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Abstract

We present a construction of divergence-free and curl-free wavelets on the square, that could
satisfy suitable boundary conditions. This construction is based on the existence of biorthogonal
multiresolution analyses (BMRA) on [0, 1], linked by differentiation and integration. We introduce
new BMRAs and wavelets for the spaces of divergence-free and curl-free vector functions on the
square. The interest of such constructions is illustrated on examples including the Helmholtz-Hodge
decomposition of vector flows and the Stokes problem.

1 Introduction

In many physical problems, like the numerical simulation of incompressible flows or in
electromagnetism, the solution has to fulfill a divergence-free condition. For the numer-
ical treatment of the relevant equations (Navier-Stokes equation in fluid mechanism or
Maxwell’s equation in electromagnetism) it is helpful to have at hand bases satisfying
a divergence-free or a curl-free condition. In the context of solution schemes for Partial
Differential Equations, wavelet bases provide very efficient algorithms, characterized by a
reduced computational complexity, with respect to standard methods[7]. Divergence-free
wavelet bases on Rd, with compact support, were originally defined by Lemarié-Rieusset in
1992[20] and applied by Urban to the numerical solution of the Stokes-problem[25]. In the
periodic case, anisotropic divergence-free wavelets have been constructed in[15], and firstly
used to compute the numerical solution of the Navier-Stokes equation in velocity-pressure
formulation[14]. Such numerical scheme requires, at each time-step, the Helmholtz-Hodge
decomposition of the nonlinear term, which is no more divergence-free. In Fourier space,
this decomposition writes explicitly, whereas in wavelet domain, it can be computed using
divergence-free and curl-free wavelets [26, 13]. In the general case with physical bound-
ary conditions, it is the key of Navier-Stokes numerical simulations to have at hand an
explicit and efficient procedure to compute the Helmholtz-Hodge decomposition of the
nonlinear term.

Precisely, the Helmholtz-Hodge decomposition of a vector field u on the square Ω =
[0, 1]2 consists in splitting u into a divergence-free part and a curl-free part[16]. A first
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formulation leading to an orthogonal splitting is the following: there exist a stream
function ψ and a potential field q such that:{

u = curl ψ +∇q in Ω
curl ψ · ~ν = 0 on Γ = ∂Ω

(1)

where ~ν is the outward normal to Γ. This decomposition corresponds to the orthogonal
splitting of the space (L2(Ω))2:

(L2(Ω))2 = Hdiv,Γ(Ω)⊕H⊥div(Ω) (2)

where
Hdiv,Γ(Ω) = {u ∈ (L2(Ω))2 : div(u) = 0, u · ~ν|Γ = 0}

is the divergence-free function space with velocity tangent to the boundary. It can also
be seen as the ”curl” space:

Hdiv(Ω) = {u = curl ψ ; ψ ∈ H1
0 (Ω)}

On the other side the space of gradient functions

H⊥div(Ω) = {∇q ; q ∈ H1(Ω)}

corresponds to a curl-free function space[16].

Other types of boundary conditions for the divergence-free space can be considered.
For instance, the decomposition:

(L2(Ω))2 = Hdiv(Ω)⊕ {∇q ; q ∈ H1
0 (Ω)} (3)

where now

Hdiv(Ω) = {u ∈ (L2(Ω))2 : div(u) = 0} = {u = curl ψ ; ψ ∈ H1(Ω)}

does not incorporate boundary condition on Γ. In fluid mechanism, this type of boundary
condition is less considered since in general Γ corresponds to a physical wall that cannot be
crossed by fluid particles (except for porous media). A more useful condition corresponds
to the homogeneous Dirichlet boundary condition on Γ, which leads to:

(H1
0 (Ω))2 = Hdiv,0(Ω)⊕H⊥div,0(Ω) (4)

where now
Hdiv,0(Ω) = Hdiv(Ω) ∩ (H1

0 (Ω))2

while H⊥div,0(Ω) is a subspace of H⊥div(Ω) ∩ (H1
0 (Ω))2, see[16] for details. For sake of

simplicity, we will focus in this article to the divergence-free spaces being involved in
decompositions (3,4).

Accordingly, the objective of the present paper is to provide multiresolution analyses
and wavelet bases of the spaces Hdiv(Ω) and H⊥div(Ω). We present in the next section
a new construction, based on wavelets on the interval [0, 1] that should satisfy homoge-
neous boundary conditions, like in [21]. The key idea of our construction is based on
a couple of wavelet bases on the interval, linked by differentiation, like in the theoret-
ical approach of Jouini-Lemarié-Rieusset[18]. The construction of divergence-free and
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curl-free approximation spaces and wavelets satisfying suitable boundary conditions are
then straightforward. Moreover, our method extends readily to the cube [0.1]d by tensor
product [22].

The outline of the paper is as follows. Section 2 details the principles of the con-
struction of divergence-free and curl-free BMRAs and wavelets on the square. Section
3 is dedicated to the description of the divergence-free fast wavelet transform. Finally,
section 4 presents two examples of use of these new wavelets in numerical simulations:
the Helmholtz decompositions and the Stokes problem.

2 Divergence-free and curl-free wavelets on the square

Divergence-free wavelets on the whole space Rd have been firstly constructed by Battle-
Federbush [2] in the orthogonal case. Since these previous functions don’t have compact
support they where not implemented, contrarily to the biorthogonal bases arising from
the construction proposed by Lemarié-Rieusset in [20]. Urban was the first who used
them in a practical problem, the Stokes problem [25]. Later, Urban proposed to extend
this construction to derive curl-free wavelets [26]. An alternative fast decomposition into
divergence-free wavelets was proposed by Deriaz-Perrier, based on anisotropic (tensor-
product) wavelets in the periodic case [15]. The objective below is to extend these con-
structions to the square [0, 1]2, following the construction principle already exposed in
the theoretical work of Jouini-Lemarié-Rieusset [18].

2.1 Construction principle

The construction of divergence-free wavelets on the cube [0, 1]d uses the same arguments
as in the whole domain Rd [20, 18]. The key ingredient is to have at hand two one-
dimensional multiresolution analyses (V 1

j ) and (V 0
j ) of L2(0, 1) linked by differentiation:

d

dx
V 1
j = V 0

j (5)

On the interval [0, 1], following [18], the biorthogonal spaces should satisfy:

Ṽ 0
j = H1

0 (0, 1) ∩
∫ x

0

Ṽ 1
j =

{
f : f ′ ∈ Ṽ 1

j and f(0) = f(1) = 0
}

(6)

The existence of such spaces follows from the fundamental proposition of Lemarié-Rieusset,
used at the begining to construct divergence-free wavelets on the whole space Rd [20]:

Proposition 2.1
Let (V 1

j (R)) be a multiresolution analysis (MRA) of L2(R), with differentiable and com-

pactly supported scaling function ϕ1 and associated wavelet ψ1. Then there exists a MRA
(V 0

j (R)), with associated scaling function ϕ0 and wavelet ψ0, such that:

(ϕ1)′(x) = ϕ0(x) − ϕ0(x− 1) and (ψ1)′(x) = 4 ψ0(x) (7)

Similar relations hold for the dual functions
(
ϕ̃1, ψ̃1

)
and

(
ϕ̃0, ψ̃0

)
of the primal ones

(ϕ1, ψ1) and (ϕ0, ψ0):∫ x+1

x

ϕ̃1(t) dt = ϕ̃0(x) and (ψ̃0)′(x) = −4 ψ̃1(x) (8)
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In [18], Jouini-Lemarié-Rieusset prove that from the scaling functions (ϕ1, ϕ̃1), (ϕ0, ϕ̃0)

and wavelets (ψ1, ψ̃1), (ψ0, ψ̃0) of proposition 2.1, it is possible to exhibit multiresolution
analyses on the interval satisfying the relations (5,6).

Our objective in the present paper is first to provide an effective construction of such
multiresolution analyses, which enable boundary conditions, fast wavelet algorithms, ap-
proximation results and practical computations. This is done in section 2.2.1.

Then the construction of biorthogonal MRAs and wavelets bases of Hdiv(Ω) (with
suitable boundary conditions) and H⊥div(Ω), are obtained by considering resp. the curl
of (V 1

j ⊗ V 1
j ), and the grad of (V 1

j ⊗ V 1
j ). This will be described in section 2.3.

2.2 Construction of biorthogonal MRAs on [0, 1] linked by differentiation

We detail now the construction of spaces (V 1
j , Ṽ

1
j ) and (V 0

j , Ṽ
0
j ) satisfying (5) and (6). We

proceed in two steps. The first step (construction of (V 1
j , Ṽ

1
j ), section 2.2.1) is classical and

based on biorthogonal multiresolution analyses on the interval reproducing polynomials
[9, 11, 21, 17, 4], but it is needed to introduce the sekels. The second step (section 2.2.2)
introduces a practical and new way to provide spaces (V 0

j , Ṽ
0
j ) and associated wavelets.

It is based on proposition 2.1.

2.2.1 Construction of (V 1
j , Ṽ

1
j ) on [0, 1] with polynomial reproduction (r, r̃)

We first recall the definition of a biorthogonal multiresolution analysis (BMRA) on [0, 1]
[18, 8]:

Definition 2.1
The sequence (V 1

j , Ṽ
1
j ), j ≥ jmin (jmin ∈ N∗) is a biorthogonal MRA of approximation

order (r, r̃) on the interval [0, 1] associated to the generators (ϕ1, ϕ̃1), if it satisfies:

(i) V 1
j ⊂ V 1

j+1, Ṽ 1
j ⊂ Ṽ 1

j+1 and ∪j≥jmin
V 1
j = ∪j≥jmin

Ṽ 1
j = L2(0, 1).

(ii) V 1,int
j ⊂ V 1

j ⊂ V 1
j (R)|[0,1], Ṽ

1,int
j ⊂ Ṽ 1

j ⊂ Ṽ 1
j (R)|[0,1].

(iii) V 1
j and Ṽ 1

j are finite dimensional biorthogonal spaces spanned by biorthogonal bases

{ϕ1
j,k : k ∈ ∆j} and {ϕ̃1

j,k : k ∈ ∆j}:< ϕ1
j,k, ϕ̃

1
j,k′ >= δk,k′ , ∀ k, k′ ∈ ∆j.

(iv) V 1
j and Ṽ 1

j have respectively r and r̃ polynomial exactness.

In point (ii), V 1
j (R)|[0,1] means the restriction of V 1

j (R)-functions to the interval [0, 1],

whereas V 1,int
j means interior functions of V 1

j (R), as introduced below (definitions 2.2,2.4),

and same for the biorthogonal spaces. The dimension ∆j ≈ 2j of spaces V 1
j and Ṽ 1

j will
be explicited later.

To construct such spaces (V 1
j , Ṽ

1
j ), as described in the numerous and now classical

approaches [9, 11, 21, 17, 4], we start with generators (ϕ1, ϕ̃1), that are biorthogonal
scaling functions of a BMRA on R. We suppose that ϕ1 is compactly supported on
[nmin, nmax] and reproduces polynomials up to degree r − 1:

0 ≤ ` ≤ r − 1,
x`

`!
=

+∞∑
k=−∞

p̃1
`(k) ϕ1(x− k) (9)
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with p̃1
`(k) = 〈x`

`!
, ϕ̃1(x − k)〉. We suppose also that ϕ̃1 reproduces polynomials up to

degree r̃ − 1:

0 ≤ ` ≤ r̃ − 1,
x`

`!
=

+∞∑
k=−∞

p1
`(k) ϕ̃1(x− k) (10)

with p1
`(k) = 〈x`

`!
, ϕ1(x− k)〉.

To define a BMRA on [0, 1] we first define the set of interior scaling functions:

Definition 2.2
Let δ[, δ] ∈ N be two fixed parameters. For j ≥ 0, interior scaling functions of V 1

j are

defined as scaling functions ϕ1
j,k(x) = 2j/2ϕ1(2jx − k) whose supports are included into

[ δ[
2j
, 1− δ]

2j
] ⊂ [0, 1].

If supp ϕ1 = [nmin, nmax], they correspond to indices k such that:

δ[ − nmin ≤ k ≤ 2j − δ] − nmax

The space generated by interior scaling functions is then given by:

V 1,int
j = span{ϕ1

j,k ; k = k[, 2j − k]}

with k[ = δ[ − nmin and k] = δ] + nmax.

Similarly, let δ̃[, δ̃] ∈ N be two parameters. Interior scaling functions of Ṽ 1
j are defined

as scaling functions ϕ̃1
j,k(x) = 2j/2ϕ̃1(2jx−k) whose supports are included into [ δ̃[

2j
, 1− δ̃]

2j
].

The space generated by interior scaling functions is then given by:

Ṽ 1,int
j = span{ϕ̃1

j,k ; k = k̃[, 2j − k̃]}

with k̃[ = δ̃[ − ñmin and k̃] = δ̃] + ñmax, if the support of ϕ̃1 is [ñmin, ñmax].

Remark 1
The parameters (δ[, δ], δ̃[, δ̃]) are ”free” parameters (chosen as small as possible), and

chosen in practice to adjust the dimension of the spaces V 1
j and Ṽ 1

j .

To preserve the polynomial reproduction (9, 10) on the interval [0, 1], we follow the
approach of [21, 4] and define edge scaling functions at the edge 0:

Definition 2.3
The edge scaling functions at the edge 0 are defined by:

0 ≤ ` ≤ r − 1, Φ1,[
` (x) =

k[−1∑
k=1−nmax

p̃1
`(k) ϕ1

k(x) χ[0,+∞[

and the duals:

0 ≤ ` ≤ r̃ − 1, Φ̃1,[
` (x) =

k̃[−1∑
k=1−ñmax

p1
`(k) ϕ̃1

k(x) χ[0,+∞[
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At the edge 1, the edge scaling functions Φ1,]
j,` are constructed on ]−∞, 1] by symmetry,

using the transform Tf(x) = f(1− x).

As usual, one define the multiresolution spaces V 1
j on [0, 1], by the direct sum:

V 1
j = V 1,[

j ⊕ V
1,int
j ⊕ V 1,]

j (11)

where:

V 1,[
j = span{2j/2Φ1,[

` (2jx) ; ` = 0, · · · , r − 1}
V 1,]
j = span{2j/2Φ1,]

` (2j(1− x)) ; ` = 0, · · · , r − 1}

are the edge spaces. In practice we have to choose j ≥ jmin where jmin is the smallest
integer which verifies:

jmin > log2[nmax − nmin + δ] + δ[]

This condition ensures that the supports of edge scaling functions at 0 do not intersect
the supports of edge scaling functions at 1.
The polynomial reproduction in V 1

j is then satisfied since, for 0 ≤ ` ≤ r−1 and x ∈ [0, 1]
we have:

2j/2(2jx)`

`!
= 2j/2Φ1,[

` (2jx) +

2j−k]∑
k=k[

p̃1
`(k) ϕ1

j,k(x) + 2j/2Φ1,]
` (2j(1− x)) (12)

Similarly, multiresolution spaces Ṽ 1
j are defined with the same structure, allowing the

polynomial reproduction up to degree r̃ − 1:

Ṽ 1
j = span{Φ̃1,[

j,`}`=0,r̃−1 ⊕ Ṽ 1,int
j ⊕ span{Φ̃1,]

j,`}`=0,r̃−1 (13)

In order to obtain the equality between dimensions of V 1
j and Ṽ 1

j , we have to adjust the

parameters δ̃[ = k̃[ − ñmax and δ̃] = k̃] + ñmin in the definition 2.2 such that:

k[ − r = k̃[ − r̃ and k] − r = k̃] − r̃ (14)

We get:
dim(V 1

j ) = dim(Ṽ 1
j ) = 2j − (δ[ + δ])− (nmax − nmin) + 2r + 1

where (δ[, δ]) remain ”free”parameters of the construction. Like for V 1
j we have to choose

j ≥ j̃min with j̃min > log2[ñmax − ñmin + δ̃] + δ̃[].

The last point of the construction lies in the biorthogonalization process of the new
basis functions, since edge scaling functions of V 1

j and Ṽ 1
j are not biorthogonal. Several

biorthogonalization methods exist [1, 11, 17, 21], here we apply on one hand the method
proposed by Dahmen and al. [11] when using B-spline generators, and on the other hand
a Gram-Schmidt process with Daubechies orthogonal generators [21]. In both cases, it
requires the inversion of the Gram matrix associated with the two systems, which for
orthogonal and B-Spline generators is non singular [11, 21].
Finally, the spaces (V 1

j , Ṽ
1
j )j≥max{jmin,j̃min}, constitute a biorthogonal MRA of L2(0, 1) in

the sense of definition 2.1.
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Moreover, homogeneous boundary conditions can be simply imposed to V 1
j , of the

form f (λ)(α) = 0 at point α = 0 or 1, with λ = 0, · · · , r−1, by removing the edge scaling

function Φ1,[
λ if α = 0 or Φ1,]

λ if α = 1 in the definition 2.3 of edge spaces (see [21] for

more details). In such case, we also remove the function Φ̃1,[
λ or Φ̃1,]

λ from Ṽ 1
j prior to

biorthogonalization.

2.2.2 Construction of (V 0
j , Ṽ

0
j ) on [0, 1] linked by differentiation /integration with (V 1

j , Ṽ
1
j )

We will now construct spaces (V 0
j , Ṽ

0
j ), related to the spaces (V 1

j , Ṽ
1
j ) of section 2.2.1 by

the relations (5,6) of differentiation/integration.
Given (ϕ1, ϕ̃1) biorthogonal scaling functions with approximation orders (r, r̃) (r > 1),
and compact supports [nmin, nmax], [ñmin, ñmax], we consider (ϕ0, ϕ̃0) arising from propo-
sition 2.1. Then (ϕ0, ϕ̃0) satisfy some properties on R, that we recall below.

First, the scaling functions (ϕ0, ϕ̃0) are defined such that:

d

dx
ϕ1(x) = ϕ0(x)− ϕ0(x− 1) and

∫ x+1

x

ϕ̃1(t)dt = ϕ̃0(x) (15)

This implies that ϕ0 has for compact support [nmin, nmax−1], and reproduces polynomials
up to degree r − 2:

0 ≤ ` ≤ r − 2,
x`

`!
=

+∞∑
k=−∞

p̃0
`(k) ϕ0(x− k) (16)

with p̃0
`(k) = 〈x`

`!
, ϕ̃0(x− k)〉.

Equation (8) implies: p̃0
`(k) = p̃1

`+1(k)− p̃1
`+1(k − 1) for ` = 0, · · · , r − 2.

In the same way ϕ̃0 has for compact support [ñmin− 1, ñmax], and reproduces polyno-
mials up to degree r̃:

0 ≤ ` ≤ r̃,
x`

`!
=

+∞∑
k=−∞

p0
`(k) ϕ̃0(x− k) (17)

with p0
`(k) = 〈x`

`!
, ϕ0(x− k)〉.

Equation (7) implies: p1
`(k) = p0

`+1(k + 1)− p0
`+1(k) for ` = 1, · · · , r̃.

Like for V 1
j , we first define the set of interior scaling functions of V 0

j :

Definition 2.4
Let δ[, δ] ∈ N and k[ = δ̃[ − ñmin and k] = δ̃] + ñmax be the parameters introduced
in definition 2.2. For j ≥ 0, the interior scaling functions of V 0

j are defined as scaling

functions ϕ0
j,k(x) = 2j/2ϕ0(2jx− k) whose supports are included into [ δ[

2j
, 1− δ]

2j
] ⊂ [0, 1].

Since supp ϕ0 = [nmin, nmax−1], the space generated by interior scaling functions is given
by:

V 0,int
j = span{ϕ0

j,k ; k = k[, 2j − k] + 1}
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Similarly, let δ̃[, δ̃] ∈ N, and k̃[ = δ̃[ − ñmin, k̃] = δ̃] + ñmax be fixed by definition

2.2 and relation (14). Interior scaling functions of Ṽ 0
j are defined as scaling functions

ϕ̃0
j,k(x) = 2j/2ϕ0(2jx−k) whose supports are included into [ δ̃[

2j
, 1− δ̃]

2j
]. The space generated

by interior scaling functions is then given by:

Ṽ 0,int
j = span{ϕ̃0

j,k ; k = k̃[ + 1, 2j − k̃]}

To preserve the polynomial reproduction (16,17) on [0, 1] in (V 0
j , Ṽ

0
j ), we define edge

scaling functions at the edge 0:

Definition 2.5
The edge scaling functions at the edge 0 are defined by:

0 ≤ ` ≤ r − 2, Φ0,[
` (x) =

k[−1∑
k=2−nmax

p̃0
`(k) ϕ0

k(x) χ[0,+∞[

and the biorthogonal ones, vanishing at 0:

1 ≤ ` ≤ r̃, Φ̃0,[
` (x) =

k̃[∑
k=1−ñmax

p0
`(k) ϕ̃0

k(x) χ[0,+∞[

At the edge 1, the edge scaling functions Φ0,]
j,` and Φ̃0,]

j,` are constructed by symmetry, using
the transform Tf(x) = f(1− x).

Remark 2
Following Jouini-Lemarié-Rieusset [18], to preserve the commutation between the deriva-
tion and the multiscale projectors, the space Ṽ 0

j should satisfy (6): Ṽ 0
j ⊂ H1

0 (0, 1) . Indeed

we impose by construction homogeneous Dirichlet boundary conditions to Ṽ 0
j , since we

do not consider Φ̃0,[
0 and Φ̃0,]

0 (` = 0) in definition 2.5.

The multiresolution spaces V 0
j on [0, 1] are then defined by:

V 0
j = V 0,[

j ⊕ V
0,int
j ⊕ V 0,]

j

where:

V 0,[
j = span{2j/2Φ0,[

` (2jx) ; ` = 0, · · · , r − 2}
V 0,]
j = span{2j/2Φ0,]

` (2j(1− x)) ; ` = 0, · · · , r − 2}

The polynomial reproduction up to degree r−2 in V 0
j is then ensured. In practice j > jmin

where the parameter jmin is now adapted to both BMRA (V 1
j , Ṽ

1
j ) and (V 0

j , Ṽ
0
j ) by:

jmin > max{log2[nmax − nmin + δ] + δ[ + 1], log2[ñmax − ñmin + δ̃] + δ̃[ + 1]}

Multiresolution spaces Ṽ 0
j are defined with similar structure, allowing a polynomial

reproduction up to degree r̃, and satisfying vanishing boundary conditions at 0 and 1.

Ṽ 0
j = span{Φ̃0[

j,`}`=1,r̃ ⊕ Ṽ 0,int
j ⊕ span{Φ̃1,]

j,`}`=1,r̃ (18)

A simple calculation shows that:

dim(V 0
j ) = 2j − k] − k[ + 2r and dim(Ṽ 0

j ) = 2j − k̃] − k̃[ + 2r̃ (19)

Since the parameters k[, k], k̃[ and k̃] are chosen to satisfy equation (14), we obtain:

dim(V 0
j ) = dim(Ṽ 0

j ) The following proposition proves that d
dx
V 1
j = V 0

j and d
dx
Ṽ 0
j ⊂ Ṽ 1

j .
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Proposition 2.2
(i) The interior scaling functions of (V 1

j , V
0
j ) and (Ṽ 1

j , Ṽ
0
j ) introduced in definitions 2.2,

2.4 satisfy:

d

dx
(ϕ1

j,k) = 2j[ϕ0
j,k − ϕ0

j,k+1]
d

dx
(ϕ̃0

j,k) = 2j[ϕ̃1
j,k−1 − ϕ̃1

j,k]

and dim(V 0,int
j ) = dim(V 1,int

j ) + 1, dim(Ṽ 0,int
j ) = dim(Ṽ 1,int

j )− 1.

(ii) The edge scaling functions of (V 1
j , V

0
j ) introduced in definitions 2.3, 2.5 satisfy: for

` = 1, r − 1,

(Φ1,[
0 )′(x) = −ϕ0

k[
, (Φ1,[

` )′(x) = Φ0,[
`−1 − p̃

1
`(k[ − 1) ϕ0

k[

(Φ1,]
0 )′(1− x) = ϕ0

2−k] , (Φ1,]
` )′(1− x) = −Φ0,]

`−1(1− x) + p̃1
`(2− k]) ϕ0

2−k]

whereas those of (Ṽ 1
j , Ṽ

0
j ) are linked by: for ` = 1, r̃ − 1,

(Φ̃0,[
0 )′ = −ϕ̃1

k̃[
, (Φ̃0,[

` )′ = Φ̃1,[
`−1 − p

0
`(k̃[) ϕ̃

1
k̃[

(Φ̃0,]
0 (1− x))′ = ϕ̃1

1−k̃]
, (Φ̃0,]

` (1− x))′ = −Φ̃1,]
`−1(1− x) + p0

`(2− k̃]) ϕ̃1
1−k̃]

Proof 2.1 The point (i) follows from (15) and since interior functions are defined by
ϕ1
j,k(x) = 2j/2ϕ(2jx− k) (and the same for ϕ0

j,k, ϕ̃
1
j,k, ϕ̃

0
j,k).

The point (ii) comes directly from definitions 2.3, 2.5 of edge scaling functions. We focus
on the first line of equalities: at edge 0 and for 0 ≤ ` ≤ r − 1, the edge scaling functions
of (V 1

j ) are defined by dilation of:

Φ1,[
` (x) =

k[−1∑
k=1−nmax

p̃1
`(k) ϕ1

k(x)χ[0,+∞[ with ϕ1
k(x) = ϕ1(x− k)

Differentiating in ]0,+∞[, one obtains for ` = 0 (p̃1
0(k) = 1,∀k):

(Φ1,[
0 )′ =

k[−1∑
k=1−nmax

(ϕ0
k − ϕ0

k+1) χ]0,+∞[ = ϕ0
1−nmax

χ]0,+∞[ − ϕ0
k[

= −ϕ0
k[

since supp ϕ0
1−nmax

= [nmin − nmax + 1, 0].
In the same way, for ` = 1, r − 1:

(Φ1,[
` )′ =

k[−1∑
k=1−nmax

p̃1
`(k) (ϕ0

k − ϕ0
k+1) χ]0,+∞[

=

k[−1∑
k=2−nmax

[p̃1
`(k)− p̃1

`(k − 1)] ϕ0
kχ[0,+∞[ − p1

`(k[ − 1) ϕ0
k[

From (8), since p̃0
`−1(k) = p̃1

`(k)− p̃1
`(k − 1) we get:

(Φ1,[
` )′ =

k[−1∑
k=2−nmax

p̃0
`−1(k) ϕ0

kχ[0,+∞[ − p̃1
`(k[ − 1) ϕ0

k[
= Φ0,[

`−1 − p̃
1
`(k[ − 1) ϕ0

k[

This proves the relation between edge scaling functions at 0 of V 1
j and V 0

j . The proof for

edge scaling functions at edge 1 and in the biorthogonal spaces Ṽ 1
j and Ṽ 0

j is obtained
with similar arguments.
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For easy reading, the two pairs of biorthogonal bases of (V 1
j , Ṽ

1
j ) and (V 0

j , Ṽ
0
j ) will be

denoted by (ϕ1
j,k, ϕ̃

1
j,k) and (ϕ0

j,k, ϕ̃
0
j,k) respectively. The oblique projector on V 1

j parallel

to (Ṽ 1
j )⊥ will be denoted by P1

j :

P1
j : L2(0, 1)→ V 1

j , f 7→ P1
j (f) =

∑
k

〈f, ϕ̃1
j,k〉 ϕ1

j,k (20)

while P̃1
j will denote its adjoint, and P0

j , P̃0
j the biorthogonal projectors associated with

(V 0
j , Ṽ

0
j ).

The following proposition proves that the constructed biorthogonal MRAs take place
in the theoretical framework of Jouini-Lemarié-Rieusset in [18].

Proposition 2.3
The two pairs of biorthogonal spaces (V 1

j , Ṽ
1
j ) and (V 0

j , Ṽ
0
j ) are related to:

d

dx
V 1
j = V 0

j and Ṽ 0
j = H1

0 ∩
∫ x

0

Ṽ 1
j , with Ṽ 0

j ⊂ H1
0 (0, 1)

Proof 2.2
The inclusions d

dx
V 1
j ⊂ V 0

j and d
dx
Ṽ 0
j ⊂ Ṽ 1

j are straightforward according to proposition
2.2. Moreover the equality of dimensions between spaces ends the proof.

We then define the change of bases between the spaces ( d
dx
V 1
j ,

d
dx
Ṽ 0
j ) and (V 0

j , Ṽ
1
j ) as

follows.

Definition 2.6
Let (L1

j , L
0
j) and (L̃1

j , L̃
0
j) be the two pairs of sparse matrices defined by the change of

bases between spaces involved in proposition 2.3 :

d

dx
ϕ1
j,k =

∑
n

(L1
j)k,n ϕ

0
j,n,

d

dx
ϕ̃0
j,k =

∑
n

(L̃0
j)k,n ϕ̃

1
j,n (21)

and

−
∫ x

0

ϕ0
j,k =

∑
m

(L0
j)k,m ϕ1

j,m, −
∫ x

0

ϕ̃1
j,k =

∑
m

(L̃1
j)k,m ϕ̃0

j,m (22)

Remark 3
The matrices (L1

j , L
0
j) and (L̃1

j , L̃
0
j) are rectangular and from the biorthogonality of spaces

(V 0
j , Ṽ

0
j ), it comes:

L0
j(L̃

0
j)
T = Idim(V 0

j )

where I denotes the matrix identity. Except for the first scaling function Φ1,[
j,0, which does

not satisfy homogeneous Dirichlet boundary condition at 0, similarly we have:

L1
j(L̃

1
j)
T = Idim(V 1

j )−1

In addition, the definition of L̃1
j (22) must include the scaling functions Φ̃0,[

j,0 and Φ̃0,]
j,0, if

not, this definition leads to
∫ 1

0
ϕ̃1
j,m = 0, which is not true.

With this definition, we prove the commutation between multiscale projectors and differ-
entiation.
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Proposition 2.4
Let (P1

j , P̃1
j ) and (P0

j , P̃0
j ) be the multiscale projectors defined by (20):

(i) ∀ f ∈ H1(0, 1), d
dx
◦ P1

j f = P0
j ◦ d

dx
f .

(ii) ∀ f ∈ H1
0 (0, 1), d

dx
◦ P̃0

j f = P̃1
j ◦ d

dx
f .

Proof 2.3 (i) The relation of commutation d
dx
◦ P1

j f = P0
j ◦ d

dx
f was demonstrated first

in [18] in the general setting. We will now prove the commutation of the projectors with
derivation (ii). Let (ϕ0

j,k, ϕ̃
0
j,k) be a pair of biorthogonal scaling functions of (V 0

j , Ṽ
0
j ) and

as ϕ̃0
j,k ∈ H1

0 (0, 1), from proposition 2.2 we obtain:

−〈 d
dx
ϕ̃0
j,k,

∫ x

0

ϕ0
j,k′〉 = 〈ϕ̃0

j,k, ϕ
0
j,k′〉 = δk,k′ =

∑
n

(L̃0
j)k,n(L0

j)k′,n = [L̃0
jL

0T
j ]k,k′

where L0
j and L̃0

j are introduced in (21) and (22). For f ∈ H1
0 (0, 1), since 〈f, ϕ0

j,k〉 =

−〈 d
dx
f,
∫ x

0
ϕ0
j,k〉 we get:

d

dx
P̃0
j (f) =

∑
k

〈f, ϕ0
j,k〉

d

dx
ϕ̃0
j,k =

∑
n

∑
m

∑
k

(L0
j)k,m(L̃0

j)k,n〈
d

dx
f, ϕ1

j,m〉 ϕ̃1
j,n

=
∑
n

∑
m

δn−m〈
d

dx
f, ϕ1

j,m〉 ϕ̃1
j,n =

∑
n

〈 d
dx
f, ϕ1

j,n〉 ϕ̃1
j,n = P̃1

j (
d

dx
f)

This proves the relation (ii).

2.2.3 Wavelet spaces

We begin with the construction of wavelet bases of the biorthogonal MRA (V 1
j , Ṽ

1
j ). This

point is classical, although different kinds of wavelets may be designed [1, 9, 11, 21, 17, 4].
For j ≥ jmin, the biorthogonal wavelet spaces associated to V 1

j and Ṽ 1
j are in all cases

defined by:

W 1
j = V 1

j+1 ∩ (Ṽ 1
j )⊥ and W̃ 1

j = Ṽ 1
j+1 ∩ (V 1

j )⊥

The wavelet space W 1
j has the following structure:

W 1
j = W 1,[

j ⊕W
1,int
j ⊕W 1,]

j

where 
W 1,[
j = span{2j/2Ψ1,[

` (2jx) ; ` = 0, p[ − 1}
W 1,int
j = span{ψ1

j,k ; k = p[, 2j − p] − 1}
W 1,]
j = span{2j/2Ψ1,]

` (2j(1− x)) ; ` = 0, p] − 1}
(23)

p[ and p] introduced above are suitable integers to ensure that the support of each interior

wavelet ψ1
j,k(x) = 2j/2ψ1(2jx − k) of W 1,int

j is included into [ δ[
2j
, 1 − δ]

2J
]. Recall that the

support of ψ1 (wavelet on R) is [nmin−ñmax+1
2

, nmax−ñmin+1
2

], then we deduce:

p[ = b ñmax + k[ − 1

2
c and p] = bk] − ñmin + 1

2
c

11



To construct the edge wavelets Ψ1,[
j,` and Ψ1,]

j,` we have followed the work of Grivet-Talocia

and Tabacco [17]. The biorthogonal spaces W̃ 1
j have the same structure and the wavelet

bases of the two spaces must to be biorthogonalized identically as the scaling functions.
The resulting wavelet bases are denoted by {ψ1

j,k}k=0,2j−1 and {ψ̃1
j,k}k=0,2j−1 without dis-

tinction.

Another advantage of this construction is the existence of a fast wavelet transforms
because the scaling functions and wavelets satisfy both a two-scale relation. Indeed, there
are sparse matrices H1

j , H̃1
j , G1

j and G̃1
j such that:

ϕ1
j,k =

∑
n

(H1
j )k,nϕ

1
j+1,n and ψ1

j,k =
∑
n

(G1
j)k,nϕ

1
j+1,n

ϕ̃1
j,k =

∑
n

(H̃1
j )k,nϕ̃

1
j+1,n and ψ̃1

j,k =
∑
n

(G̃1
j)k,nϕ̃

1
j+1,n

The main objective of this section is now to construct biorthogonal wavelet bases of
W 0
j and W̃ 0

j , that will be linked to ψ1
j,k and ψ̃1

j,k by differentiation/integration. A first
result in this direction is given by the following proposition:

Proposition 2.5
Let (V 1

j , Ṽ
1
j ) and (V 0

j , Ṽ
0
j ) be two biorthogonal multiresolution analyses satisfying propo-

sition 2.3. The spaces W 0
j and W̃ 0

j defined by:

W 0
j =

d

dx
W 1
j and W̃ 0

j =

∫ x

0

W̃ 1
j (24)

correspond to biorthogonal wavelet spaces associated to (V 0
j , Ṽ

0
j ) in the classical sense:

W 0
j = V 0

j+1 ∩ (Ṽ 0
j )⊥ and W̃ 0

j = Ṽ 0
j+1 ∩ (V 0

j )⊥

Proof 2.4 First we prove the relation: d
dx
W 1
j = V 0

j+1∩ (Ṽ 0
j )⊥. Let w1

j ∈ W 1
j , we get from

proposition 2.4 (i):

P0
j (
d

dx
w1
j ) =

d

dx
P1
j (w1

j ) = 0

thus d
dx
w1
j ∈ (Ṽ 0

j )⊥. Moreover, following the proposition 2.3 (i):

d

dx
w1
j ∈

d

dx
V 1
j+1 = V 0

j+1

This implies d
dx
W 1
j ⊂ V 0

j+1 and thus d
dx
W 1
j ∈ V 0

j+1 ∩ (Ṽ 0
j )⊥. The equality is obtained by

the equality between both space dimension.
To prove the relation between W̃ 0

j and W̃ 1
j , as W̃ 0

j ⊂ H1
0 (0, 1), one can remark that:

W̃ 0
j =

∫ x

0

W̃ 1
j ⇔

d

dx
W̃ 0
j = W̃ 1

j

The relation d
dx
W̃ 0
j = W̃ 1

j is then proved as before.

As suggested in [18], the wavelet bases of W 0
j and W̃ 0

j are constructed directly by

differentiating and integrating the wavelets of W 1
j and W̃ 1

j :

12



Definition 2.7
Let {ψ1

j,k}k=0,2j−1 and {ψ̃1
j,k}k=0,2j−1 be two biorthogonal wavelet bases of W 1

j and W̃ 1
j

respectively. The wavelets of W 0
j and W̃ 0

j are defined by:

ψ0
j,k = 2−j(ψ1

j,k)
′ and ψ̃0

j,k = −2j
∫ x

0

ψ̃1
j,k

Interior wavelets ψ0
j,k(x) = 2j/2ψ0(2jx − k) in this definition correspond to the classical

wavelets arising from previous constructions [9, 11, 21, 17, 4], ψ0 being a wavelet on R
associated to the derivative ϕ0. On the other hand, in standard constructions, the edge
wavelets do not verify the relations:

d

dx
Ψ1,[
j,k = 2jΨ0,[

j,k or Ψ̃0,[
j,k = −2j

∫ x

0

Ψ̃1,[
j,k (25)

The following proposition guarantees (25) and the new edge wavelets provided by defini-
tion 2.7 preserve fast algorithms since they satisfy a two-scale relationship.

Proposition 2.6
Let {ψ1

j,k}k=0,2j−1 and {ψ̃1
j,k}k=0,2j−1 be two biorthogonal wavelet bases of W 1

j and W̃ 1
j

associated respectively to filters G1
j and G̃1

j :

ψ1
j,k =

∑
n

(G1
j)k,n ϕ

1
j+1,n and ψ̃1

j,k =
∑
n

(G̃1
j)k,n ϕ̃

1
j+1,n

Then the following propositions hold:
(i) The system {ψ0

j,k = 2−j(ψ1
j,k)
′}k=0,2j−1 and {ψ̃0

j,k = −2j
∫ x

0
ψ̃1
j,k}k=0,2j−1 form biorthog-

onal wavelet bases of W 0
j and W̃ 0

j respectively.

(ii) There exist sparse matrices G0
j and G̃0

j defined by:

G0
j = 2−jG1

jL
1
j+1 and G̃0

j = −2jG̃1
jL

0T
j+1 (26)

and the wavelets ψ0
j,k and ψ̃0

j,k satisfy:

ψ0
j,k =

∑
n

(G0
j)k,nϕ

0
j+1,n and ψ̃0

j,k =
∑
n

(G̃0
j)k,nϕ̃

0
j+1,n

Proof 2.5 (i) The construction of biorthogonal bases by differentiation /integration is
an idea of Cieselski-Figiel [5] used by Jouini-Lemarié-Rieusset [18]. Moreover, from
proposition 2.5 we can see that the two systems are independent and they generate the
corresponding spaces.
(ii) To derive the filters, we only use the definition of wavelets. So, we have:

2jψ0
j,k =

∑
n

(G1
j)k,n(ϕ1

j+1,n)′ =
∑
n,m

(G1
j)k,n(L1

j+1)n,mϕ
0
j+1,m

=
∑
m

[G1
jL

1
j+1]k,mϕ

0
j+1,m = 2j

∑
m

(G0
j)k,mϕ

0
j+1,m

which gives the filter of ψ0
j,k. Similarly, for ψ̃0

j,k we obtain:

d

dx
ψ̃0
j,k =

∑
m

(G̃0
j)k,m(ϕ̃0

j+1,m)′ =
∑
m,n

(G̃0
j)k,m(L̃0

j+1)m,nϕ̃
1
j+1,n

=
∑
n

[G̃0
j L̃

0
j+1]k,nϕ̃

1
j+1,n = −2j

∑
n

(G̃1
j)k,nϕ̃

1
j+1,n

13



Taking into account the relation [L̃0
jL

0T
j ]k,k′ = δk,k′, there are summary:

G0
j = 2−jG1

jL
1
j+1 and G̃0

j = −2jG̃1
jL

0T
j+1

This completes the proof.

Remark 4
The above construction of wavelets ψ0

j,k and ψ̃0
j,k has two main interests: their filters are

directly accessible from those of ψ1
j,k and ψ̃1

j,k and there is no need for biorthogonalization
as for classical constructions.

Example 1
To illustrate, we give the plot of edge scaling functions and wavelets at 0 in (V 1

j , Ṽ
1
j ) on

Figure 1. The generators (ϕ1, ϕ̃1) used are biorthogonal B-Spline with r = r̃ = 3. Then we
have: nmin = −1, nmax = 2, ñmin = −3 and ñmax = 4. The ”free” integer parameters are
chosen as δmin = δmax = 2 and δ̃min = δ̃max = 0. On Figure 2, we plot the corresponding
edge scaling functions and wavelets of (V 0

j , Ṽ
0
j ) at 0. The Figure 3 and Figure 4 show the

non zeros elements of filters G0
j and G̃0

j and matrices L0
j and L1

j respectively, for j = 6.

2.3 Biorthogonal MRA of Hdiv(Ω)

Let Ω be the square [0, 1]2. The aim of the present section is to provide a divergence-free
MRA and wavelet bases of the space Hdiv(Ω) [16]:

Hdiv(Ω) = {u ∈ (L2(Ω))2 : div(u) = 0 and u · ~ν = 0}

Since this space is equal to:

Hdiv(Ω) = {u = curl χ ; χ ∈ H1
0 (Ω)}

our construction consists in taking the curl of a regular MRA of the two-dimensional
scalar space H1

0 (Ω).

Such MRA of H1
0 (Ω) is usually defined as tensor-product of one-dimensional MRA

of H1
0 (0, 1). We now consider a regular one-dimensional MRA satisfying homogeneous

boundary conditions:
V D
j = V 1

j ∩H1
0 (0, 1)

as constructed in section 2.2, and which takes the form:

V D
j = span{Φ1,[

j,` ; ` = 1, r − 1} ⊕ V 1,int
j ⊕ span{Φ1,]

j,` ; ` = 1, r − 1}

To simplify, we denote by ϕDj,k the scaling functions of V D
j :

V D
j = span{ϕDj,k ; k = 0, 2j − k] − k[ + 2r − 2}

and ψDj,k the corresponding wavelets. With these notations, the divergence-free scaling
function spaces are defined below.

Definition 2.8
For j ≥ jmin, the divergence-free scaling function spaces Vdiv

j are defined by:

Vdiv
j = curl(V D

j ⊗ V D
j ) = span{Φdiv

j,k} (27)
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where the divergence-free scaling functions are given by:

Φdiv

j,k := curl[ϕDj,k1 ⊗ ϕ
D
j,k2

], j ≥ jmin (28)

The spaces Vdiv
j defined above constitute an increasing sequence of subspaces of (L2(Ω))2:

Vdiv
j ⊂ Vdiv

j+1

of dimension:

dim(Vdiv
j ) = dim(V D

j )2 = (2j − k] − k[ + 2r − 1)2

=
(
2j − (nmax − nmin)− (δ[ + δ]) + 2r − 1

)2

We will also consider a more standard multiresolution analysis ~Vj of (L2(Ω))2 defined
as:

~Vj = (V 1
j ⊗ V 0

j )× (V 0
j ⊗ V 1

j ) (29)

V 0
j being the spaces defined in section 2.2.2. By proposition 2.3, this discrete space ~Vj

preserves the divergence-free condition, as stated by Jouini-Lemarié-Rieusset[18]:

u ∈ (L2(Ω))2, div(u) = 0 ⇒ div[~Pj(u)] = 0 (30)

where ~Pj is the biorthogonal projector on ~Vj:

~Pj = (P1
j ⊗ P0

j ,P0
j ⊗ P1

j ) (31)

In the same way, we now introduce anisotropic divergence-free wavelets and wavelet
spaces:

Definition 2.9
The anisotropic divergence-free wavelets and wavelet spaces are given by:

Ψdiv,1

j,k
:= curl[ϕDjmin,k1

⊗ ψDj2,k2 ] and Wdiv,1

j
= span{Ψdiv,1

j,k
}, j2 ≥ jmin

Ψdiv,2

j,k
:= curl[ψDj1,k1 ⊗ ϕ

D
jmin,k2

] and Wdiv,2

j
= span{Ψdiv,2

j,k
}, j1 ≥ jmin

Ψdiv,3

j,k
:= curl[ψDj1,k1 ⊗ ψ

D
j2,k2

] and Wdiv,3

j
= span{Ψdiv,3

j,k
}, j1, j2 ≥ jmin

The following proposition proves that (Vdiv
j )j≥jmin

is a multiresolution analysis ofHdiv(Ω).

Proposition 2.7
The divergence-free scaling functions spaces Vdiv

j and wavelet spaces Wdiv,ε

j
for ε = 1, 2, 3,

satisfy:

(i) Vdiv
jmin
⊂ · · · ⊂ Vdiv

j ⊂ Vdiv
j+1 ⊂ · · · ⊂ Hdiv(Ω) and ∪Vdiv

j = Hdiv(Ω).

(ii) Vdiv
j = Vdiv

jmin

⊕
jmin≤j1,j2≤j−1(⊕ε=1,2,3W

div,ε

j
).

(iii) For all j and ε = 1, 2, 3, {Ψdiv,ε

j,k
} is a Riesz basis of Wdiv,ε

j
.
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Then each vector function u of Hdiv(Ω) has an unique decomposition into the basis

{Φdiv

jmin,k
,Ψdiv,ε

j,k
}j1,j2≥jmin;ε=1,2,3:

u =
∑
k

cdiv
jmin,k

Φdiv

jmin,k
+
∑
j,k

∑
ε=1,2,3

ddiv,ε
j,k

Ψdiv,ε

j,k

with the norm-equivalence:

‖u‖L2 ∼
∑
k

|cdiv
jmin,k

|2 +
∑
j,k

∑
ε=1,2,3

|ddiv,ε
j,k
|2

Proof 2.6 (i) Let ~Vj be the spaces defined in (29). Since the spaces Hdiv(Ω)∩ ~Vj provide
a multiresolution analysis of Hdiv(Ω)[18], point (i) is reduced to prove that: Vdiv

j =

Hdiv(Ω) ∩ ~Vj.

According to proposition 2.2, we have Vdiv
j ⊂ ~Vj and Vdiv

j ⊂ Hdiv(Ω) by construction.

Conversely, let u ∈ Hdiv(Ω) ∩ ~Vj, and ~Pj be the biorthogonal projector on ~Vj defined in

(31). We are going to prove that u ∈ Vdiv
j . On one side, as u ∈ ~Vj we have u = ~Pj(u),

on the other hand due to u ∈ Hdiv(Ω) we have u = curl (χ) with χ ∈ H1
0 (Ω), and thus:

u = ~Pj[curl (χ)]

Since the spaces (V D
j ⊗ V D

j )j≥jmin
form a MRA of H1

0 (Ω), we can decompose χ as:

χ = PD
j (χ) +

∑
j1,j2≥j

(
QD

1 (χ) + QD
2 (χ) + QD

3 (χ)
)

where

PD
j (χ) =

∑
k

ck ϕDj,k1 ⊗ ϕ
D
j,k2
, QD

2 (χ) =
∑
j1≥j,k

d2

j1,k
ψDj1,k1 ⊗ ϕ

D
j,k2

QD
1 (χ) =

∑
j2≥j,k

d1

j2,k
ϕDj,k1 ⊗ ψ

D
j2,k2

, QD
3 (χ) =

∑
j1,j2≥j,k

d3

j,k ψDj1,k1 ⊗ ψ
D
j2,k2

are the biorthogonal projectors on respectively V D
j ⊗ V D

j , WD
j1
⊗ V D

j , V D
j ⊗ WD

j2
and

WD
j1
⊗WD

j2
. Proposition 2.2 implies that:

curl [ϕDj,k1 ⊗ ψ
D
j2,k2

] ∈ (V D
j ⊗W 0

j2
)× (V 0

j ⊗WD
j2

)

hence:
~Pj(curl [ϕDj,k1 ⊗ ψ

D
j2,k2

]) = 0

and same for ~Pj(curl [ψDj1,k1 ⊗ ϕ
D
j,k2

]) and ~Pj(curl [ψDj1,k1 ⊗ ψ
D
j2,k2

]). This leads to:

~Pj(curl (χ)) = ~Pj(curl [PD
j (χ)]) = curl [PD

j (χ)]

By construction we have curl [PD
j (χ)] ∈ Vdiv

j , which implies u ∈ Vdiv
j and then completes

the proof: Vdiv
j = Hdiv(Ω) ∩ ~Vj.

(ii) The spaces V D
j are a multiresolution analysis of H1

0 (0, 1), and we can write:

V D
j ⊗ V D

j = (V D
jmin

j−1⊕
j1=jmin

WD
j1

)⊗ (V D
jmin

j−1⊕
j2=jmin

WD
j2

)
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By definition of Vdiv
j , we obtain:

Vdiv
j = curl

(V D
jmin

⊗ V D
jmin

)
⊕

jmin≤j1,j2≤j−1

[(V D
jmin

⊗WD
j2 )⊕ (WD

j1 ⊗ V D
jmin

)⊕ (WD
j1 ⊗WD

j2 )]


which is exactly Vdiv

j = Vdiv
jmin

⊕[⊕
jmin≤j1,j2≤j−1

(
⊕ε=1,2,3W

div,ε

j

)]
. (iii) Following [20,

8], this point is a consequence of the proposition 2.8 below.

We now introduce the biorthogonal divergence-free scaling functions and wavelets.
Let:

Φ̃div

j,k :=

∣∣∣∣ ϕ̃Dj,k1 ⊗ γ̃j,k2−γ̃j,k1 ⊗ ϕ̃Dj,k2
, Ψ̃div,1

j,k
:=

∣∣∣∣ 2j2ϕ̃Djmin,k1
⊗ ψ̃0

j2,k2

−γ̃jmin,k1 ⊗ ψ̃Dj2,k2
(32)

Ψ̃div,2

j,k
:=

∣∣∣∣ ψ̃Dj1,k1 ⊗ γ̃jmin,k2

−2j1ψ̃0
j1,k1
⊗ ϕ̃Djmin,k2

, Ψ̃div,3

j,k
:=

∣∣∣∣ 2j2ψ̃Dj1,k1 ⊗ ψ̃
0
j2,k2

−2j1ψ̃0
j1,k1
⊗ ψ̃Dj2,k2

(33)

where: γ̃j,k = −
∫ x

0
ϕ̃Dj,k. Remark that γ̃j,k(0) = γ̃j,k(1) since ϕ̃Dj,k ∈ H1

0 (0, 1).

Proposition 2.8
For a fixed j ≥ jmin, the normalized families{

1√
2
Φdiv

j,k,
1√

4j2+1
Ψdiv,1

j,k
, 1√

4j1+1
Ψdiv,2

j,k
, 1√

4j1+4j2
Ψdiv,3

j,k
; j1, j2 ≥ j , k

}
and

{
1√
2
Φ̃div

j,k,
1√

4j2+1
Ψ̃div,1

j,k
, 1√

4j1+1
Ψ̃div,2

j,k
, 1√

4j1+4j2
Ψ̃div,3

j,k
; j1, j2 ≥ j , k

}
are biorthogonal in (L2(Ω))2, then they form Riesz sequences of (L2(Ω))2.

Remark 5
Contrarily the usual definitions of MRAs, the (L2-normalized) divergence-free scaling
functions (Φdiv

j,k)k don’t form a Riesz basis of the space Vdiv
j , since they do not verify:

‖
∑
k

cdiv
j,k Φdiv

j,k‖
2
(L2(Ω))2 ∼

∑
k

|cdiv
j,k|

2

for all (cdiv
j,k) ∈ `2 and independently of j. A counterexample is given by:

u =
∑

k[≤k1,k2≤2j−k]

Φdiv
j,k1,k2

,

which satisfy:
∑

k |c
div

j,k|
2 = (2j − k] − k[ + 1)2 ∼ 22j.

On the other hand:

u =
∑

k[≤k1,k2≤2j−k]

2−j√
2

∣∣∣∣∣∣
ϕDj,k1 ⊗ (ϕDj,k2)

′

−(ϕDj,k1)
′ ⊗ ϕDj,k2∑

k[≤k2≤2j−k]

(ϕDj,k2)
′ =

∑
k[≤k2≤2j−k]

2j(ϕ0
j,k2
− ϕ0

j,k2+1) = 2j(ϕ0
j,k[
− ϕ0

j,2j−k]+1)

Let h(x) =
∑

k[≤k≤2j−k] ϕ
D
j,k(x) ∼ 2j/2χ[δ[,δ]] , ∀x ∈]0, 1[

and ‖u‖2
(L2(Ω))2 = 2−2j

(∫ 1

0
h2
)(∫ 1

0
22j(ϕ0

j,k[
− ϕ0

j,2j−k]+1)2
)
∼ 2j
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2.4 Biorthogonal MRA of H⊥div(Ω)

In this section, the curl-free function space Hcurl(Ω) that we consider is the following:

Hcurl(Ω) = {u = ∇ q : q ∈ H1
0 (Ω)}

This space is a proper subspace of H⊥div(Ω):

H⊥div(Ω) = Hcurl(Ω)⊕H∆(Ω), with H∆(Ω) = {∇ q : q ∈ H1(Ω) and ∆ q = 0}

To construct a multiresolution analysis of Hcurl(Ω), it suffices to consider the gradient
of a MRA of H1

0 (Ω). With the same notations as in previous section 2.3, curl-free scaling
functions spaces are defined by:

Definition 2.10
For j ≥ jmin, a curl-free scaling function space V∇j is defined by:

V∇j = ∇(V D
j ⊗ V D

j ) = span{Φ∇
j,k} (34)

where the curl-free scaling functions are given by:

Φ∇
j,k := ∇[ϕDj,k1 ⊗ ϕ

D
j,k2

], j ≥ jmin (35)

The spaces (V∇j ) constitute an increasing sequence of subspaces of (L2(Ω))2, of dimension:

dim(V∇j ) = dim(V D
j ⊗ V D

j ) = (2j − k] − k[ + 2r − 1)2.

Let ~V∗j be the standard multiresolution analysis of (L2(Ω))2 defined by:

~V∗j = (V 0
j ⊗ V 1

j )× (V 1
j ⊗ V 0

j ) (36)

By proposition 2.3, the spaces V∇j are contained in ~V∗j . We now define the corresponding
irrotational wavelets.

Definition 2.11
The anisotropic curl-free wavelets and wavelet spaces are defined by:

Ψ∇,1
j,k

:= ∇[ϕDjmin,k1
⊗ ψDj2,k2 ] and W∇,1

j
= span{Ψ∇,1

j,k
}, j2 ≥ jmin

Ψ∇,2
j,k

:= ∇[ψDj1,k1 ⊗ ϕ
D
jmin,k2

] and W∇,2
j

= span{Ψ∇,2
j,k
}, j1 ≥ jmin

Ψ∇,3
j,k

:= ∇[ψDj1,k1 ⊗ ψ
D
j2,k2

] and W∇,3
j

= span{Ψ∇,3
j,k
}, j1, j2 ≥ jmin

The following proposition holds:

Proposition 2.9
The spaces V∇j and W∇,ε

j
for ε = 1, 2, 3 verify:

(i) V∇jmin
⊂ · · · ⊂ V∇j ⊂ V∇j+1 ⊂ · · · ⊂ Hcurl(Ω) and ∪V∇j = Hcurl(Ω)

(ii) V∇j = V∇jmin

⊕
jmin≤j1,j2≤j−1(⊕ε=1,2,3W

∇,ε
j

)

(iii) For all j and ε = 1, 2, 3, {Ψ∇,ε
j,k
} is a Riesz basis of W∇,ε

j
.
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The proof uses the same arguments as for proposition 2.7. In addition, these construction
of curl-free scaling functions and wavelets can readily be extended to higher dimensions,
for more details see [22, 23].

Example 2

3 Fast divergence-free wavelet transform

We describe in this section the practical computation of divergence-free scaling function
and wavelet coefficients of a vector field u ∈ Vdiv

j . We use the same notations as in

previous sections. The starting point is the decomposition of u in the MRA of (L2(Ω))2

provided by ~Vj:
~Vj = (V 1

j ⊗ V 0
j )× (V 0

j ⊗ V 1
j )

On the scaling functions basis of ~Vj, the vector field u = (u1,u2) can be written as:

u1 =
∑
k

c1

j,k ϕ1
j,k1
⊗ ϕ0

j,k2
and u2 =

∑
k

c2

j,k ϕ0
j,k1
⊗ ϕ1

j,k2
(37)

The computation of divergence-free coefficients will use a change of bases between ( d
dx
ϕ1
j,k)

and (ϕ0
j,k). This needs to construct the matrices L0

j and L1
j introduced in (21) and (22),

which we recall the definition:

d

dx
ϕ1
j,k =

dim(V 0
j )∑

n=1

(L1
j)k,n ϕ

0
j,n and −

∫ x

0

ϕ0
j,n =

dim(V 1
j )∑

k=1

(L0
j)n,k ϕ

1
j,k

So we first give a more precise result on the computation of the elements of these matrices.

Proposition 3.1
Let k∗j denoted the dimension of V 1

j . The only nonzero elements of matrices L0
j and L1

j

correspond to:
(i) For edge scaling functions and for 2 ≤ k ≤ r, we have:

(L1
j)1,r = −1, (L1

j)k,k−1 = 1, (L1
j)k,r = −p̃1

k−1(k[ − 1)

(L1
j)k∗j ,k∗j−r = 1, (L1

j)k∗j−k+1,k∗j−k+1 = −1, (L1
j)k∗j−k+1,k∗j−r = p̃1

k−1(2j − k] + 1)

and

(L0
j)r,1 = 1, (L0

j)k−1,k = −1, (L0
j)k−1,1 = −p̃1

k−1(k[ − 1)

(L0
j)k∗j−r,k∗j = −1, (L0

j)k∗j−k+1,k∗j−k+1 = 1, (L0
j)k∗j−k+1,k∗j

= −p̃1
k−1(2j − k] + 1)

(ii) For interior scaling functions and for r + 1 ≤ k ≤ k∗j − r, we have:

(L1
j)k,k−1 = 1, (L1

j)k,k = −1

and

(L0
j)k,m = −1, (L0

j)k,k∗j = −1, k ≤ m ≤ k∗j − r
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Proof 3.1
To obtain the relation on L1

j , it suffices to use proposition 2.2 written for j ≥ jmin. To

obtain the relation on L0
j , as it is still true by differentiation we get:

−Φ0,[
j,` =

r−1∑
k=0

(L0
j)`,k (Φ1,[

j,k)
′ and − Φ0,]

j,` =
r−1∑
k=0

(L0
j)k∗j +`,k∗j +k (Φ1,]

j,k)
′

Then using the proposition 2.2 again, we have:

Φ0,[
j,` = 2−j[(Φ1,[

`+1)′ + p̃1
`+1(k[ − 1) (Φ1,[

j,0)′]

and

Φ0,]
j,`(1− .) = 2−j[(Φ1,]

`+1(1− .))′ − p̃1
`+1(2j − k] + 1) (Φ1,]

j,0(1− .))′]

because:
ϕ0
j,k[

= −2−j(Φ1,[
j,0)′ and ϕ0

j,2j−k]+1 = 2−j(Φ1,]
j,0(1− .))′

Similarly for interior scaling functions, by proposition 2.2 we get:

ϕ0
j,k = 2−j(ϕ1

j,k)
′ + ϕ0

j,k+1

and recursively for k[ + 1 ≤ k ≤ 2j − k] we deduce that ϕ0
j,k satisfy:

ϕ0
j,k = 2−j(ϕ1

j,k)
′ + ϕ0

j,k+1 = 2−j[(ϕ1
j,k)
′ + · · ·+ (ϕ1

j,2j−kmax
)′] + ϕ0

j,2j−kmax+1

= 2−j[(ϕ1
j,k)
′ + · · ·+ (ϕ1

j,2j−kmax
)′ + (Φ1,]

j,0(1− .))′]

This completes the proof.

Now, using matrices L0
j and L1

j we can rewrite the components of u as follows:

u1 =
∑
k

c1

j,k ϕ1
j,k1
⊗ ϕ0

j,k2
= −

∑
k

[(c1

j,k)L0
j ]k ϕ1

j,k1
⊗ (ϕ1

j,k2
)′ (38)

and
u2 =

∑
k

c2

j,k ϕ0
j,k1
⊗ ϕ1

j,k2
= −

∑
k

[L0 T
j (c2

j,k)]k (ϕ1
j,k1

)′ ⊗ ϕ1
j,k2

(39)

If u ∈ Vdiv
j , it can be uniquely written as:

u =
∑
k

cdivk Φdiv

j,k (40)

Therefore, we have the following proposition.

Proposition 3.2
The matrices of coefficients [c1

j,k] and [c2

j,k] are linked to the matrix of coefficients [cdiv
j,k]

by:
21/2[cdiv

j,k] = L0 T
j [c2

j,k]− [c1

j,k]L0
j (41)

and conversely:

[c1

j,k] = 2−1/2[cdiv
j,k]L1

j and [c1

j,k] = −2−1/2L1 T
j [cdiv

j,k] (42)
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Proof 3.2
We assume that the basis of divergence-free scaling functions used is that of the lemma
2.8. With the help of (38) and (39), by computing directly the inner product we get:

〈u/Φ̃div

j,k〉 = 2−1/2
[
L0 T
j [c2

j,k]− [c1

j,k]L0
j

]
k

Which proves (41). The second relation (42) is nothing but the change of basis described
by the previous definition of L1

j .

Now the objective is to compute the divergence-free wavelet coefficients of u:

u =
∑
k

cdiv
j,k Φdiv

j,k +
∑
j2≥j,k

ddiv,1
j,k

Ψdiv,1

j,k

+
∑
j1≥j,k

ddiv,2
j,k

Ψdiv,2

j,k
+

∑
j1,j2≥j,k

ddiv,3
j,k

Ψdiv,3

j,k

We start with the standard wavelet decomposition of u = (u1,u2) in ~Vj:

u1 =
∑
k

c1

j,k ϕ1
j,k1
⊗ ϕ0

j,k2
+
∑
j2≥j,k

d1,1

j2,k
ϕ1
j,k1
⊗ ψ0

j2,k2

+
∑
j1≥j,k

d1,2

j1,k
ψ1
j1,k1
⊗ ϕ0

j,k2
+

∑
j1,j2≥j,k

d1,3

j,k
ψ1
j1,k1
⊗ ψ0

j2,k2

and

u2 =
∑
k

c2

j,k ϕ0
j,k1
⊗ ϕ1

j,k2
+
∑
j2≥j,k

d2,1

j2,k
ϕ0
j,k1
⊗ ψ1

j2,k2

+
∑
j1≥j,k

d2,2

j1,k
ψ0
j1,k1
⊗ ϕ1

j,k2
+

∑
j1,j2≥j,k

d2,3

j,k
ψ0
j1,k1
⊗ ψ1

j2,k2

Which rewrites, using the matrices L0
j and L1

j :

u1 = −
∑
k

[(c1

j,k)L0
j ]k ϕ1

j,k1
⊗ (ϕ1

j,k2
)′ +

∑
j2≥j,k

d1,1

j2,k
ϕ1
j,k1
⊗ ψ0

j2,k2

−
∑
j1≥j,k

[(d1,2

j1,k
)L0

j ]k ψ1
j1,k1
⊗ (ϕ1

j,k2
)′ +

∑
j1,j2≥j,k

d1,3

j,k
ψ1
j1,k1
⊗ ψ0

j2,k2

and

u2 = −
∑
k

[L0 T
j (c2

j,k)]k (ϕ1
j,k1

)′ ⊗ ϕ1
j,k2
−
∑
j2≥j,k

[L0 T
j (d2,1

j2,k
)]k (ϕ1

j,k1
)′ ⊗ ψ1

j2,k2

+
∑
j1≥j,k

d2,2

j1,k
ψ0
j1,k1
⊗ ϕ1

j,k2
+

∑
j1,j2≥j,k

d2,3

j,k
ψ0
j1,k1
⊗ ψ1

j2,k2

We now prove the following proposition.
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Proposition 3.3
For ε = 1, 2, 3, the coefficients [d1,ε

j,k
] and [d2,ε

j,k
] are linked to the divergence-free wavelet

coefficients [ddiv,ε
j,k

] by:

ddiv,1
j,k

=
1√

4j2 + 1
[2j2(d1,1

j,k
)− L0 T

j (d2,1

j,k
)]j,k (43)

ddiv,2
j,k

=
1√

4j1 + 1
[(d1,2

j,k
)L0

j − 2j1(d2,2

j,k
)]j,k (44)

ddiv,3
j,k

=
1√

4j1 + 4j2
[2j2(d1,3

j,k
)− 2j1(d2,3

j,k
)]j,k (45)

Inversely we have:

[d1,1

j,k
] =

2j2√
4j2 + 1

[ddiv,1
j,k

] and [d2,1

j,k
] = − 1√

4j2 + 1
L1 T
j [ddiv,1

j,k
] (46)

[d1,2

j,k
] =

1√
4j1 + 1

[ddiv,2
j,k

]L1
j and [d2,1

j,k
] = − 2j1√

4j1 + 1
[ddiv,2

j,k
] (47)

[d1,3

j,k
] =

2j2√
4j1 + 4j2

[ddiv,3
j,k

] and [d2,3

j,k
] = − 2j1√

4j1 + 4j2
[ddiv,3

j,k
] (48)

Proof 3.3
We assume also that the basis of divergence-free wavelet used is that of the lemma 2.8.
The formula are obtained by considering the inner products:

〈u/Ψ̃div,1

j,k
〉, 〈u/Ψ̃div,2

j,k
〉 and 〈u/Ψ̃div,3

j,k
〉

The algorithm of reconstruction is still a consequence of proposition 2.2.

Example 3
We start with a vector field u arising from a numerical simulation of lid driven cavity
flow. Then, we compute its divergence-free scaling function and wavelet coefficients using
proposition 3.2 and proposition 3.3. The divergence-free wavelets are constructed from
the B-Spline generators of Figure 1 with the same parameters. Figure 9 shows the plot of
this vector field and corresponding coefficients.

4 Applications

In this section, we illustrate some practical uses of the divergence-free and curl-free
wavelets constructed before. We first show on a numerical example their powerful prop-
erties of nonlinear approximation. Then, we present their application on two problems
relevant for the numerical simulation of incompressible flows: the Helmholtz decomposi-
tion and the Stokes problem, with homogeneous boundary conditions.
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4.1 Nonlinear approximation

Divergence-free and curl-free wavelet bases provide nonlinear approximation estimates,
governed by the approximation orders of one-dimensional spaces involved in their con-
struction. In this part, we investigate the convergence rate obtained from the N -best
terms approximation.

For numerical test, we used the vector field and wavelets of example 3. On Figure
10, we plot the `2 error on each component through a solution recovered by non-linear
approximation on the divergence-free wavelet basis. We get the same result as on the
standard multiresolution analysis provided by ~Vj. This is consistent with the theoretical
result proved in [22]. Figure 11 show the classical boundary wavelet error phenomena. It
is well know that this error does not prevent the convergence of the multi-scale projector
of these bases.

4.2 Helmholtz decomposition

The Helmholtz decomposition of a vector field u of (L2(Ω))2, is a unique decomposition
of u of the form:

u = curl (χ) +∇q (49)

with χ ∈ H1
0 (Ω) and q ∈ H1(Ω). The objective in this section is to compute an approxi-

mation udivj in Vdiv
j of the divergence-free part udiv = curl (χ), using the divergence-free

bases built in section 2.3. For simplicity, we use the scaling function basis (Φdiv

j,k) , since

the wavelet one can be deduced using one-dimensional fast wavelet transform along each
direction.
udivj is searched as its decomposition onto divergence-free scaling functions:

udivj =
∑
k

cdiv
j,k Φdiv

j,k (50)

By orthogonality of the decomposition (49) in (L2(Ω))2, one obtains:

〈u/Φdiv

j,k〉 = 〈udivj /Φdiv

j,k〉 thus M(cdiv
j,k) = (〈u/Φdiv

j,k〉) (51)

where M the Gram matrix of the basis {Φdiv

j,k}. The computation of the coefficients (cdiv
j,k)

is then reduced to the resolution of a linear system of matrix M. This system can be
easily inverted, since M is no more than the stiffness matrix of a standard Laplacian onto
the scalar scaling function basis {ϕDj,k1 ⊗ ϕ

D
j,k2
}. Indeed:

∀ ψ, φ ∈ H1
0 (Ω);

∫
Ω

∇ψ · ∇φdx =

∫
Ω

curl(ψ) · curl(φ)dx (52)

More details on the implementation and resolution of (51) can be found in [23]. Figure
12 presents the `2-error of convergence of the algorithm, according to the space resolution
j, using wavelets of example 3. The exact solution u corresponds to:

u = curl [sin(2πx)x2(1− x)2y2(1− y)2] +∇ [cos(2πx)x2y2]
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4.3 Stokes problem

The Stokes problem is a simple test case for the simulation of incompressible flows. In
the non-stationary case, and for a velocity u vanishing at the boundary, it is described
by the following equations:

∂tu− ν∆u +∇p = f in [0, T ]× Ω
∇ · u = 0 in Ω
u = 0 on Γ
u(0, x) = u0

(53)

where p is the corresponding pressure.

K. Urban was the first who uses interior divergence-free wavelets for the resolution of
the stationary case[27]. His method uses a variational method [16] in Hdiv(Ω) and thus
requires the inversion of the stiffness matrix in the divergence-free wavelet basis.

We propose here to use the Helmholtz decomposition to simplify a classical method of
resolution, called the Chorin projection method [6]. Our algorithm to compute un(x) ≈
u(x, nδt) is the following:

Starting with initial values u0 = u(0, x), repeat for 1 ≤ n ≤ N

Step 1: Find a(x) solution of

a− un

δt
= ν∆

1

2
(a + un) + P(f), x ∈ [0, 1]2 (54)

a = 0 on Γ (55)

Step 2 Find un+1 solution of

un+1 = P(a) (56)

where P is the orthogonal projector from (L2(Ω))2 onto Hdiv(Ω) computed in practice by
the Helmholtz decomposition described in section 4.2.

This method has the advantage of decoupling the resolution of the diffusion term and
the incompressibility constraint. Moreover, in more general boundary condition (u 6= 0
on Γ) there is no need of homogenization for the divergence-free basis like in [25, 27],
we can incorporate this boundary condition directly in the basis of Hdiv(Ω) used in the
computation of P(a).

On Figure 13, we plot the `2 error on u and on its gradient ∇u in ~Vj. The exact
solution u is taken from [19]:

u(x, y, t) = curl [1000x2(1− x)2y2(1− y)2] ∇p = x2 + y2 − 2

3
(57)

We used the divergence-free wavelets of example 3 to compute the projector P.

5 Conclusion

In this article we have presented a practical construction of divergence-free and irrota-
tional multiresolution analyses and wavelets. Our construction, based on one-dimensional
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analyses on the interval allowing the reproduction of polynomials, respects the theoret-
ical framework of the previous work of Jouini and Lemarié-Rieusset [18]. Moreover our
construction can incorporate homogeneous boundary conditions in the basis functions,
which allows the representation of more physical divergence-free vector functions. This
ability is not present, for instance, in the attempt addressed by Stevenson [24].
Associated fast wavelet transforms have been implemented satisfactory, opening new
prospects for the realistic simulation of incompressible flows. First attempts have suc-
cessfully been presented in this article with the Helmholtz decomposition of a vector flow,
or with the computation of a Stokes problem solution. Work on more complex problems
are underway, such as the direct simulation of turbulence, and this will the subject of a
forthcoming paper.
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Figure 1: Scaling functions Φ1,[
` (three first left) and wavelets Ψ1,[

` (last three left), their duals scaling

functions Φ̃1,[
` (three first right) and wavelets Ψ̃1,[

` (last three right).
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Figure 2: Scaling functions Φ0[
` (three first left) and wavelets Ψ0[

` (last three left), their duals scaling

functions Φ̃0[
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Figure 9: Example of vector field, its divergence-free scaling function coefficients and renormalized wavelet
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Figure 10: Non linear error approximation: first component u1 left and second component u2 right.
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Figure 11: Error on u1 (left) and u2 (right) reconstructed from 20% of their divergence-free wavelet
coefficients.
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