Since supp ©° = [Nnin, Nmaz — 1], the space generated by interior scaling functions is given
by:

V;-O’mt = span{go%k s k=k, 2/ — ky + 1}



Similarly, let 6, Sﬁ €N, and ky = 8, — Timin, l;ﬁ = Sﬁ + Nmaz be fized by definition
2.2 and relation (14). Interior scaling functions of V}O are defined as scaling functions
@ (x) = 207200202 — k) whose supports are included into 2, 1—%]. The space generated
by interior scaling functions is then given by:

f/jo’mt = span{gbak ck=k +1, 2 — l;:ﬁ}
To preserve the polynomial reproduction (16,17) on [0, 1] in (V}O,f/jo), we define edge
scaling functions at the edge 0:

Definition 2.5
The edge scaling functions at the edge 0 are defined by:

key—1

0<0<r—2, (x)= Y pk) Gx) Xporool

k=2—nmaz
and the biorthogonal ones, vanishing at 0:
k,
1<, (@)= > pi(k) x) oo

k=1 _'ﬁmaz

At the edge 1, the edge scaling functions CID?,’g and @27’5 are constructed by symmetry, using
the transform 7'f(z) = f(1 — z).

Remark 2
Following Jouini-Lemarié-Rieusset [18], to preserve the commutation between the deriva-
tion and the multiscale projectors, the space V) should satisfy (6): V) C Hg(0,1) . Indeed

we tmpose by construction homogeneous Dirichlet boundary conditions to ‘;}07 since we
do not consider ég’b and ®Y* (0 =0) in definition 2.5.
The multiresolution spaces V;” on [0, 1] are then defined by:
0 _ 100 0,int 0,4
Vet aey,

where:

Vjo’|7 = span{2/2®Y (2z) ; £ =0,--- ,r —2}

Vjo’ﬁ = span{Qj/%Dg’ﬁ(Qj(l —x)); £=0,---,r—2}
The polynomial reproduction up to degree r—2 in Vjo is then ensured. In practice 7 > jin
where the parameter jy, is now adapted to both BMRA (V' ‘7]1) and (V) ‘7j0) by:

Gmin > Max{10gy [Mmaz — Nanin + 0 + & + 11,1080 [Flonaz — Tomin + 05 + 0y + 1]}

Multiresolution spaces ‘73'0 are defined with similar structure, allowing a polynomial
reproduction up to degree 7, and satisfying vanishing boundary conditions at 0 and 1.

VO = span{®Y,}r_1; & V"™ @ span{é;’g}g:lﬂ: (18)
A simple calculation shows that:
dm(V?) =2/ —ky —ky +2r and dim(V)) =2/ — &y — k, + 27 (19)

Since the parameters k,, ki, k, and /;:ﬁ are chosen to satisfy equation (14), we obtain:
dim(V?) = dim(V;?) The following proposition proves that LV = V0 and LV0 c V1.
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Proposition 2.2 o
(i) The interior scaling functions of (V;', V}) and (V}',V}) introduced in definitions 2.2,
2.4 satisfy:

d . d  _ . 5
——(%5x) = 2P0 — 7 (Z3x) = 2[Bja1 — il
and dim(V*"™) = dim(V,;"™) + 1, dim(V*"™) = dim(V,"™) — 1.
(ii) The edge scaling functions of (V;l, Vjo) introduced in definitions 2.3, 2.5 satisfy: for
(=1r—1,
b b b ~
(P5”)' () = =4}, (") () = @7, — By (ks — 1) @,
(D*) (1 —2) =@y, (B (1—x) = =% (1 — 2) + (2 — ky) ¥3,
whereas those of (f/jl, f/jo) are linked by: for £ =1,7 —1,
Z0b N 0 =1 =
@) =gl (@¥) =L, ~pi(k) &,
(o*(1 —2)) = Pi iy (Bp%(1 —2)) = =% (1 —2) +p)(2 = k) &y 4,
Proof 2.1 The point (i) follows from (15) and since interior functions are defined by
@jlk(x) = 212p(20x — k) (and the same for ‘P?’,ka @},ka 95?1@)
The point (1i) comes directly from definitions 2.3, 2.5 of edge scaling functions. We focus
on the first line of equalities: at edge 0 and for 0 < { <r — 1, the edge scaling functions
of (V}') are defined by dilation of:
ey —1
o)=Y (k) h(r)Xp oo with gh(z) =@ (x — k)
k=1-nmaz
Differentiating in |0, +o0o[, one obtains for ¢ =0 (py(k) = 1,Vk):
key—1
b
(@0°) = > (08— 0R41) Xorrool = s Xiootoo| — £, = —9%,
k=1-7max
since supp @9 _, = [Nmin — Nmas + 1,0].
In the same way, for £ =1,r — 1:

fey—1

(@) = > Bilk) () — D) Xjosool

k=1-Nmaz

= Y [Bilk) = Bk = 1)] X pporoe] — Pe(ky — 1) &,

k=2—nmaz
From (8), since p)_,(k) = p;(k) — ps(k — 1) we get:
ky—1
b . _ b -
(@) = Y B a(k) OiXo4ee — Drlks — 1) ), = 077, — pp(ky — 1) &f,
k=2—nmaz
This proves the relation between edge scaling functions at 0 of le and Vjo. The proof for

edge scaling functions at edge 1 and in the biorthogonal spaces ‘7]-1 and ‘7]0 15 obtained
with similar arguments.



For easy reading, the two pairs of biorthogonal bases of (V}', V) and (V?, V") will be
denoted by (¢; ., ?jx) and (¢, #9,) respectively. The oblique projector on V;' parallel

to (V1)1 will be denoted by P}:

ProL20,1) = Vi fePHE) =D (85 €in (20)
k

while 75j1 will denote its adjoint, and 73]0, 75]0 the biorthogonal projectors associated with
(V2. V).

The following proposition proves that the constructed biorthogonal MRAs take place
in the theoretical framework of Jouini-Lemarié-Rieusset in [18].

Proposition 2.3 ~ B
The two pairs of biorthogonal spaces (V}', V') and (V,V) are related to:
d - T L
%le =V and V= H, m/o V!, with V} C Hy(0,1)
Proof 2.2 . }
The inclusions dile C Vjo and %Vjo C le are straightforward according to proposition

2.2. Moreover the equality of dimensions between spaces ends the proof.

We then define the change of bases between the spaces (%le, %f/jo) and (V) f/]l) as
follows.

Definition 2.6
Let (L}, LY) and (L}, LY) be the two pairs of sparse matrices defined by the change of
bases between spaces involved in proposition 2.3 :

d d . ~ .
%QO}Jc = Z(Lbk,n @?,n: %902& = Z(Lg)k,n %l‘,n (21)
and . .
- / =S L s - / =S (L m P (22)
Remark 3

The matrices (L}, LY) and (i}, f}g) are rectangular and from the biorthogonality of spaces
(Vjo,f/jo), it comes:

L?(L?)T = Idim(VjO)
where I denotes the matrixz identity. Fxcept for the first scaling function Q);’g,
not satisfy homogeneous Dirichlet boundary condition at 0, similarly we have:

LMEDT = Lty

which does

In addition, the definition of j}]l- (22) must include the scaling functions @?Zg and &)3;5, if

not, this definition leads to fol @i m = 0, which is not true.

With this definition, we prove the commutation between multiscale projectors and differ-
entiation.
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Proposition 2.4 y
Let (P}, P}) and (P}, P]) be the multiscale projectors defined by (20):

() ¥ feHY0,1), LoPlf=Plodr.
(i) ¥ f€Hi(0,1), #£oP)f=Pjokf.

Proof 2.3 (i) The relation of commutation % o Pj-lf = P]Q o %f was demonstrated first
in [18] in the general setting. We will now prove the commutation of the projectors with
derivation (ii). Let (¢}, P9) be a pair of biorthogonal scaling functions of (V, V) and
as 95?%: € H}(0,1), from proposition 2.2 we obtain:

d . - B . .
_<%902,k7/0 @?,k/> = <90?,k7 @?,k/> = Ot = Z(L2>k,n<L9>k’,n = [L?L?T]k,k'

n

where LY and LY are introduced in (21) and (22). For f € H{(0,1), since (f,¢),) =
—( . Jo #3x) we get:

d = d
P = Z<f s so]k = ZZZ (LDt Lkl = . 0hm) P
= Zz5n m f, Oim) Pin = Z f, Pin) Pim = ~}(%f)

This proves the relation (ii).

2.2.3 Wavelet spaces

We begin with the construction of wavelet bases of the biorthogonal MRA (V}!, 17]1) This
point is classical, although different kinds of wavelets may be designed [1, 9, 11, 21, 17, 4].
For j > Jmin, the biorthogonal wavelet spaces associated to le and V}l are in all cases
defined by:

W=V and W =V 0 (V)
The wavelet space Vle has the following structure:

1 1islp 1,int 1
Wi =W ew e w,

where ‘ ‘
VV1b = span{2/2W}"(2x) ; =0, p,— 1}
W1 M= span{il, s k=p,, 2 —py—1} (23)
VV1ti = span{2PWH(2(1—x)); £=0, p; — 1}
p» and py introduced above are suitable integers to ensure that the Support of each interior
wavelet ¢}, (x) = 27/2)1 (272 — k) of W™ is included into [2,1 — —] Recall that the
support of ¢! (wavelet on R) is [”mm_gm”“, Pmae—Mmintl] then we deduce:
ﬁmax+kb_1 k_ﬁmzn+]-
p =" o"—] and p;=|F—p"—]

2 2
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To construct the edge wavelets \IIJIZ and \Iljg we have followed the work of Grivet-Talocia

and Tabacco [17]. The biorthogonal spaces V~Vj1 have the same structure and the wavelet
bases of the two spaces must to be biorthogonalized identically as the scaling functions.
The resulting wavelet bases are denoted by {@D}’k}k:mj,l and {1/)]1.7,{},6:072]-,1 without dis-
tinction.

Another advantage of this construction is the existence of a fast wavelet transforms
because the scaling functions and wavelets satisfy both a two-scale relation. Indeed, there

are sparse matrices HJ, H 1, G} and CNJ} such that:

%l',k = Z(H;)km@;ﬂ,n and %{k = Z(Gbk,n%l‘ﬂ,n

n n
@l',k = Z(H;)k,n@glurl,n and ¢;,k = Z(G;)kﬂl@}—kl,n

The main objective of this section is now to construct biorthogonal wavelet bases of
WY and WO that will be linked to v}, and wj . by differentiation/integration. A first
result in thls direction is given by the followmg proposition:

Proposition 2.5 B
Let (V' V}') and (VP, V) be two biorthogonal multiresolution analyses satisfying propo-
sition 2.3. The spaces I/V]Q and WJQ defined by:

d 1 570 T n
Wj :%W and W, :/ W; (24)
0

correspond to biorthogonal wavelet spaces associated to (V}O, f/jo) i the classical sense:

WP =Vin (V) and W= VE 0 (V)

J J

Proof 2.4 First we prove the relation: LW} = Vo, N (V)L Let wl € W}, we get from
proposition 2.4 (i):

d d

thus Lw} € (VO) Moreover, following the proposition 2.3 (i):

d d
%wy € dr VJ+1 V;+1

This implies %le C VP, and thus %VV; eVy,n (f/jo)L. The equality is obtained by
the equality between both space dimension. 3
To prove the relation between W) and W}, as VV]Q C H}(0,1), one can remark that:

/ W) e - W° W)
The relation %Wf = I/T/jl is then proved as before.

As suggested in [18], the wavelet bases of W]Q and I/T/jo are constructed directly by
differentiating and integrating the wavelets of W} and le:

12



Definition 2.7 ~ B
Let {1/)]1',1.;}/’@:0,21'—1 and {1/}]1',k}k:072j_1 be two biorthogonal wavelet bases of le and Vle
respectively. The wavelets of VVJQ and VNVJ-O are defined by:

?ﬂ?,k = 27j(¢31',k)/ and ﬁ?k = _Qj/ 1;]11@
0

Interior wavelets 7, () = 21/29y9(27x — k) in this definition correspond to the classical
wavelets arising from previous constructions [9, 11, 21, 17, 4], ¥° being a wavelet on R
associated to the derivative ¢°. On the other hand, in standard constructions, the edge
wavelets do not verify the relations:

d

dz
The following proposition guarantees (25) and the new edge wavelets provided by defini-
tion 2.7 preserve fast algorithms since they satisfy a two-scale relationship.

Uiy =200 or W9y =2 / vl (25)
0

Proposition 2.6 B 3
Let {4} r—o02i-1 and {4 }e—o2i—1 be two biorthogonal wavelet bases of W and W}
associated respectively to filters G and (N}'} :

gl',k = Z(G;)k,n 90;-5-1,71 and ¢;,k = Z(G;)k,n 95;4-1,71

Then the following propositions hold:

(1) The system ‘W?,k =27( jl',k)/}k:(),Qj—l and {zﬁﬁ’k = -2 fox 1/;]1',k}k:0,2j—1 Jorm biorthog-
onal wavelet bases of VVJO and VV]Q respectively.

(11) There exist sparse matrices G and GY defined by:

GY=27GIL,, and GY=-2GILYT (26)

Jj i+l
and the wavelets wok and w ' satisfy:

?,k: = Z(Gg)k,n@?-s-l,n and ¢?,k = Z(Gg)k,n¢?+1,n
Proof 2.5 (i) The construction of biorthogonal bases by differentiation /integration is
an idea of Cleselski-Figiel [5] used by Jowini-Lemarié-Rieusset [18]. Moreover, from
proposition 2.5 we can see that the two systems are independent and they generate the
corresponding spaces.
(17) To derive the filters, we only use the definition of wavelets. So, we have:

2 ;'),k = Z(G})k,n(%l'ﬂ,n),:Z(G;)k,n(Lgl‘Jrl)n,mSﬁngl,m

= Z[G;L;Jrl]k m@?+1,m =2 Z(Gg)k,m¢2+l,m

which gives the filter of ¢§)k Stmilarly, for ng)k we obtain:

d ~ ~ N ~ ~ -
ar ?,k = Z(Gg>k,M<¢g+l,m)l:Z(Gg)k,Tn<L2+l)m,n@}+l,n

- Z[éy ~J+1]’<? n901+1 n=—2 Z(éyl)k”‘ﬁylﬂn

13



Taking into account the relation [[:?L?T]k,k, = ki, there are summary:
0 —jigl ~0 i A1 70T

This completes the proof.

Remark 4

The above construction of wavelets @D?}k and @Z;?k has two main interests: their filters are

directly accessible from those of wjlk, and ;Z;k and there is no need for biorthogonalization
as for classical constructions.

Ezample 1 .

To illustrate, we give the plot of edge scaling functions and wavelets at 0 in (le, VJI) on
Figure 1. The generators (o', 1) used are biorthogonal B-Spline withr = 7 = 3. Then we
have: Nyin = =1, Nppaz = 2, Npin = —3_and Nype, = 4. The “free” integer parameters are
chosen as Omin = Omaz = 2 and Omin = Omaz = 0. On Figure 2, we plot the corresponding
edge scaling functions and wavelets of (Vjo, Vjo) at 0. The Figure 3 and Figure 4 show the

non zeros elements of filters G? and Gg and matrices L? and L]l respectively, for 7 = 6.

2.3 Biorthogonal MRA of H,,(Q2)

Let Q be the square [0, 1]>. The aim of the present section is to provide a divergence-free
MRA and wavelet bases of the space H 4, (€2) [16]:

Hai(Q) = {u € (L*(Q))?: div(u)=0and u-v =0}
Since this space is equal to:
Haiw(Q) = {u=curl x; x € H;(Q)}

our construction consists in taking the curl of a regular MRA of the two-dimensional
scalar space Hj ().

Such MRA of H}(Q) is usually defined as tensor-product of one-dimensional MRA
of H}(0,1). We now consider a regular one-dimensional MRA satisfying homogeneous

boundary conditions:
V.2 =V nH(0,1)

as constructed in section 2.2, and which takes the form:
VjD = span{CIJ;’Z s l=1r—1}o le’mt ® span{cbjl.,’g s 0=1,r—1}
To simplify, we denote by gofk the scaling functions of VjD :
VjD:span{gofk s k=0, 2 —ky —k, +2r — 2}

and wfk the corresponding wavelets. With these notations, the divergence-free scaling
function spaces are defined below.

Definition 2.8
For j > jumin, the divergence-free scaling function spaces V?i“ are defined by:

Vi = curl(V;” @ V}) = span{®7}} (27)

14



where the divergence-free scaling functions are given by:
The spaces V{ defined above constitute an increasing sequence of subspaces of (L?(£2))*:

deiv - Vdi'u

j+1
of dimension:
dim(V{") = dim(V,”)* = (2 =k —k, +2r — 1)
— (27 = (N — Min) — (8 + 85) +2r — 1)
We will also consider a more standard multiresolution analysis V; of (L2(Q2))? defined

as:
Vi= (e x (P eV (29

VjO being the spaces defined in section 2.2.2. By proposition 2.3, this discrete space \7]-
preserves the divergence-free condition, as stated by Jouini-Lemarié-Rieusset[18]:
ue (L*(Q))?, div(u) =0 = div[P,(u)] =0 (30)
where 13j is the biorthogonal projector on \7j:
P, = (P} P! P)@P)) (31)

In the same way, we now introduce anisotropic divergence-free wavelets and wavelet
spaces:

Definition 2.9
The anisotropic divergence-free wavelets and wavelet spaces are given by:

@;iﬁl = curl[gpﬁzm,mkl ® wg’kQ] and lei”’l = span{\l’jilif{’l}, Jo = Jmin

W}iﬁ2 =curllyl , @¢? 1 and leim = span{\lljiﬁlf}, J1 > Jmin

div,3 div,3 div,3 . . .
\I]J k Curl[g/)ﬁkl ® ijz,kz] and WJ = Span{\IJj k by J1sJ2 2 Jmin

The following proposition proves that (V4*);>; . is a multiresolution analysis of Ha;, (€2).
Proposition 2.7

The divergence-free scaling functions spaces V?“’ and wavelet spaces W;i”’e fore =1,2,3,
satisfy: L

(i) Vi C - C VP C VY C e C Hyy(Q) and VY = Hgiy ().

(”) V?w = V?::m @jmmgjhhgjq(@szlz,sij’e)~

(¢i) For all j and e = 1,2,3, {\Ifshlv{a} is a Riesz basis of WJf“”’E.

15



Then each vector function u of Hg;,(£2) has an unique decomposition into the basis
{(I)dw \dew s}
Imin; k7 J1,J22Jminie= 123

] Z Z div,e 7, di
u= C@zv (I)dw + e i, 6\11 zv €
]mzn j’VTLZTL J k
k .] k e=1 2 3
with the norm-equivalence:

LERPOARNES 9D DL 1)

Jks 1,2,3

Proof 2.6 (i) Let \7} be the spaces defined in (29). Since the spaces Hdiv(Q)ﬂ\?j provide
a multiresolution analysis of Hasw(Q)[18], point (i) is reduced to prove that: V¥ =

Hdi'u(Q) N \7]-.
According to proposition 2.2, we have Vdi” C 'V, and Vdi” C Hai () by construction.
Conversely, let u € Hg;,(2) N V], and P be the biorthogonal pmjector on V defined in

(31). We are going to prove that u € Vd“’ On one side, as u € V we have u = l?’j(u),
on the other hand due to u € Hg;,(Q) we have u = curl (x) with x € H}(Q), and thus:

u = PBfcurl (x)]
Since the spaces (V;” @ V,P);>;,.. form a MRA of Hj(Q), we can decompose x as:

X=PP00+ > (QP()+QY () + QP ()

jlvaZj
where
a>ik
3
Z kgpjk1®w]2k2’ Q3 X = Z d‘Lk ]1k1®w]2k2
jo>5.k J1,j2>5.K

are the biorthogonal projectors on respectively VjD ® VjD , VV]? ® VjD , VjD ® ij and
Wj? ® VVJIQj Proposition 2.2 implies that:

curl [¢f, @) € (VP & W3) x (VP @ WE)

hence:
P;(curl [0 @ Vi i) =0

and same for P,(curl [F 1, @ ©P,]) and P;(curl [P P @ 1), This leads to:
P(curl (x)) = P;(curl [PP(x)]) = curl [P} (x)]

By construction we have curl [PP(x)] € V§, which implies u € V™ and then completes
the proof: V;”” = Hain(2) N \7j.

(11) The spaces VP are a multiresolution analysis of Hy(0,1), and we can write:

-1 N
VPevP-up, @ whevE, @

J1=Jmin J2=Jmin

16



By definition of V?w, we obtain:

]m in
Jmin<j1,j2<j—1

)& (W] @ Wi, )]]

which is exactly VI = Vi* [Gajmnﬁjhjzéj—l (@5:1,2,3\7\/';”’6)]. (1ii) Following [20,

Jmin

8], this point is a consequence of the proposition 2.8 below.

We now introduce the biorthogonal divergence-free scaling functions and wavelets.
Let:

ci)c'liv - ’ SO] k1 ® 7.7 k2 , \de“} 1 = ‘ 2]2 SO]mznvkl ® w]?,kQ (32)
5 ’7‘7 k1 ® ()0] ko J k ﬁy]mznykl ® w]Q ko
T, div,2 | _]1,]4)1 ® ;}J/jminyk’Z 7 div,3 . _ ‘ j2 ¢]1,k1 ]2,k2 (33)
. = ~D s . =
ik _2hwh,k1 ® Liin 2 ik -2 Jl k@ ]27k2

where: 75, = — [, @7 Remark that 7;,(0) = 7;x(1) since ¢, € Hg(0,1).

Proposition 2.8
For a fived j > jmin, the normalized families

1 gdiv 1 pdiv,1 div,2 div,3 s - 1 Fdiv 1 dw 1 div,2
\/ﬁ(bjyk’ V42 +1 \IIJ k \/491 +1\IJJ k \/4J1 4792 \I/J k i J1,02 Z 7o k} and { \/iij7k’ \IJ
are biorthogonal in (L*(Q))?, then they form Riesz sequences of (L*(Q))?.

Remark 5
Contrarily the usual definitions of MRAs, the (L?-normalized) divergence-free scaling
functions (@j’f;)k don’t form a Riesz basis of the space V;””, since they do not verify:

I Z " H(L2(Q 2 Z’ dw
for all (¢ dlﬁ) € (% and independently of j. A counterezample is given by:
div
u= Z D5k ko
kbfk‘l,kgSQj—k‘n

which satisfy: > ) |c§“ﬁ|2 = (29 —ky—ky +1)* ~ 2%,
On the other hand:

o=i | Pik ® (¥3h,)

u = > 7

. 2 D V& oD
ky <k1,k2 <27 —ky _((‘Djvkl) ® Pjoks
D v __ J( A0 0 — 27(0 0
E (@) = E 2(je = Piart) = 2(Phk, = Pjoi—py1)
oy ko <29 —ky ky <ky <27 —ky

Let h(z) = Zkbgkgw‘_kﬁ QOjD,k:(x) ~ 2j/2X[6b,6ﬁ] , Vo €]0,1]
and HuH?LZ(Q))Q =2 2 (fO h2) (fO 22](9027]% - 90?,27‘_1;“4,_1)2) ~ 27

17
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2.4 Biorthogonal MRA of H, ()

In this section, the curl-free function space H,-(£2) that we consider is the following:
Heun(Q) ={u=V q: q€ Hy(Q)}
This space is a proper subspace of Hz; (€):
Mo (Q) = Heuwrt () & HA(Q), with HA(Q) ={V ¢: ¢€ H'(Q) and A ¢ =0}

To construct a multiresolution analysis of H,(£2), it suffices to consider the gradient
of a MRA of H}(Q). With the same notations as in previous section 2.3, curl-free scaling
functions spaces are defined by:

Definition 2.10

For j > jmin, a curl-free scaling function space VjV 1s defined by:

VY=V eVl = spcm{q)zk} (34)

J

where the curl-free scaling functions are given by:

The spaces (V') constitute an increasing sequence of subspaces of (L*(£2))?, of dimension:
dim(VY) = dim(V? @ V,P) = (20 — ky — ky +2r — 1)%.
Let \7;‘ be the standard multiresolution analysis of (L*(Q2))? defined by:

G __ (170 1 1 0
Vi = (e v x (v o V) (36)
By proposition 2.3, the spaces VjV are contained in \7;‘ We now define the corresponding

irrotational wavelets.

Definition 2.11
The anisotropic curl-free wavelets and wavelet spaces are defined by:

\II'VJ = V[SDJDmm,/ﬂ ® ¢‘7D27k2:| and ij,l = Span{\ll.]vii}’ jZ Z ]mzn
\I/-v72 = V[q/Jle,kl ® SOijm,kg] and ijv72 = Span{\ﬁjﬁ}’ jl > ]mzn

Ui = VIR, @ U] and WP = span{¥ 5, g1, o > jimin

The following proposition holds:

Proposition 2.9

The spaces Vjv and ij’g for e =1,2,3 verify:

(1)) Vi C---CVYCVY, C- CHeunl(Q) and UV = Heupi(Q)
(it) Vi = V3., jmmgﬁ,jﬁj—l(@8=1723ij’8)

(1ii) For allj and e =1,2,3, {W;ﬁ} is a Riesz basis of ij’e.
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The proof uses the same arguments as for proposition 2.7. In addition, these construction
of curl-free scaling functions and wavelets can readily be extended to higher dimensions,
for more details see [22, 23].

Ezxample 2

3 Fast divergence-free wavelet transform

We describe in this section the practical computation of divergence-free scaling function
and wavelet coefficients of a vector field u € V;’“’. We use the same notations as in
previous sections. The starting point is the decomposition of u in the MRA of (L*(Q))?
provided by V;:

7 0 0 1

V= (V] @Vp)x (VeV}

On the scaling functions basis of \7]-, the vector field u = (uy, uz) can be written as:

= ch,k 80;,/41 ® QO?JQ and up = Z Cik (p?,kl ® 30;,/62 (37)
k k

The computation of divergence-free coefficients will use a change of bases between (%gpi %)

and (¢),). This needs to construct the matrices L} and L; introduced in (21) and (22),
which we recall the definition:

p dim(V?) - dim(V}')
TR DA AT R (SR S
n=1 k=1

So we first give a more precise result on the computation of the elements of these matrices.

Proposition 3.1

Let k} denoted the dimension of le. The only nonzero elements of matrices L? and le-
correspond to:

(1) For edge scaling functions and for 2 < k <r, we have:

(L1 = =1, (L)ap—1 =1, (LDkr = —Pr_y(ky — 1)

(Liksbr—r = 1 (ks —krrpr—kir = =L (L) —hyips—r = Py (27 — Ky + 1)
and

(L1 =1, (LDp—1ge = =1, (L)p-11 = —Pp_y(k — 1)
(LDks—rges = =1, (LDhs—ksrgs—rnr = 1, (LY)ks—prips = =Py (20 — kg + 1)

(44) For interior scaling functions and for r +1 < k <k} —r, we have:

(Lkr-1=1, (Ljgs = —1
and

(L)km = —1, (L?)k,k; =-1, k<m<kj—r
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Proof 3.1
To obtain the relation on le., it suffices to use proposition 2.2 written for j > jmin. 10
obtain the relation on L?, as it is still true by differentiation we get:

r—1 r—1
0,b 1 0, 1,
5 = Z(Lg)f,k (q)j,k>, and  — q)j,g = Z(L?)ij,k;Jrk (q)j,lti)/
k=0 k=0

Then using the proposition 2.2 again, we have:
0,b —irramlp - 1
q)j,z =2 J[((I)Z—H)/ +pé+1(kb —1) (q)j,o)/]
and
0, —irral, - - 1,
OUF (1) = 279[(®F, (1)) = (27 — ke + 1) (D551 = )]
because: b
ia, il
902,1% = —2 ]((Dj,ﬂ)/ and 90?72j—kﬁ+1 =2 ](CI)j,(ﬁ](l —.))
Similarly for interior scaling functions, by proposition 2.2 we get:
‘P?,k = 2_j(‘PJI',k)/ + ‘P?,kﬂ
and recursiely for ky, +1 < k < 27 — ky we deduce that gogk satisfy:
@2,k = 277 (@},k)/ + 902',k+1 = 2_j[(90]1',k), + -+ (8031'721'_1%”)/] + 90?,2j—kmam+1
—q 1’
= 27[(@j) + -+ (Pl ) + (@551 =)

This completes the proof.

Now, using matrices L? and le- we can rewrite the components of u as follows:

u; = ZCJI',k 90},k1 ® 902,1@ = - Z[(C;k)Lg]k %l‘,kl ® (¢},k2)l (38)
k k
and
uy = Z C?,k ok @ Qg = — Z[L? T(Cik)]k (“51) © Pjgy (39)
k k

If u e V¥ it can be uniquely written as:
u= Z cil{i”q)ff; (40)
k

Therefore, we have the following proposition.

Proposition 3.2 .
The matrices of coefficients [c; K and [cj i) are linked to the matriz of coefficients [cj’f;]
by: ’ 7 ’

21/2[cjffé] = L(; T[cik] — [c;k]L? (41)
and conversely:
17 _ o—1/2 div]T1 1 1 _ _o—1/271 Ty div
[Cj,k] =27V [Cj,k]Lj and [Cj,k] =27V L; [Cj,k] (42)
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Proof 3.2
We assume that the basis of divergence-free scaling functions used is that of the lemma
2.8. With the help of (38) and (39), by computing directly the inner product we get:

Fdivy _ o—1/2 0Tr.2 PN 0
(u/Bly) =2 [Lj ) = L))

Which proves (41). The second relation (42) is nothing but the change of basis described
by the previous definition of L}.

Now the objective is to compute the divergence-free wavelet coefficients of u:

We start with the standard wavelet decomposition of u = (uy,uy) in V;:

and

u= chw q)dw + Z ddw 1 \Ifdw 1

j2>5.K

+ Z ddw 2 dw 2 Z ddw 3 \Ildw 3

J1>J, 31,12>J,

—

1,1
Uy = C]k S0]J<31 ® SOJ ko + Z d 2.k 90]7161 ® ]27762
k ]2>],k
1,2 1,3
+ Z d .k ¢Jl,k1 ® ('OJ ko + Z ik 77Z}Jl,kl ® J2,k2
>k j1.g2>5.Kk

2,1
HQ_ZCkSOJk’l@SOJk?—{_ Z d k¢]7k1® ]27762

j2>ik
2,2 1 2 3 0
+ Z d Lk j1,k1 ® Pj ks + § : d J1,k1 ® ¢]2,k2
a>ik jl,jzzj,k

Which rewrites, using the matrices LY and Lj:

and

== Sl O D, © (o) + 30 dN ol @,

k jo>j.k

1 2 1,3
- Z d ¢;l,k1 ® (@;,k‘g)/ + d d’gl k1 ® ]2 ko

>k j17j22j7k

Uz = —Z[L? T(Cik)]k (90},1@1)/ ® ‘le',kg - Z [L (dj;k)]k (%1',1@1) ® ]2,k’2

k jo>ik

2,2 23 0
+ Z d Lk 31,k1®wjk2+ Z d J1k1®wj2/€2

j1>5.K J1,9227,

We now prove the following proposition.
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Proposition 3.3
For e = 1,2,3, the coefficients [dji{] and [dji{] are linked to the divergence-free wavelet

coefficients [djzlie] by:

div, 1 1 i (1,1 0T/ 2,1
Gx T Joi H[27(dyy) = Ly ()i (43)

div,2 1 1,2 0 oj1(,2:2
djyk BRVZT [(dj’k)Lj 2 <dj,k)].]7k (44)

div,3 1 g2 (71,3 g1 (72,3
dj7k N TS 2 (dj,k> 2 (dj,k)].lvk (45)

Inversely we have:

1

272 . .
din ] = ——|[di" d [d] = ———=LT[a{" 46
)= Gk e = el i) (46)
[d1,2 ] . 1 [ddin]Ll- and [d2,1 ] _ 2J1 [ddiv,2] (47)
j7k a \/4]‘1 + 1 j7k J j?k o \/4j1 + 1 j7k
137 272 div,3 237 _ 27 div,3
[dj,k] VT [dj,k | and [dj,k] = Tt 4 [dj,k ] (48)

Proof 3.3
We assume also that the basis of divergence-free wavelet used is that of the lemma 2.8.

The formula are obtained by considering the inner products:
T div,1 = div,2 T div,3
<u/\1[j,k ) <u/\11j,k ) and <u/\11j,k )
The algorithm of reconstruction is still a consequence of proposition 2.2.

Ezxample 3
We start with a vector field u arising from a numerical simulation of lid driven cavity

flow. Then, we compute its divergence-free scaling function and wavelet coefficients using
proposition 3.2 and proposition 3.3. The divergence-free wavelets are constructed from
the B-Spline generators of Figure 1 with the same parameters. Figure 9 shows the plot of
this vector field and corresponding coefficients.

4 Applications

In this section, we illustrate some practical uses of the divergence-free and curl-free
wavelets constructed before. We first show on a numerical example their powerful prop-
erties of nonlinear approximation. Then, we present their application on two problems
relevant for the numerical simulation of incompressible flows: the Helmholtz decomposi-
tion and the Stokes problem, with homogeneous boundary conditions.
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4.1 Nonlinear approximation

Divergence-free and curl-free wavelet bases provide nonlinear approximation estimates,
governed by the approximation orders of one-dimensional spaces involved in their con-
struction. In this part, we investigate the convergence rate obtained from the N-best
terms approximation.

For numerical test, we used the vector field and wavelets of example 3. On Figure
10, we plot the ¢y error on each component through a solution recovered by non-linear
approximation on the divergence-free wavelet basis. We get the same result as on the
standard multiresolution analysis provided by V. This is consistent with the theoretical
result proved in [22]. Figure 11 show the classical boundary wavelet error phenomena. It
is well know that this error does not prevent the convergence of the multi-scale projector
of these bases.

4.2 Helmholtz decomposition

The Helmholtz decomposition of a vector field u of (L?(92))?, is a unique decomposition
of u of the form:

u = curl (y) + Vq (49)
with xy € H}(Q) and ¢ € H*(2). The objective in this section is to compute an approxi-
mation u;ﬁ” in V?“’ of the divergence-free part u® = curl (), using the divergence-free
bases built in section 2.3. For simplicity, we use the scaling function basis (@dzﬁ) , since

the wavelet one can be deduced using one-dimensional fast wavelet transform élong each
direction.

u?“’ is searched as its decomposition onto divergence-free scaling functions:
div __ div div
;= ch,k (I)j,k (50)
k
By orthogonality of the decomposition (49) in (L?*(£2))?, one obtains:
(/) = (/) thus W) = (u/B4) 51
where M the Gram matrix of the basis {@;hﬁ} The computation of the coefficients (c;”l“{)

is then reduced to the resolution of a linear system of matrix M. This system can be
easily inverted, since M is no more than the stiffness matrix of a standard Laplacian onto
the scalar scaling function basis {90ka ® gasz}. Indeed:

V), ¢ € Hy(); /va -Vodr = /chrl(w) -curl(¢)dx (52)

More details on the implementation and resolution of (51) can be found in [23]. Figure
12 presents the fs-error of convergence of the algorithm, according to the space resolution
7, using wavelets of example 3. The exact solution u corresponds to:

u = curl [sin(272)z?(1 — 2)*y*(1 — y)*] + V [cos(2mz)z*y?]
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4.3 Stokes problem

The Stokes problem is a simple test case for the simulation of incompressible flows. In
the non-stationary case, and for a velocity u vanishing at the boundary, it is described
by the following equations:

ou—vAu+Vp=f in [0,7T] x Q
V-u=0 in

u=0 on I

u(0,z) = uy

(53)

where p is the corresponding pressure.

K. Urban was the first who uses interior divergence-free wavelets for the resolution of
the stationary case[27]. His method uses a variational method [16] in H4,(§2) and thus
requires the inversion of the stiffness matrix in the divergence-free wavelet basis.

We propose here to use the Helmholtz decomposition to simplify a classical method of
resolution, called the Chorin projection method [6]. Our algorithm to compute u™(x) ~
u(z,not) is the following:

Starting with initial values u® = u(0, z), repeat for 1 <n < N

Step 1: Find a(z) solution of

—u 1
= vAS(at+u) +F(f), ve 0,1 (54)
a=0 on I (55)

Step 2 Find u™*! solution of
u"tt = P(a) (56)

where P is the orthogonal projector from (L?(£2))? onto Hg:, () computed in practice by
the Helmholtz decomposition described in section 4.2.

This method has the advantage of decoupling the resolution of the diffusion term and
the incompressibility constraint. Moreover, in more general boundary condition (u # 0
on I') there is no need of homogenization for the divergence-free basis like in [25, 27],
we can incorporate this boundary condition directly in the basis of H4,(€2) used in the
computation of P(a).

On Figure 13, we plot the /5 error on u and on its gradient Vu in Vj. The exact
solution u is taken from [19]:

2
u(z,y,t) = curl [10002%(1 — 2)*y*(1 — y)?] Vp=21’+y*— 3 (57)
We used the divergence-free wavelets of example 3 to compute the projector P.

5 Conclusion

In this article we have presented a practical construction of divergence-free and irrota-
tional multiresolution analyses and wavelets. Our construction, based on one-dimensional
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analyses on the interval allowing the reproduction of polynomials, respects the theoret-
ical framework of the previous work of Jouini and Lemarié-Rieusset [18]. Moreover our
construction can incorporate homogeneous boundary conditions in the basis functions,
which allows the representation of more physical divergence-free vector functions. This
ability is not present, for instance, in the attempt addressed by Stevenson [24].
Associated fast wavelet transforms have been implemented satisfactory, opening new
prospects for the realistic simulation of incompressible flows. First attempts have suc-
cessfully been presented in this article with the Helmholtz decomposition of a vector flow,
or with the computation of a Stokes problem solution. Work on more complex problems
are underway, such as the direct simulation of turbulence, and this will the subject of a
forthcoming paper.
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Figure 1: Scaling functions @%’b (three first left) and wavelets \Ifé’b (last three left), their duals scaling
functions é}z’b (three first right) and wavelets \ilé’b (last three right).
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