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We present a construction of divergence-free and curl-free wavelets on the square, that
could satisfy suitable boundary conditions. This construction is based on the existence
of biorthogonal multiresolution analyses (BMRA) on [0, 1], linked by differentiation and
integration. We introduce new BMRAs and wavelets for the spaces of divergence-free and
curl-free vector functions on the square. The interest of such constructions is illustrated
on examples including the Helmholtz-Hodge decomposition of vector flows and the Stokes
problem.

Keywords: Divergence-free and curl-free wavelets ; Helmholtz-Hodge decomposition ;
Stokes problem

AMS Subject Classification : 22E46, 53C35, 57S20

1. Introduction

In many physical problems, like the numerical simulation of in-
compressible flows or in electromagnetism, the solution has to fulfill
a divergence-free condition. For the numerical treatment of the rele-
vant equations (Navier-Stokes equation in fluid mechanism or Max-
well’s equation in electromagnetism) it is helpful to have at hand bases
satisfying a divergence-free or a curl-free condition. In the context of
solution schemes for Partial Differential Equations, wavelet bases pro-
vide very efficient algorithms, characterized by a reduced computational
complexity, with respect to standard methods7. Divergence-free wavelet
bases on R

d, with compact support, were originally defined by Lemarié-
Rieusset in 199220 and applied by Urban to the numerical solution of
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the Stokes-problem25. In the periodic case, anisotropic divergence-free
wavelets have been constructed in15, and firstly used to compute the
numerical solution of the Navier-Stokes equation in velocity-pressure
formulation14. Such numerical scheme requires, at each time-step, the
Helmholtz-Hodge decomposition of the nonlinear term, which is no
more divergence-free. In Fourier space, this decomposition writes expli-
citly, whereas in wavelet domain, it can be computed using divergence-
free and curl-free wavelets 26,13. In the general case with physical boun-
dary conditions, it is the key of Navier-Stokes numerical simulations
to have at hand an explicit and efficient procedure to compute the
Helmholtz-Hodge decomposition of the nonlinear term.

Precisely, the Helmholtz-Hodge decomposition of a vector field u

on the square Ω = [0, 1]2 consists in splitting u into a divergence-free
part and a curl-free part16. A first formulation leading to an orthogonal
splitting is the following : there exist a stream function ψ and a potential
field q such that :

{

u = curl ψ + ∇q in Ω

curl ψ · ~ν = 0 on Γ = ∂Ω
(1.1)

where ~ν is the outward normal to Γ. This decomposition corresponds
to the orthogonal splitting of the space (L2(Ω))2 :

(L2(Ω))2 = Hdiv,Γ(Ω) ⊕H⊥
div(Ω) (1.2)

where

Hdiv,Γ(Ω) = {u ∈ (L2(Ω))2 : div(u) = 0, u · ~ν|Γ = 0}

is the divergence-free function space with velocity tangent to the boun-
dary. It can also be seen as the ”curl” space :

Hdiv(Ω) = {u = curl ψ ; ψ ∈ H1
0 (Ω)}

On the other side the space of gradient functions

H⊥
div(Ω) = {∇q ; q ∈ H1(Ω)}

corresponds to a curl-free function space16.

Other types of boundary conditions for the divergence-free space can
be considered. For instance, the decomposition :

(L2(Ω))2 = Hdiv(Ω) ⊕ {∇q ; q ∈ H1
0 (Ω)} (1.3)
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where now

Hdiv(Ω) = {u ∈ (L2(Ω))2 : div(u) = 0} = {u = curl ψ ; ψ ∈ H1(Ω)}
does not incorporate boundary condition on Γ. In fluid mechanism,
this type of boundary condition is less considered since in general Γ

corresponds to a physical wall that cannot be crossed by fluid particles
(except for porous media). A more useful condition corresponds to the
homogeneous Dirichlet boundary condition on Γ, which leads to :

(H1
0 (Ω))2 = Hdiv,0(Ω) ⊕H⊥

div,0(Ω) (1.4)

where now

Hdiv,0(Ω) = Hdiv(Ω) ∩ (H1
0 (Ω))2

while H⊥
div,0(Ω) is a subspace of H⊥

div(Ω)∩ (H1
0 (Ω))2, see16 for details. For

sake of simplicity, we will focus in this article to the divergence-free
spaces being involved in decompositions (1.3,1.4).

Accordingly, the objective of the present paper is to provide multire-
solution analyses and wavelet bases of the spaces Hdiv(Ω) and H⊥

div(Ω).
We present in the next section a new construction, based on wavelets
on the interval [0, 1] that can satisfy homogeneous boundary conditions,
as in 21. Indeed, the key to our construction lies on the definition of a
couple of wavelet bases on the interval, linked by differentiation, as in
the theoretical approach of Jouini-Lemarié-Rieusset18. The construc-
tion of divergence-free and curl-free approximation spaces and wavelets
satisfying suitable boundary conditions are then straightforward. Mo-
reover, our method extends readily to the cube [0.1]d by tensor product
22.

The outline of the paper is as follows. Section 2 details the prin-
ciples of the construction of divergence-free and curl-free BMRAs and
wavelets on the square. Section 3 is dedicated to the description of the
divergence-free fast wavelet transform. Finally, section 4 illustrates ap-
plications of these new wavelets for numerical simulations : nonlinear
approximation of a divergence-free vector field, the Helmholtz decom-
position and the Stokes problem.

2. Divergence-free and curl-free wavelets on the square

Divergence-free wavelets on the whole space R
d have been firstly

constructed by Battle-Federbush 2 in the orthogonal case. Since these
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previous functions don’t have compact support they where not imple-
mented, contrarily to the biorthogonal bases arising from the construc-
tion proposed by Lemarié-Rieusset in 20. Urban was the first who used
them in a practical framework, the Stokes problem 25. Later, Urban
proposed to extend this construction to derive curl-free wavelets 26. An
alternative fast decomposition into divergence-free wavelets was propo-
sed by Deriaz-Perrier, based on anisotropic (tensor-product) wavelets
in the periodic case 15. The objective below is to extend these construc-
tions to the square [0, 1]2, following the construction principle already
exposed in the theoretical work of Jouini-Lemarié-Rieusset 18.

2.1. Construction principle

The construction of divergence-free wavelets on the cube [0, 1]d uses
the same arguments as in the whole domain R

d 20,18. The key ingredient
is to have at hand two one-dimensional multiresolution analyses (V 1

j )

and (V 0
j ) of L2(0, 1) linked by differentiation :

d

dx
V 1

j = V 0
j (2.1)

On the interval [0, 1], following 18, the biorthogonal spaces should sa-
tisfy :

Ṽ 0
j = H1

0 (0, 1) ∩
∫ x

0
Ṽ 1

j =
{

f : f ′ ∈ Ṽ 1
j and f(0) = f(1) = 0

}

(2.2)

The existence of such spaces follows from the fundamental proposition
of Lemarié-Rieusset, used at the beginning to construct divergence-free
wavelets on the whole space R

d 20 :

Proposition 2.1.

Let (V 1
j (R)) be a multiresolution analysis (MRA) of L2(R), with diffe-

rentiable and compactly supported scaling function ϕ1 and associated
wavelet ψ1. Then there exists a MRA (V 0

j (R)), with associated scaling
function ϕ0 and wavelet ψ0, such that :

(ϕ1)′(x) = ϕ0(x) − ϕ0(x− 1) and (ψ1)′(x) = 4 ψ0(x) (2.3)

Similar relations hold for the dual functions
(

ϕ̃1, ψ̃1
)

and
(

ϕ̃0, ψ̃0
)

of

the primal ones
(

ϕ1, ψ1
)

and
(

ϕ0, ψ0
)

:
∫ x+1

x
ϕ̃1(t) dt = ϕ̃0(x) and (ψ̃0)′(x) = −4 ψ̃1(x) (2.4)
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In 18, Jouini-Lemarié-Rieusset prove that from the scaling functions
(ϕ1, ϕ̃1), (ϕ0, ϕ̃0) and wavelets (ψ1, ψ̃1), (ψ0, ψ̃0) of proposition 2.1, it is
possible to exhibit multiresolution analyses on the interval satisfying
the relations (2.1,2.2).

Our objective in the present paper is first to provide an effective
construction of such multiresolution analyses, which enable boundary
conditions, fast wavelet algorithms, approximation results and practical
computations. This is done in section 2.2.

Then the construction of biorthogonal MRAs and wavelets bases of
Hdiv(Ω) (with suitable boundary conditions) and H⊥

div(Ω), are obtained
by considering resp. the curl of (V 1

j ⊗ V 1
j ), and the grad of (V 1

j ⊗ V 1
j ).

This will be described in section 2.3.

2.2. Construction of biorthogonal MRAs on [0, 1] linked

by differentiation

We detail now the construction of spaces (V 1
j , Ṽ

1
j ) and (V 0

j , Ṽ
0
j ) satis-

fying (2.1) and (2.2). We proceed in two steps. The first step (construc-
tion of (V 1

j , Ṽ
1
j ), section 2.2.1) is classical and based on biorthogo-

nal multiresolution analyses on the interval reproducing polynomials
9,11,21,17,4, but it is needed to introduce the sequels. The second step
(section 2.2.2) introduces a practical and new way to provide spaces
(V 0

j , Ṽ
0
j ) and associated wavelets. It is based on proposition 2.1.

2.2.1. Construction of (V 1
j , Ṽ

1
j ) on [0, 1] with polynomial

reproduction (r, r̃)

We first recall the definition of a biorthogonal multiresolution ana-
lysis (BMRA) on [0, 1] 18,8 :

Definition 2.1.

The sequence (V 1
j , Ṽ

1
j ), j ≥ jmin (jmin ∈ N

∗) is a biorthogonal MRA of
approximation order (r, r̃) on the interval [0, 1] associated to the gene-
rators (ϕ1, ϕ̃1), if it satisfies :

(i) V 1
j ⊂ V 1

j+1, Ṽ
1
j ⊂ Ṽ 1

j+1 and ∪j≥jmin
V 1

j = ∪j≥jmin
Ṽ 1

j = L2(0, 1).

(ii) V 1,int
j ⊂ V 1

j ⊂ V 1
j (R)|[0,1], Ṽ

1,int
j ⊂ Ṽ 1

j ⊂ Ṽ 1
j (R)|[0,1].

(iii) V 1
j and Ṽ 1

j are finite dimensional biorthogonal spaces spanned
by biorthogonal bases {ϕ1

j,k : k ∈ ∆j} and {ϕ̃1
j,k : k ∈ ∆j} :
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< ϕ1
j,k, ϕ̃

1
j,k′ >= δk,k′ , ∀ k, k′ ∈ ∆j.

(iv) V 1
j and Ṽ 1

j have respectively r and r̃ polynomial exactness.

In point (ii), V 1
j (R)|[0,1] means the restriction of V 1

j (R)-functions to

the interval [0, 1], whereas V 1,int
j means interior functions of V 1

j (R), as
introduced below (definition 2.2), and same for the biorthogonal spaces.
The dimension ∆j ≈ 2j of spaces V 1

j and Ṽ 1
j will be explicited later.

To construct such spaces (V 1
j , Ṽ

1
j ), as described in the numerous and

now classical approaches 9,11,21,17,4, we start with generators (ϕ1, ϕ̃1),
that are biorthogonal scaling functions of a BMRA on R. We suppose
that ϕ1 is compactly supported on [nmin, nmax] and reproduces polyno-
mials up to degree r − 1 :

0 ≤ ℓ ≤ r − 1,
xℓ

ℓ!
=

+∞
∑

k=−∞

p̃1
ℓ(k) ϕ

1(x− k), ∀ x ∈ R (2.5)

with p̃1
ℓ(k) = 〈xℓ

ℓ! , ϕ̃
1(x − k)〉. We suppose also that ϕ̃1 reproduces poly-

nomials up to degree r̃ − 1 :

0 ≤ ℓ ≤ r̃ − 1,
xℓ

ℓ!
=

+∞
∑

k=−∞

p1
ℓ(k) ϕ̃

1(x− k), ∀ x ∈ R (2.6)

with p1
ℓ(k) = 〈xℓ

ℓ! , ϕ
1(x− k)〉.

To define a BMRA on [0, 1] we first define the set of interior scaling
functions :

Definition 2.2.

Let δ♭, δ♯ ∈ N be two fixed parameters. For j ≥ 0, interior scaling
functions of V 1

j are defined as scaling functions ϕ1
j,k(x) = 2j/2ϕ1(2jx−k)

whose supports are included into [ δ♭

2j , 1 − δ♯

2j ] ⊂ [0, 1].
If supp ϕ1 = [nmin, nmax], they correspond to indices k such that :

δ♭ − nmin ≤ k ≤ 2j − δ♯ − nmax

The space generated by interior scaling functions is then given by :

V 1,int
j = span{ϕ1

j,k ; k = k♭, 2j − k♯}
with k♭ = δ♭ − nmin and k♯ = δ♯ + nmax.

Similarly, let δ̃♭, δ̃♯ ∈ N be two parameters. Interior scaling functions
of Ṽ 1

j are defined as scaling functions ϕ̃1
j,k(x) = 2j/2ϕ̃1(2jx − k) whose
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supports are included into [ δ̃♭

2j , 1 − δ̃♯

2j ]. The space generated by interior
scaling functions is then given by :

Ṽ 1,int
j = span{ϕ̃1

j,k ; k = k̃♭, 2j − k̃♯}

with k̃♭ = δ̃♭−ñmin and k̃♯ = δ̃♯+ñmax, if the support of ϕ̃1 is [ñmin, ñmax].

Remark 2.1.

The parameters (δ♭, δ♯, δ̃♭, δ̃♯) are ”free” parameters (chosen as small as
possible), and chosen in practice to adjust the dimension of the spaces
V 1

j and Ṽ 1
j .

To preserve the polynomial reproduction (2.5, 2.6) on the interval
[0, 1], we follow the approach of 21,4 and define edge scaling functions at
the edge 0 :

Definition 2.3.

The edge scaling functions at the edge 0 are defined by :

0 ≤ ℓ ≤ r − 1, Φ1,♭
ℓ (x) =

k♭−1
∑

k=1−nmax

p̃1
ℓ (k) ϕ

1
k(x) χ[0,+∞[

and for the biorthogonal space :

0 ≤ ℓ ≤ r̃ − 1, Φ̃1,♭
ℓ (x) =

k̃♭−1
∑

k=1−ñmax

p1
ℓ (k) ϕ̃

1
k(x) χ[0,+∞[

At the edge 1, the edge scaling functions Φ1,♯
j,ℓ are constructed on

] −∞, 1] by symmetry, using the transform Tf(x) = f(1 − x).

As usual, one define the multiresolution spaces V 1
j on [0, 1], by the

direct sum :

V 1
j = V 1,♭

j ⊕ V 1,int
j ⊕ V 1,♯

j (2.7)

where :

V 1,♭
j = span{Φ1,♭

j,ℓ(x) = 2j/2Φ1,♭
ℓ (2jx) ; ℓ = 0, · · · , r − 1}

V 1,♯
j = span{Φ1,♯

j,ℓ(1 − x) = 2j/2Φ1,♯
ℓ (2j(1 − x)) ; ℓ = 0, · · · , r − 1}

are the edge spaces. In practice we have to choose j ≥ jmin where jmin

is the smallest integer which verifies :

jmin > log2[nmax − nmin + δ♯ + δ♭]



21 janvier 2011 16:33 WSPC/INSTRUCTION FILE articleenD

8 S. Kadri Harouna & V. Perrier

This condition ensures that the supports of edge scaling functions at 0

do not intersect the supports of edge scaling functions at 1.
The polynomial reproduction in V 1

j is then satisfied since, for 0 ≤ ℓ ≤
r − 1 and x ∈ [0, 1] we have :

2j/2(2jx)ℓ

ℓ!
= 2j/2Φ1,♭

ℓ (2jx) +

2j−k♯
∑

k=k♭

p̃1
ℓ(k) ϕ

1
j,k(x) + 2j/2Φ1,♯

ℓ (2j(1 − x)) (2.8)

Similarly, multiresolution spaces Ṽ 1
j are defined with the same struc-

ture, allowing the polynomial reproduction up to degree r̃ − 1 :

Ṽ 1
j = span{Φ̃1,♭

j,ℓ}ℓ=0,r̃−1 ⊕ Ṽ 1,int
j ⊕ span{Φ̃1,♯

j,ℓ}ℓ=0,r̃−1 (2.9)

In order to obtain the equality between dimensions of V 1
j and Ṽ 1

j , we

have to adjust the parameters δ̃♭ = k̃♭ − ñmax and δ̃♯ = k̃♯ + ñmin in the
definition 2.2 such that :

k♭ − r = k̃♭ − r̃ and k♯ − r = k̃♯ − r̃ (2.10)

which leads to :

∆j = dim(V 1
j ) = dim(Ṽ 1

j ) = 2j − (δ♭ + δ♯) − (nmax − nmin) + 2r + 1

where (δ♭, δ♯) remain ”free” parameters of the construction. Like for V 1
j

we have to choose j ≥ j̃min with j̃min > log2[ñmax − ñmin + δ̃♯ + δ̃♭].

The last point of the construction lies in the biorthogonalization
process of the new basis functions, since edge scaling functions of V 1

j

and Ṽ 1
j are not biorthogonal. Several biorthogonalization methods exist

1,11,17,21, here we apply on one hand the method proposed by Dahmen
and al. 11 when using B-spline generators, and on the other hand a
Gram-Schmidt process with Daubechies orthogonal generators 21. In
both cases, it requires the inversion of the Gram matrix associated
with the two systems, which for orthogonal and B-Spline generators is
non singular 11,21.
Finally, the spaces (V 1

j , Ṽ
1
j )j≥max{jmin,j̃min}

, form a biorthogonal MRA of

L2(0, 1) in the sense of definition 2.1.

Moreover, homogeneous boundary conditions can be simply imposed
to V 1

j , of the form f (λ)(α) = 0 at point α = 0 or 1, with λ = 0, · · · , r− 1,

by removing the edge scaling function Φ1,♭
λ if α = 0 or Φ1,♯

λ if α = 1 in
the definition 2.3 of edge spaces (see 21 for more details). In such case,
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we also remove the function Φ̃1,♭
λ or Φ̃1,♯

λ from Ṽ 1
j prior to biorthogona-

lization, to adjust the dimension of the biorthogonal space.

2.2.2. Construction of (V 0
j , Ṽ

0
j ) on [0, 1] linked by differentiation

/integration with (V 1
j , Ṽ

1
j )

We will now construct spaces (V 0
j , Ṽ

0
j ), related to the spaces (V 1

j , Ṽ
1
j )

of section 2.2.1 by the relations (2.1,2.2) of differentiation/integration.
Given (ϕ1, ϕ̃1) biorthogonal scaling functions with approximation or-
ders (r, r̃) (with r > 1 and r̃ ≥ r), and compact supports [nmin, nmax],
[ñmin, ñmax], we consider (ϕ0, ϕ̃0) arising from proposition 2.1. Then
(ϕ0, ϕ̃0) satisfy some properties on R, that we recall below.

First, the scaling functions (ϕ0, ϕ̃0) are defined such that :

d

dx
ϕ1(x) = ϕ0(x) − ϕ0(x− 1) and

∫ x+1

x
ϕ̃1(t)dt = ϕ̃0(x) (2.11)

This implies that ϕ0 has for compact support [nmin, nmax − 1], and re-
produces polynomials up to degree r − 2 :

0 ≤ ℓ ≤ r − 2,
xℓ

ℓ!
=

+∞
∑

k=−∞

p̃0
ℓ(k) ϕ

0(x− k) (2.12)

with p̃0
ℓ(k) = 〈xℓ

ℓ! , ϕ̃
0(x− k)〉.

Equation (2.11) implies : p̃0
ℓ(k) = p̃1

ℓ+1(k)− p̃1
ℓ+1(k−1) for ℓ = 0, · · · , r−2.

In the same way ϕ̃0 has for compact support [ñmin − 1, ñmax], and
reproduces polynomials up to degree r̃ :

0 ≤ ℓ ≤ r̃,
xℓ

ℓ!
=

+∞
∑

k=−∞

p0
ℓ(k) ϕ̃

0(x− k) (2.13)

with p0
ℓ(k) = 〈xℓ

ℓ! , ϕ
0(x− k)〉.

Equation (2.11) implies : p1
ℓ(k) = p0

ℓ+1(k + 1) − p0
ℓ+1(k) for ℓ = 1, · · · , r̃.

Like for V 1
j , we first define the set of interior scaling functions of

V 0
j :

Definition 2.4.

Let δ♭, δ♯ ∈ N and k♭ = δ♭ −nmin and k♯ = δ♯ + nmax be the parameters
introduced in definition 2.2. For j ≥ 0, the interior scaling functions of
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V 0
j are defined as scaling functions ϕ0

j,k(x) = 2j/2ϕ0(2jx− k) whose sup-

ports are included into [ δ♭

2j , 1− δ♯

2j ] ⊂ [0, 1]. Since supp ϕ0 = [nmin, nmax−1],
the space generated by interior scaling functions is given by :

V 0,int
j = span{ϕ0

j,k ; k = k♭, 2j − k♯ + 1}

Similarly, let δ̃♭, δ̃♯ ∈ N, and k̃♭ = δ̃♭ − ñmin, k̃♯ = δ̃♯ + ñmax be fixed by
definition 2.2 and relation (2.10). Interior scaling functions of Ṽ 0

j are

defined as scaling functions ϕ̃0
j,k(x) = 2j/2ϕ0(2jx − k) whose supports

are included into [ δ̃♭

2j , 1 − δ̃♯

2j ]. The space generated by interior scaling
functions is then given by :

Ṽ 0,int
j = span{ϕ̃0

j,k ; k = k̃♭ + 1, 2j − k̃♯}

To preserve the polynomial reproduction (2.12,2.13) on [0, 1] in
(V 0

j , Ṽ
0
j ), we define edge scaling functions at the edge 0 :

Definition 2.5.

The edge scaling functions at the edge 0 are defined by :

0 ≤ ℓ ≤ r − 2, Φ0,♭
ℓ (x) =

k♭−1
∑

k=2−nmax

p̃0
ℓ(k) ϕ

0
k(x) χ[0,+∞[

and for the biorthogonal space, they must vanish at 0 :

1 ≤ ℓ ≤ r̃, Φ̃0,♭
ℓ (x) =

k̃♭
∑

k=1−ñmax

p0
ℓ(k) ϕ̃

0
k(x) χ[0,+∞[

At the edge 1, the edge scaling functions Φ0,♯
j,ℓ and Φ̃0,♯

j,ℓ are constructed
by symmetry, using the transform Tf(x) = f(1 − x).

Remark 2.2.

Following Jouini-Lemarié-Rieusset 18, to preserve the commutation bet-
ween the derivation and the multiscale projectors, the space Ṽ 0

j must

satisfy (2.2) : Ṽ 0
j ⊂ H1

0 (0, 1) . Indeed we impose by construction homoge-

neous Dirichlet boundary conditions to Ṽ 0
j , since we do not consider Φ̃0,♭

0

and and Φ̃0,♯
0 (ℓ = 0) in definition 2.5. Nevertheless, in the following we

will need to use Φ̃0,♭
0 =

∑k̃♭

k=1−ñmax
ϕ̃0

k χ[0,+∞[ in practical computation.

The multiresolution spaces V 0
j on [0, 1] are then defined by :

V 0
j = V 0,♭

j ⊕ V 0,int
j ⊕ V 0,♯

j
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where :

V 0,♭
j = span{Φ0,♭

j,ℓ(x) = 2j/2Φ0,♭
ℓ (2jx) ; ℓ = 0, · · · , r − 2}

V 0,♯
j = span{Φ0,♯

j,ℓ(1 − x) = 2j/2Φ0,♯
ℓ (2j(1 − x)) ; ℓ = 0, · · · , r − 2}

The polynomial reproduction up to degree r − 2 in V 0
j is then ensured.

In practice j > jmin where the parameter jmin is now adapted to both
BMRAs (V 1

j , Ṽ
1
j ) and (V 0

j , Ṽ
0
j ) by :

jmin > max{log2[nmax − nmin + δ♯ + δ♭ + 1], log2[ñmax − ñmin + δ̃♯ + δ̃♭ + 1]}
Multiresolution spaces Ṽ 0

j are defined with similar structure, allo-
wing a polynomial reproduction up to degree r̃, and satisfying vanishing
boundary conditions at 0 and 1.

Ṽ 0
j = span{Φ̃0,♭

j,ℓ}ℓ=1,r̃ ⊕ Ṽ 0,int
j ⊕ span{Φ̃1,♯

j,ℓ}ℓ=1,r̃ (2.14)

A simple calculation shows that :

dim(V 0
j ) = 2j − k♯ − k♭ + 2r and dim(Ṽ 0

j ) = 2j − k̃♯ − k̃♭ + 2r̃ (2.15)

Since the parameters k♭, k♯, k̃♭ and k̃♯ are chosen to satisfy equation
(2.10), we obtain : dim(V 0

j ) = dim(Ṽ 0
j ) = ∆j − 1 The following proposi-

tion proves that d
dxV

1
j = V 0

j and d
dx Ṽ

0
j ⊂ Ṽ 1

j .

Proposition 2.2.

(i) The interior scaling functions of (V 1
j , V

0
j ) and (Ṽ 1

j , Ṽ
0
j ) introduced in

definitions 2.2, 2.4 satisfy :

d

dx
(ϕ1

j,k) = 2j [ϕ0
j,k−ϕ0

j,k+1],
d

dx
(ϕ̃0

j,k) = 2j [ϕ̃1
j,k−1−ϕ̃1

j,k], for k♭ ≤ k ≤ 2j−k♯

and

dim(V 0,int
j ) = dim(V 1,int

j ) + 1, dim(Ṽ 0,int
j ) = dim(Ṽ 1,int

j ) − 1

(ii) The edge scaling functions of (V 1
j , V

0
j ) introduced in definitions 2.3,

2.5 satisfy : for ℓ = 1, r − 1,

(Φ1,♭
0 )′(x) = −ϕ0

k♭
, (Φ1,♭

ℓ )′(x) = Φ0,♭
ℓ−1 − p̃1

ℓ (k♭ − 1) ϕ0
k♭

(Φ1,♯
0 )′(1 − x) = ϕ0

2−k♯
, (Φ1,♯

ℓ )′(1 − x) = −Φ0,♯
ℓ−1(1 − x) + p̃1

ℓ(2 − k♯) ϕ
0
2−k♯

whereas those of (Ṽ 1
j , Ṽ

0
j ) are linked by : for ℓ = 1, r̃ − 1,

(Φ̃0,♭
ℓ )′ = Φ̃1,♭

ℓ−1 − p0
ℓ(k̃♭) ϕ̃

1
k̃♭

(Φ̃0,♯
ℓ (1 − x))′ = −Φ̃1,♯

ℓ−1(1 − x) + p0
ℓ(2 − k̃♯) ϕ̃

1
1−k̃♯

Moreover, the function Φ̃0,♭
0 verifies : (Φ̃0,♭

0 )′ = −ϕ̃1
k̃♭
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Proof.

The point (i) follows from (2.11) and since interior functions are defined
by ϕ1

j,k(x) = 2j/2ϕ1(2jx− k) (and the same for ϕ0
j,k, ϕ̃

1
j,k, ϕ̃

0
j,k).

The point (ii) comes directly from definitions 2.3, 2.5 of edge scaling
functions. We focus on the first line of equalities : at edge 0 and for
0 ≤ ℓ ≤ r − 1, the edge scaling functions of (V 1

j ) are defined by dilation
of :

Φ1,♭
ℓ (x) =

k♭−1
∑

k=1−nmax

p̃1
ℓ(k) ϕ

1
k(x)χ[0,+∞[ with ϕ1

k(x) = ϕ1(x− k)

Differentiating in ]0,+∞[, one obtains for ℓ = 0 (p̃1
0(k) = 1,∀k) :

(Φ1,♭
0 )′ =

k♭−1
∑

k=1−nmax

(ϕ0
k − ϕ0

k+1) χ]0,+∞[ = ϕ0
1−nmax

χ]0,+∞[ − ϕ0
k♭

= −ϕ0
k♭

since supp ϕ0
1−nmax

= [nmin − nmax + 1, 0].
In the same way, for ℓ = 1, r − 1 :

(Φ1,♭
ℓ )′ =

k♭−1
∑

k=1−nmax

p̃1
ℓ(k) (ϕ0

k − ϕ0
k+1) χ]0,+∞[

=

k♭−1
∑

k=2−nmax

[p̃1
ℓ (k) − p̃1

ℓ(k − 1)] ϕ0
kχ]0,+∞[ − p1

ℓ(k♭ − 1) ϕ0
k♭

From (2.4), since p̃0
ℓ−1(k) = p̃1

ℓ(k) − p̃1
ℓ(k − 1) we get :

(Φ1,♭
ℓ )′ =

k♭−1
∑

k=2−nmax

p̃0
ℓ−1(k) ϕ

0
kχ]0,+∞[ − p̃1

ℓ(k♭ − 1) ϕ0
k♭

= Φ0,♭
ℓ−1 − p̃1

ℓ(k♭ − 1) ϕ0
k♭

This proves the relation between edge scaling functions at 0 of V 1
j and

V 0
j . The proof for edge scaling functions at edge 1 and in the biortho-

gonal spaces Ṽ 1
j and Ṽ 0

j is obtained with similar arguments.

For easy reading, the two pairs of biorthogonal bases of (V 1
j , Ṽ

1
j ) and

(V 0
j , Ṽ

0
j ), arising from the biorthogonalization process, will be now deno-

ted by (ϕ1
j,k, ϕ̃

1
j,k)k=1,∆j

and (ϕ0
j,k, ϕ̃

0
j,k)k=1,∆j−1 respectively. The oblique

projector on V 1
j parallel to (Ṽ 1

j )⊥ will be denoted by P1
j :

P1
j : L2(0, 1) → V 1

j , f 7→ P1
j (f) =

∆j
∑

k=1

〈f, ϕ̃1
j,k〉 ϕ1

j,k (2.16)
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while P̃1
j will denote its adjoint, and P0

j , P̃0
j the biorthogonal projectors

associated with (V 0
j , Ṽ

0
j ).

The following proposition proves that the constructed biorthogo-
nal MRAs take place in the theoretical framework of Jouini-Lemarié-
Rieusset in 18.

Proposition 2.3.

The two pairs of biorthogonal spaces (V 1
j , Ṽ

1
j ) and (V 0

j , Ṽ
0
j ) are related

to :

d

dx
V 1

j = V 0
j and Ṽ 0

j = H1
0 ∩

∫ x

0
Ṽ 1

j

Proof.

The inclusion d
dxV

1
j ⊂ V 0

j is straightforward according to proposition
2.2. The equality of dimensions between spaces leads to the first equa-
lity. Moreover proposition 2.2 implies :

∫ x

0
Ṽ 1

j = Ṽ 0
j ⊕ span{2j/2Φ̃0,♭

0 (2jx) − Φ̃0,♭
0 (0)}

Since for j ≥ jmin, Ṽ 0
j ⊂ H1

0 (0, 1) and 2j/2Φ0,♭
0 (2j)−Φ0,♭

0 (0) = −Φ0,♭
0 (0) 6= 0

we obtain the second equality.

We then define the change of bases between the spaces ( d
dxV

1
j ,

d
dx Ṽ

0
j )

and (V 0
j , Ṽ

1
j ) as follows.

Definition 2.6.

Let (L1
j , L

0
j ) and (L̃1

j , L̃
0
j ) be the two pairs of sparse matrices defined by

the change of bases between spaces involved in proposition 2.3 :

d

dx
ϕ1

j,k =

∆j−1
∑

n=1

(L1
j )k,n ϕ

0
j,n,

d

dx
ϕ̃0

j,k =

∆j
∑

n=1

(L̃0
j )k,n ϕ̃

1
j,n (2.17)

and

−
∫ x

0
ϕ0

j,k =

∆j
∑

m=1

(L0
j )k,m ϕ1

j,m (2.18)

−
∫ x

0
ϕ̃1

j,k = aj,k

(

2j/2Φ̃0,♭
0 (2jx) − Φ̃0,♭

0 (0)
)

+

∆j−1
∑

m=1

(L̃1
j)k,m ϕ̃0

j,m (2.19)
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Remark 2.3.

The matrices L0
j and L̃0

j are rectangular of size (∆j − 1) × ∆j . The

biorthogonality between V 0
j and Ṽ 0

j , and the inclusion Ṽ 0
j ⊂ H1

0 (0, 1)

lead to :

L0
j (L̃

0
j)

T = L̃0
j(L

0
j )

T = I(∆j−1)

where I(∆j−1) denotes the matrix identity of size (∆j−1). These matrices
are useful in numerical computations, their explicit form will be given
in section 3.

With this definition, we prove the commutation between multiscale
projectors and differentiation.

Proposition 2.4.

Let (P1
j , P̃1

j ) and (P0
j , P̃0

j ) be the multiscale projectors defined by (2.16) :

(i) ∀ f ∈ H1(0, 1), d
dx ◦ P1

j f = P0
j ◦ d

dxf .

(ii) ∀ f ∈ H1
0 (0, 1), d

dx ◦ P̃0
j f = P̃1

j ◦ d
dxf .

Proof.

(i) Since proposition 2.3 is valid, the relation of commutation d
dx ◦P1

j f =

P0
j ◦ d

dxf follows from 18 in a general setting.

(ii) Let (ϕ0
j,k, ϕ̃

0
j,k) be the biorthogonal scaling functions of (V 0

j , Ṽ
0
j ). For

f ∈ H1
0 (0, 1) we have 〈f, ϕ0

j,k〉 = −〈 d
dxf,

∫ x
0 ϕ

0
j,k〉, then :

d

dx
P̃0

j (f) =
∑

k

〈f, ϕ0
j,k〉

d

dx
ϕ̃0

j,k =
∑

n

∑

m

∑

k

(L0
j )k,m(L̃0

j )k,n〈
d

dx
f, ϕ1

j,m〉 ϕ̃1
j,n

=
∑

n

∑

m

δm,n〈
d

dx
f, ϕ1

j,m〉 ϕ̃1
j,n =

∑

n

〈 d
dx
f, ϕ1

j,n〉 ϕ̃1
j,n = P̃1

j (
d

dx
f)

where L0
j and L̃0

j have been introduced in definition 2.6. This ends the
proof.

2.2.3. Wavelet spaces

We begin with the construction of wavelet bases of the biorthogonal
MRA (V 1

j , Ṽ
1
j ). This point is classical, although different kinds of wave-

lets may be designed 1,9,11,21,17,4. For j ≥ jmin, the biorthogonal wavelet
spaces associated to V 1

j and Ṽ 1
j are in all cases defined by :

W 1
j = V 1

j+1 ∩ (Ṽ 1
j )⊥ and W̃ 1

j = Ṽ 1
j+1 ∩ (V 1

j )⊥
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The wavelet space W 1
j has the following structure :

W 1
j = W 1,♭

j ⊕W 1,int
j ⊕W 1,♯

j

where










W 1,♭
j = span{Ψ1,♭

j,ℓ(x) = 2j/2Ψ1,♭
ℓ (2jx) ; ℓ = 0, p♭ − 1}

W 1,int
j = span{ψ1

j,k = 2j/2ψ1(2jx− k) ; k = p♭, 2j − p♯ − 1}
W 1,♯

j = span{Ψ1,♯
j,ℓ(1 − x) = 2j/2Ψ1,♯

ℓ (2j(1 − x)) ; ℓ = 0, p♯ − 1}
(2.20)

p♭ and p♯ introduced above are suitable integers to ensure that the
support of each interior wavelet ψ1

j,k(x) of W 1,int
j is included into

[ δ♭

2j+1 , 1 − δ♯

2j+1 ]. Recall that the support of ψ1 (wavelet on R introdu-
ced in proposition 2.1) is [nmin−ñmax+1

2 , nmax−ñmin+1
2 ], then we deduce :

p♭ = ⌊ ñmax + k♭ − 1

2
⌋ and p♯ = ⌊k♯ − ñmin + 1

2
⌋

with k♭ = δ♭ − nmin and k♯ = δ♯ + nmax. This construction of edge wa-

velets Ψ1,♭
j,ℓ and Ψ1,♯

j,ℓ is borrowed from the work of Grivet-Talocia and

Tabacco 17. The biorthogonal spaces W̃ 1
j are constructed with the same

structure, finally the wavelet bases of the two spaces must to be bior-
thogonalized identically as the scaling functions. The resulting wavelet
bases are denoted by {ψ1

j,k}k=1,2j and {ψ̃1
j,k}k=1,2j without distinction.

Such construction leads to fast wavelet transforms, since the scaling
functions and wavelets satisfy both a two-scale relations. Indeed, there
exist sparse matrices H1

j , H̃1
j , G

1
j and G̃1

j such that :

ϕ1
j,k =

∑

n

(H1
j )k,nϕ

1
j+1,n and ψ1

j,k =
∑

n

(G1
j )k,nϕ

1
j+1,n

ϕ̃1
j,k =

∑

n

(H̃1
j )k,nϕ̃

1
j+1,n and ψ̃1

j,k =
∑

n

(G̃1
j )k,nϕ̃

1
j+1,n

The main objective of this section is now to construct biorthogonal
wavelet bases of W 0

j and W̃ 0
j , that will be linked to ψ1

j,k and ψ̃1
j,k by

differentiation/integration. A first result in this direction is given by
the following proposition :

Proposition 2.5.

Let (V 1
j , Ṽ

1
j ) and (V 0

j , Ṽ
0
j ) be two biorthogonal multiresolution analyses
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satisfying proposition 2.3.
The wavelet spaces W 0

j and W̃ 0
j defined by :

W 0
j = V 0

j+1 ∩ (Ṽ 0
j )⊥ and W̃ 0

j = Ṽ 0
j+1 ∩ (V 0

j )⊥

are linked to the biorthogonal wavelet spaces associated to (V 1
j , Ṽ

1
j ) by

differentiation and integration :

W 0
j =

d

dx
W 1

j and W̃ 0
j =

∫ x

0
W̃ 1

j (2.21)

Proof.

- First we prove the relation : d
dxW

1
j = W 0

j . Since V 1
j+1 = V 1

j ⊕W 1
j , we

obtain :

d

dx
V 1

j+1 =
d

dx
V 1

j +
d

dx
W 1

j

By proposition 2.3, we have :

V 0
j+1 =

d

dx
V 1

j+1 and V 0
j =

d

dx
V 1

j

Moreover d
dxW

1
j ⊂ (Ṽ 0

j )⊥. Indeed, let w1
j ∈W 1

j . Proposition 2.4 (i) leads
to :

P0
j (

d

dx
w1

j ) =
d

dx
P1

j (w1
j ) = 0

thus d
dxw

1
j ∈ (Ṽ 0

j )⊥. Then d
dxW

1
j = W 0

j .

- We now prove the relation W̃ 0
j =

∫ x
0 W̃

1
j .

On one hand we consider w̃0
j ∈ W̃ 0

j . As w̃0
j ∈ Ṽ 0

j+1, there exists w̃1
j ∈

Ṽ 1
j+1 such that d

dx w̃
0
j = w̃1

j . Using proposition 2.4 (ii) (w̃0
j ∈ H1

0 (0, 1)) we
get :

P̃1
j (w̃1

j ) = P̃1
j (
d

dx
w̃0

j ) =
d

dx
P̃0

j (w̃0
j ) = 0

This implies w̃1
j ∈ Ṽ 1

j+1 ∩ (V 1
j )⊥ = W̃ 1

j , thus d
dxW̃

0
j ⊂ W̃ 1

j . By integration,

since W̃ 0
j ⊂ H1

0 (0, 1), we obtain W̃ 0
j ⊂

∫ x
0 W̃

1
j .

On the other hand, let w̃1
j ∈ W̃ 1

j . First we prove that
∫ x
0 w̃

1
j ∈ Ṽ 0

j+1.

Indeed, w̃1
j ∈ Ṽ 1

j+1 then
∫ x
0 w̃

1
j ∈

∫ x
0 Ṽ

1
j+1. Moreover, W̃ 1

j being a wave-

let space (orthogonal to the constants), then
∫ 1
0 w̃

1
j = 0, which implies

∫ x
0 w̃

1
j ∈ H1

0 (0, 1).

This leads to the result :
∫ x
0 w̃

1
j ∈

∫ x
0 Ṽ

1
j+1 ∩H1

0 (0, 1) = Ṽ 0
j+1.



21 janvier 2011 16:33 WSPC/INSTRUCTION FILE articleenD

Divergence-free and Curl-free Wavelets on the Square for Numerical Simulations 17

Now to prove
∫ x
0 w̃

1
j ∈ (V 0

j )⊥ we use again proposition 2.4 (ii) to
obtain :

P̃1
j (w̃1

j ) = 0 ⇒ P̃1
j (
d

dx

∫ x

0
w̃1

j ) =
d

dx
P̃0

j (

∫ x

0
w̃1

j ) = 0

⇒ P̃0
j (

∫ x

0
w̃1

j ) = 0

since P̃0
j (

∫ x
0 w̃

1
j ) ∈ Ṽ 0

j ⊂ H1
0 (0, 1). Then

∫ x
0 w̃

1
j ∈ (V 0

j )⊥ and finally
∫ x
0 W̃

1
j ⊂ Ṽ 0

j+1 ∩ (V 0
j )⊥ = W̃ 0

j .
The proof is then complete.

This proposition implies that the wavelet bases of W 0
j and W̃ 0

j can
be readily constructed by differentiating and integrating the wavelets
of W 1

j and W̃ 1
j , as it was suggested in 18,24 :

Definition 2.7.

Let {ψ1
j,k}k=1,2j and {ψ̃1

j,k}k=1,2j be two biorthogonal wavelet bases of

W 1
j and W̃ 1

j respectively. The wavelets of W 0
j and W̃ 0

j are defined by :

ψ0
j,k = 2−j(ψ1

j,k)
′ and ψ̃0

j,k = −2j

∫ x

0
ψ̃1

j,k

Interior wavelets ψ0
j,k(x) = 2j/2ψ0(2jx − k) in this definition cor-

respond to the classical wavelets arising from previous constructions
9,11,21,17,4, ψ0 being a wavelet on R associated to the scaling function
ϕ0 as in proposition 2.1. On the other hand, in standard constructions,
the edge wavelets do not verify the relations :

d

dx
Ψ1,♭

j,k = 2jΨ0,♭
j,k or Ψ̃0,♭

j,k = −2j

∫ x

0
Ψ̃1,♭

j,k (2.22)

The following proposition guarantees (2.22) and the new edge wavelets
provided by definition 2.7 preserve fast algorithms since they satisfy
two-scale equations.

Proposition 2.6.

Let {ψ1
j,k}k=1,2j and {ψ̃1

j,k}k=1,2j be two biorthogonal wavelet bases of W 1
j

and W̃ 1
j associated respectively to filters G1

j and G̃1
j :

ψ1
j,k =

∑

n

(G1
j )k,n ϕ1

j+1,n and ψ̃1
j,k =

∑

n

(G̃1
j )k,n ϕ̃1

j+1,n

Then the following propositions hold :
(i) The system {ψ0

j,k = 2−j(ψ1
j,k)

′}k=1,2j and {ψ̃0
j,k = −2j

∫ x
0 ψ̃

1
j,k}k=1,2j
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form biorthogonal wavelet bases of W 0
j and W̃ 0

j respectively.

(ii) There exist sparse matrices G0
j and G̃0

j defined by :

G0
j = 2−jG1

jL
1
j+1 and G̃0

j = −2jG̃1
jL

0T
j+1 (2.23)

such that the wavelets ψ0
j,k and ψ̃0

j,k satisfy :

ψ0
j,k =

∑

n

(G0
j )k,nϕ

0
j+1,n and ψ̃0

j,k =
∑

n

(G̃0
j )k,nϕ̃

0
j+1,n

Proof.

(i) This point follows directly from proposition 2.5.
(ii) The filters are derived from the definition of wavelets. Indeed :

2jψ0
j,k =

∑

n

(G1
j )k,n(ϕ1

j+1,n)′ =
∑

n,m

(G1
j )k,n(L1

j+1)n,mϕ
0
j+1,m

=
∑

m

[G1
jL

1
j+1]k,mϕ

0
j+1,m

since ψ0
j,k =

∑

m(G0
j )k,mϕ

0
j+1,m, we obtain the expression of G0

j .

Similarly, for ψ̃0
j,k we obtain :

d

dx
ψ̃0

j,k =
∑

m

(G̃0
j )k,m(ϕ̃0

j+1,m)′ =
∑

m,n

(G̃0
j )k,m(L̃0

j+1)m,nϕ̃
1
j+1,n

=
∑

n

[G̃0
j L̃

0
j+1]k,nϕ̃

1
j+1,n

since d
dx ψ̃

0
j,k = −2jψ̃1

j,k = −2j
∑

n(G̃1
j )k,nϕ̃

1
j+1,n this provides the expres-

sion of G̃0
j .

Remark 2.4.

The above construction of wavelets ψ0
j,k and ψ̃0

j,k has two main interests :

their filters are directly accessible from those of ψ1
j,k and ψ̃1

j,k, and there
is no need for biorthogonalization as for classical constructions.

Example 2.1.

Figure 1 shows the plot of edge scaling functions and wavelets at 0 in
(V 1

j , Ṽ
1
j ). The generators (ϕ1, ϕ̃1) used are biorthogonal B-Splines with

r = r̃ = 3. Then we have : nmin = −1, nmax = 2, ñmin = −3 and ñmax = 4.
The ”free” integer parameters are chosen as δ♭ = δ♯ = 2 and δ̃♭ = δ̃♯ = 0.
Figure 2 plots the corresponding edge scaling functions and wavelets of
(V 0

j , Ṽ
0
j ) at 0. Figure 3 draws the corresponding non zero elements of

filters G0
j and G̃0

j and Figure 4 these of matrices L0
j and L1

j respectively,
for j = 6.



21 janvier 2011 16:33 WSPC/INSTRUCTION FILE articleenD

Divergence-free and Curl-free Wavelets on the Square for Numerical Simulations 19

2.3. Biorthogonal MRA of Hdiv(Ω)

Let Ω be the square [0, 1]2. The aim of the present section is to
provide a divergence-free MRA and wavelet bases of the space Hdiv(Ω)
16 :

Hdiv(Ω) = {u ∈ (L2(Ω))2 : div(u) = 0 and u · ~ν = 0}

Since this space is equal to :

Hdiv(Ω) = {u = curl χ ; χ ∈ H1
0 (Ω)}

our construction consists in taking the curl of a regular MRA of the
two-dimensional scalar space H1

0 (Ω).

Such MRA of H1
0 (Ω) is usually defined as tensor-product of

one-dimensional MRA of H1
0 (0, 1). We now consider a regular one-

dimensional MRA satisfying homogeneous boundary conditions :

V D
j = V 1

j ∩H1
0 (0, 1)

as constructed in section 2.2, and which takes the form :

V D
j = span{Φ1,♭

j,ℓ ; ℓ = 1, r − 1} ⊕ V 1,int
j ⊕ span{Φ1,♯

j,ℓ ; ℓ = 1, r − 1}

To simplify, we denote by ϕD
j,k the scaling functions of V D

j :

V D
j = span{ϕD

j,k ; k = 0, 2j − k♯ − k♭ + 2r − 2}

and ψD
j,k the corresponding wavelets. With these notations, the

divergence-free scaling function spaces are defined below.

Definition 2.8.

For j ≥ jmin, the divergence-free scaling function spaces Vdiv
j are defined

by :

Vdiv
j = curl(V D

j ⊗ V D
j ) = span{Φdiv

j,k} (2.24)

where the divergence-free scaling functions are given by a :

Φdiv
j,k := curl[ϕD

j,k1
⊗ ϕD

j,k2
], j ≥ jmin (2.25)

The spaces Vdiv
j defined above constitute an increasing sequence of

subspaces of (L2(Ω))2 :

Vdiv
j ⊂ Vdiv

j+1

a. The curl of a 2D scalar function Ψ is defined by curl Ψ = (∂Ψ

∂y
,− ∂Ψ

∂x
).
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of dimension :

dim(Vdiv
j ) = dim(V D

j )2 = (2j − k♯ − k♭ + 2r − 1)2

=
(

2j − (nmax − nmin) − (δ♭ + δ♯) + 2r − 1
)2

We will also consider a more standard multiresolution analysis ~Vj

of (L2(Ω))2 defined as :

~Vj = (V 1
j ⊗ V 0

j ) × (V 0
j ⊗ V 1

j ) (2.26)

V 0
j being the spaces defined in section 2.2.2. By proposition 2.3, this

discrete space ~Vj preserves the divergence-free condition, as stated by
Jouini-Lemarié-Rieusset18 :

u ∈ (L2(Ω))2, div(u) = 0 ⇒ div[~Pj(u)] = 0 (2.27)

where ~Pj is the biorthogonal projector on ~Vj :

~Pj = (P1
j ⊗ P0

j ,P0
j ⊗P1

j ) (2.28)

In the same way, we now introduce anisotropic divergence-free wavelets
and wavelet spaces :

Definition 2.9.

The anisotropic divergence-free wavelets and wavelet spaces are given
by :

Ψdiv,1

j,k
:= curl[ϕD

jmin,k1
⊗ ψD

j2,k2
] and Wdiv,1

j
= span{Ψdiv,1

j,k
}, j2 ≥ jmin

Ψdiv,2

j,k
:= curl[ψD

j1,k1
⊗ ϕD

jmin,k2
] and Wdiv,2

j
= span{Ψdiv,2

j,k
}, j1 ≥ jmin

Ψdiv,3

j,k
:= curl[ψD

j1,k1
⊗ ψD

j2,k2
] and Wdiv,3

j
= span{Ψdiv,3

j,k
}, j1, j2 ≥ jmin

The following proposition proves that (Vdiv
j )j≥jmin

is a multiresolu-
tion analysis of Hdiv(Ω).

Proposition 2.7.

The divergence-free scaling function spaces Vdiv
j and wavelet spaces

Wdiv,ε

j
for ε = 1, 2, 3, satisfy :

(i) Vdiv
jmin

⊂ · · · ⊂ Vdiv
j ⊂ Vdiv

j+1 ⊂ · · · ⊂ Hdiv(Ω) and ∪Vdiv
j = Hdiv(Ω).

(ii) Vdiv
j = Vdiv

jmin

⊕

jmin≤j1,j2≤j−1(⊕ε=1,2,3W
div,ε

j
).

(iii) For all j and ε = 1, 2, 3, {Ψdiv,ε

j,k
} is a Riesz basis of Wdiv,ε

j
.
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Then each vector function u of Hdiv(Ω) has a unique decomposition
into the basis {Φdiv

jmin,k,Ψ
div,ε

j,k
}j1,j2≥jmin, ε=1,2,3 :

u =
∑

k

cdiv
jmin,kΦdiv

jmin,k +
∑

j,k

∑

ε=1,2,3

ddiv,ε

j,k
Ψdiv,ε

j,k

with the norm-equivalence :

‖u‖2
L2 ∼

∑

k

|cdiv
jmin,k|

2 +
∑

j,k

∑

ε=1,2,3

|ddiv,ε

j,k
|2

Proof.

(i) Let ~Vj be the spaces defined in (2.26). Since the spaces Hdiv(Ω)∩ ~Vj

provide a multiresolution analysis of Hdiv(Ω)18, point (i) is reduced to
prove that : Vdiv

j = Hdiv(Ω) ∩ ~Vj .

According to proposition 2.2, we have Vdiv
j ⊂ ~Vj and Vdiv

j ⊂ Hdiv(Ω)

by construction.
Conversely, let u ∈ Hdiv(Ω)∩~Vj , and ~Pj be the biorthogonal projector on
~Vj defined in (2.28). We are going to prove that u ∈ Vdiv

j . On one hand,

as u ∈ ~Vj we have u = ~Pj(u), on the other hand due to u ∈ Hdiv(Ω) we
have u = curl (χ) with χ ∈ H1

0 (Ω), and thus :

u = ~Pj [curl (χ)]

Since the spaces (V D
j ⊗ V D

j )j≥jmin
form a MRA of H1

0 (Ω), we can de-
compose χ as :

χ = PD
j (χ) +

∑

j1,j2≥j

(

QD
1 (χ) + QD

2 (χ) + QD
3 (χ)

)

where

PD
j (χ) =

∑

k

ck ϕD
j,k1

⊗ ϕD
j,k2

, QD
2 (χ) =

∑

j1≥j,k

d2
j1,k ψD

j1,k1
⊗ ϕD

j,k2

QD
1 (χ) =

∑

j2≥j,k

d1
j2,k ϕD

j,k1
⊗ ψD

j2,k2
, QD

3 (χ) =
∑

j1,j2≥j,k

d3
j,k ψD

j1,k1
⊗ ψD

j2,k2

are the biorthogonal projectors on respectively V D
j ⊗ V D

j , WD
j1

⊗ V D
j ,

V D
j ⊗WD

j2
and WD

j1
⊗WD

j2
. Proposition 2.2 implies that :

curl [ϕD
j,k1

⊗ ψD
j2,k2

] ∈ (V D
j ⊗W 0

j2) × (V 0
j ⊗WD

j2 )

hence :

~Pj(curl [ϕD
j,k1

⊗ ψD
j2,k2

]) = 0
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and same for ~Pj(curl [ψD
j1,k1

⊗ ϕD
j,k2

]) and ~Pj(curl [ψD
j1,k1

⊗ ψD
j2,k2

]). This
leads to :

~Pj(curl (χ)) = ~Pj(curl [PD
j (χ)]) = curl [PD

j (χ)]

By construction we have curl [PD
j (χ)] ∈ Vdiv

j , which implies u ∈ Vdiv
j

and then completes the proof : Vdiv
j = Hdiv(Ω) ∩ ~Vj.

(ii) The spaces V D
j form a multiresolution analysis of H1

0 (0, 1), and we
can write :

V D
j ⊗ V D

j = (V D
jmin

j−1
⊕

j1=jmin

WD
j1 ) ⊗ (V D

jmin

j−1
⊕

j2=jmin

WD
j2 )

By definition of Vdiv
j , we obtain :

Vdiv
j = curl

2

4(V D
jmin

⊗ V
D
jmin

)
M

jmin≤j1,j2≤j−1

[(V D
jmin

⊗ W
D
j2 ) ⊕ (W D

j1 ⊗ V
D
jmin

) ⊕ (W D
j1 ⊗ W

D
j2 )]

3

5

which is exactly Vdiv
j = Vdiv

jmin

⊕

[

⊕

jmin≤j1,j2≤j−1

(

⊕ε=1,2,3W
div,ε

j

)]

.

(iii) Following 20,8, this point is a consequence of the proposition 2.8
below.

We now introduce the biorthogonal divergence-free scaling functions
and wavelets. Let :

Φ̃div
j,k :=

∣

∣

∣

∣

∣

ϕ̃D
j,k1

⊗ γ̃j,k2

−γ̃j,k1
⊗ ϕ̃D

j,k2

, Ψ̃div,1

j,k
:=

∣

∣

∣

∣

∣

2j2ϕ̃D
jmin,k1

⊗ ψ̃0
j2,k2

−γ̃jmin,k1
⊗ ψ̃D

j2,k2

(2.29)

Ψ̃div,2

j,k
:=

∣

∣

∣

∣

∣

ψ̃D
j1,k1

⊗ γ̃jmin,k2

−2j1ψ̃0
j1,k1

⊗ ϕ̃D
jmin,k2

, Ψ̃div,3

j,k
:=

∣

∣

∣

∣

∣

2j2ψ̃D
j1,k1

⊗ ψ̃0
j2,k2

−2j1ψ̃0
j1,k1

⊗ ψ̃D
j2,k2

(2.30)

where : γ̃j,k = −
∫ x
0 ϕ̃

D
j,k. Remark that γ̃j,k(0) = γ̃j,k(1) since ϕ̃D

j,k ∈
H1

0 (0, 1).

Proposition 2.8.

For a fixed j ≥ jmin, the normalized families


1√
2
Φdiv

j,k, 1√
4j2+1

Ψdiv,1

j,k
, 1√

4j1+1
Ψdiv,2

j,k
, 1√

4j1+4j2
Ψdiv,3

j,k
; j1, j2 ≥ j , k

ff

and


1√
2
Φ̃div

j,k, 1√
4j2+1

Ψ̃div,1

j,k
, 1√

4j1+1
Ψ̃div,2

j,k
, 1√

4j1+4j2
Ψ̃div,3

j,k
; j1, j2 ≥ j , k

ff

are bior-

thogonal in (L2(Ω))2.

Remark 2.5.

Unlike the classical definitions of MRAs, the (L2-normalized)
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divergence-free scaling functions (Φdiv
j,k)k don’t form a Riesz basis of

the space Vdiv
j , since they do not verify :

‖
∑

k

cdiv
j,k Φdiv

j,k‖
2
(L2(Ω))2 ∼

∑

k

|cdiv
j,k|

2

for all (cdiv
j,k) ∈ ℓ2 and independently of j. A counterexample is given

by :

u =
∑

k♭≤k1,k2≤2j−k♯

Φdiv
j,k1,k2

,

which satisfy :
∑

k |cdiv
j,k|

2 = (2j − k♯ − k♭ + 1)2 ∼ 22j .

On the other hand :

u =
∑

k♭≤k1,k2≤2j−k♯

2−j

√
2

∣

∣

∣

∣

∣

∣

ϕD
j,k1

⊗ (ϕD
j,k2

)′

−(ϕD
j,k1

)′ ⊗ ϕD
j,k2

and
∑

k♭≤k2≤2j−k♯

(ϕD
j,k2

)′ =
∑

k♭≤k2≤2j−k♯

2j(ϕ0
j,k2

− ϕ0
j,k2+1) = 2j(ϕ0

j,k♭
− ϕ0

j,2j−k♯+1)

Let h(x) =
∑

k♭≤k≤2j−k♯
ϕD

j,k(x) ∼ 2j/2χ
[

δ♭
2j ,1−

δ♯

2j ]
, ∀x ∈]0, 1[

then

‖u‖2
(L2(Ω))2 = 2−2j

(
∫ 1

0
h2

)(
∫ 1

0
22j(ϕ0

j,k♭
− ϕ0

j,2j−k♯+1)
2

)

∼ 2j

Example 2.2.

Figure 5 and Figure 6 show the vector representation of divergence-free
edge scaling functions curl [Φ1,♭

1 ⊗ Φ1,♭
1 ], curl [Φ1,♭

2 ⊗ Φ1,♭
2 ] and wavelets

curl [Ψ1,♭
1 ⊗ Ψ1,♭

1 ], curl [Ψ1,♭
2 ⊗ Ψ1,♭

2 ], constructed from biorthogonal B-
Spline generators (ϕ1, ϕ̃1) with r = r̃ = 3 used in example 2.1.

2.4. Biorthogonal MRA of H⊥

div
(Ω)

In this section, the curl-free function space Hcurl(Ω) that we consider
is the following :

Hcurl(Ω) = {u = ∇ q : q ∈ H1
0 (Ω)}

This space is a proper subspace of H⊥
div(Ω) :

H⊥
div(Ω) = Hcurl(Ω)⊕H∆(Ω), with H∆(Ω) = {∇ q : q ∈ H1(Ω) and ∆ q = 0}
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To construct a multiresolution analysis of Hcurl(Ω), it suffices to
consider the gradient of a MRA of H1

0 (Ω). With the same notations
as in previous section 2.3, curl-free scaling functions spaces are defined
by :

Definition 2.10.

For j ≥ jmin, a curl-free scaling function space V∇
j is defined by :

V∇
j = ∇(V D

j ⊗ V D
j ) = span{Φ∇

j,k} (2.31)

where the curl-free scaling functions are given by :

Φ∇
j,k := ∇[ϕD

j,k1
⊗ ϕD

j,k2
], j ≥ jmin (2.32)

The spaces (V∇
j ) form an increasing sequence of subspaces of

(L2(Ω))2, of dimension : dim(V∇
j ) = dim(V D

j ⊗V D
j ) = (2j−k♯−k♭+2r−1)2.

Let ~V∗
j be the standard multiresolution analysis of (L2(Ω))2 defined

by :

~V∗
j = (V 0

j ⊗ V 1
j ) × (V 1

j ⊗ V 0
j ) (2.33)

By proposition 2.3, the spaces V∇
j are contained in ~V∗

j . We now define
the corresponding irrotational wavelets.

Definition 2.11.

The anisotropic curl-free wavelets and wavelet spaces are defined by :

Ψ∇,1

j,k
:= ∇[ϕD

jmin,k1
⊗ ψD

j2,k2
] and W∇,1

j
= span{Ψ∇,1

j,k
}, j2 ≥ jmin

Ψ∇,2

j,k
:= ∇[ψD

j1,k1
⊗ ϕD

jmin,k2
] and W∇,2

j
= span{Ψ∇,2

j,k
}, j1 ≥ jmin

Ψ∇,3

j,k
:= ∇[ψD

j1,k1
⊗ ψD

j2,k2
] and W∇,3

j
= span{Ψ∇,3

j,k
}, j1, j2 ≥ jmin

The following proposition holds :

Proposition 2.9.

The spaces V∇
j and W∇,ε

j
for ǫ = 1, 2, 3 verify :

(i) V∇
jmin

⊂ · · · ⊂ V∇
j ⊂ V∇

j+1 ⊂ · · · ⊂ Hcurl(Ω) and ∪V∇
j = Hcurl(Ω)

(ii) V∇
j = V∇

jmin

⊕

jmin≤j1,j2≤j−1(⊕ε=1,2,3W
∇,ε

j
)

(iii) For all j and ε = 1, 2, 3, {Ψ∇,ε

j,k
} is a Riesz basis of W∇,ε

j
.
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The proof uses the same arguments as in proposition 2.7. In addition,
these construction of curl-free scaling functions and wavelets can readily
be extended to higher dimensions, for more details see 22,23.

Example 2.3.

Figure 7 and Figure 8 show the vector representation of curl-free edge
scaling functions ∇[Φ1,♭

1 ⊗ Φ1,♭
1 ], ∇[Φ1,♭

2 ⊗ Φ1,♭
2 ] and wavelets ∇[Ψ1,♭

1 ⊗
Ψ1,♭

1 ], ∇[Ψ1,♭
2 ⊗Ψ1,♭

2 ], constructed from biorthogonal B-Spline generators
(ϕ1, ϕ̃1) with r = r̃ = 3 used in example 2.1.

3. Fast divergence-free wavelet transform

We describe in this section the practical computation of divergence-
free scaling function and wavelet coefficients of a vector field u ∈ Vdiv

j .
We use the same notations as in previous sections. The starting point
is the decomposition of u in the MRA of (L2(Ω))2 provided by ~Vj :

~Vj = (V 1
j ⊗ V 0

j ) × (V 0
j ⊗ V 1

j )

On the scaling functions basis of ~Vj, the vector field u = (u1,u2) can
be written as :

u1 =
∑

k

c1
j,k ϕ1

j,k1
⊗ ϕ0

j,k2
and u2 =

∑

k

c2
j,k ϕ0

j,k1
⊗ ϕ1

j,k2
(3.1)

The computation of divergence-free coefficients will use the change of
bases between ( d

dxϕ
1
j,k) and (ϕ0

j,k) introduced in definition 2.6. The fol-
lowing proposition explicits the form of the change of basis matrices
(before the biorthogonalization process, or when it does not operate on
these functions, which will be the case in our numerical tests).

Proposition 3.1.

Let ∆j be the dimension of V 1
j (j ≥ jmin) and consider the matrices L0

j

and L1
j defined in definition 2.6, renormalized by :

L1
j = 2jL1 and L0

j = 2−jL0

Then the only non zero elements of matrices L1 and L0 are given below.
(i) L1 is a rectangular matrix of size ∆j × (∆j − 1) whose non zero
elements are :

L1
k,k−1 = 1, L1

k,k = −1, r + 1 ≤ k ≤ ∆j − r

and for 2 ≤ k ≤ r :

L1
1,r = −1, L1

k,k−1 = 1, L1
k,r = −p̃1

k−1(k♭ − 1)

L1
∆j,∆j−r = 1, L1

∆j−k+1,∆j−k+1 = −1, L1
∆j−k+1,∆j−r = p̃1

k−1(2
j − k♯ + 1)
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(ii) L0 is a rectangular matrix of size (∆j − 1) × ∆j whose no zero
elements are :

L0
k,m = −1, L0

k,∆j
= −1, k + 1 ≤ m ≤ ∆j − r and r ≤ k ≤ ∆j − r

and for 2 ≤ k ≤ r :

L0
r,1 = 1, L0

k−1,k = −1, L0
k−1,1 = p̃1

k−1(k♭ − 1)

L0
∆j−r,∆j

= −1, L0
∆j−k+1,∆j−k+1 = 1, L0

∆j−k+1,∆j
= −p̃1

k−1(2
j − k♯ + 1)

Proof.

(i) The expression of L1 is straightforward using proposition 2.2.
Indeed, the differentiation relation on interior scaling functions (propo-
sition 2.2 (i)) leads to L1

k,k−1 = 1, L1
k,k = −1, r + 1 ≤ k ≤ ∆j − r.

In the same way, proposition 2.2 (ii) corresponds to the differentiation
relation on edge scaling functions, for instance :

(Φ1,♭
ℓ )′ = Φ0,♭

ℓ−1 − p̃1
ℓ(k♭ − 1)ϕ0

k♭

rewrites with the new notations for the scaling functions :

(ϕ1
j,k)

′ = 2j [ϕ0
j,k−1 − p̃1

ℓ(k♭ − 1)ϕ0
j,r], 2 ≤ k ≤ r

leading to : L1
k,k−1 = 1, L1

k,r = −p̃1
k−1(k♭ − 1).

(ii) To obtain the relation on L0, as it is still true by differentiation we
get :

−Φ0,♭
j,ℓ =

r−1
∑

k=0

L0
ℓ,k (Φ1,♭

j,k)
′ and − Φ0,♯

j,ℓ =

r−1
∑

k=0

L0
∆j+ℓ,∆j+k (Φ1,♯

j,k)
′

Then using the proposition 2.2 again, we have :

Φ0,♭
j,ℓ = 2−j [(Φ1,♭

ℓ+1)
′ − p̃1

ℓ+1(k♭ − 1) (Φ1,♭
j,0)

′]

and

Φ0,♯
j,ℓ(1 − .) = 2−j [(Φ1,♯

ℓ+1(1 − .))′ + p̃1
ℓ+1(2

j − k♯ + 1) (Φ1,♯
j,0(1 − .))′]

since :

ϕ0
j,k♭

= −2−j(Φ1,♭
j,0)

′ and ϕ0
j,2j−k♯+1 = 2−j(Φ1,♯

j,0(1 − .))′

For interior scaling functions, proposition 2.2 leads to :

ϕ0
j,k = 2−j(ϕ1

j,k+1)
′ + ϕ0

j,k+1, r ≤ k ≤ ∆j − r

and recursively we get :

ϕ0
j,k = 2−j(ϕ1

j,k)
′ + ϕ0

j,k+1 = 2−j [(ϕ1
j,k)

′ + · · · + (ϕ1
j,2j−kmax

)′] + ϕ0
j,2j−kmax+1

= 2−j[(ϕ1
j,k)

′ + · · · + (ϕ1
j,2j−kmax

)′ + (Φ1,♯
j,0(1 − .))′]
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This completes the proof.

Using matrices L0
j and L1

j we can rewrite the components of u as
follows :

u1 =
∑

k

c1
j,k ϕ1

j,k1
⊗ ϕ0

j,k2
= −

∑

k

[C1
jL

0
j ]k ϕ1

j,k1
⊗ (ϕ1

j,k2
)′ (3.2)

and

u2 =
∑

k

c2
j,k ϕ0

j,k1
⊗ ϕ1

j,k2
= −

∑

k

[L0 T
j C2

j ]k (ϕ1
j,k1

)′ ⊗ ϕ1
j,k2

(3.3)

with C1
j = [c1

j,k] and C2
j = [c2

j,k]. If u ∈ Vdiv
j , it can be uniquely written

as :

u =
∑

k

cdiv
j,kΦdiv

j,k (3.4)

Therefore, we have the following proposition.

Proposition 3.2.

The matrices of coefficients C1
j and C1

j are linked to the matrix of coef-

ficients Cdiv
j = [cdiv

j,k] by :

21/2Cdiv
j = (L0

j)
TC2

j − C1
jL

0
j (3.5)

and conversely :

C1
j = 2−1/2Cdiv

j L1
j and C1

j = −2−1/2(L1
j )

TCdiv
j (3.6)

Proof.

Following the form of divergence-free scaling functions (proposition 2.8,
and using (3.2) and (3.3) we have :

〈u/Φ̃div
j,k〉 = 2−1/2

[

(L0
j )

TC2
j − C1

jL
0
j

]

k

which proves (3.5). The second relation (3.6) is proved using the change
of basis provided by L1

j .

Now the objective is to compute the divergence-free wavelet coeffi-
cients of u :

u =
∑

k

cdiv
j,k Φdiv

j,k +
∑

j2≥j,k

ddiv,1

j,k
Ψdiv,1

j,k

+
∑

j1≥j,k

ddiv,2

j,k
Ψdiv,2

j,k
+

∑

j1,j2≥j,k

ddiv,3

j,k
Ψdiv,3

j,k
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We start with the standard wavelet decomposition of u = (u1,u2) in
~Vj :

u1 =
∑

k

c1
j,k ϕ1

j,k1
⊗ ϕ0

j,k2
+

∑

j2≥j,k

d1,1

j2,k
ϕ1

j,k1
⊗ ψ0

j2,k2

+
∑

j1≥j,k

d1,2

j1,k
ψ1

j1,k1
⊗ ϕ0

j,k2
+

∑

j1,j2≥j,k

d1,3

j,k
ψ1

j1,k1
⊗ ψ0

j2,k2

and

u2 =
∑

k

c2
j,k ϕ0

j,k1
⊗ ϕ1

j,k2
+

∑

j2≥j,k

d2,1

j2,k
ϕ0

j,k1
⊗ ψ1

j2,k2

+
∑

j1≥j,k

d2,2

j1,k
ψ0

j1,k1
⊗ ϕ1

j,k2
+

∑

j1,j2≥j,k

d2,3

j,k
ψ0

j1,k1
⊗ ψ1

j2,k2

This rewrites, using the matrices L0
j and L1

j :

u1 = −
∑

k

[C1
jL

0
j ]k ϕ1

j,k1
⊗ (ϕ1

j,k2
)′ +

∑

j2≥j,k

d1,1

j2,k
ϕ1

j,k1
⊗ ψ0

j2,k2

−
∑

j1≥j,k

[d1,2
j1
L0

j ]k ψ1
j1,k1

⊗ (ϕ1
j,k2

)′ +
∑

j1,j2≥j,k

d1,3

j,k
ψ1

j1,k1
⊗ ψ0

j2,k2

and

u2 = −
∑

k

[(L0
j )

TC2
j ]k (ϕ1

j,k1
)′ ⊗ ϕ1

j,k2
−

∑

j2≥j,k

[(L0
j )

Td2,1
j2

]k (ϕ1
j,k1

)′ ⊗ ψ1
j2,k2

+
∑

j1≥j,k

d2,2

j1,k
ψ0

j1,k1
⊗ ϕ1

j,k2
+

∑

j1,j2≥j,k

d2,3

j,k
ψ0

j1,k1
⊗ ψ1

j2,k2

noting d1,2
j1

= [d1,2

j1,k
] and d2,1

j2
= [d2,1

j2,k
]. We now prove the following

proposition.

Proposition 3.3.

For ǫ = 1, 2, 3, the coefficients d1,ǫ

j
= [d1,ǫ

j,k
] and d2,ǫ

j
= [d2,ǫ

j,k
] are linked to

the divergence-free wavelet coefficients [ddiv,ǫ

j,k
] by :

ddiv,1

j,k
=

1√
4j2 + 1

[2j2(d1,1

j
) − (L0

j )
T (d2,1

j
)]j,k (3.7)

ddiv,2

j,k
=

1√
4j1 + 1

[(d1,2

j
)L0

j − 2j1(d2,2

j
)]j,k (3.8)

ddiv,3

j,k
=

1√
4j1 + 4j2

[2j2(d1,3

j
) − 2j1(d2,3

j
)]j,k (3.9)
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Inversely we have :

[d1,1

j,k
] =

2j2
√

4j2 + 1
[ddiv,1

j,k
] and [d2,1

j,k
] = − 1√

4j2 + 1
(L1

j )
T [ddiv,1

j,k
] (3.10)

[d1,2

j,k
] =

1√
4j1 + 1

[ddiv,2

j,k
]L1

j and [d2,1

j,k
] = − 2j1

√
4j1 + 1

[ddiv,2

j,k
] (3.11)

[d1,3

j,k
] =

2j2

√
4j1 + 4j2

[ddiv,3

j,k
] and [d2,3

j,k
] = − 2j1

√
4j1 + 4j2

[ddiv,3

j,k
] (3.12)

Proof.

Using proposition 2.8, the formula are obtained by considering the inner
products :

〈u/Ψ̃div,1

j,k
〉, 〈u/Ψ̃div,2

j,k
〉 and 〈u/Ψ̃div,3

j,k
〉

The reconstruction formula are still a consequence of proposition 2.2.

Example 3.1.

We have considered a velocity field u of resolution 256 × 256, arising
from a numerical simulation of lid driven cavity flow 22, and we have
computed its divergence-free scaling function and wavelet coefficients
using propositions 3.2 and 3.3, with the B-Spline generators of Figure 1.
Figure 9 shows the vector field u (left) and corresponding coefficients.
Divergence-free wavelet coefficients are localized near shear zones.

4. Applications

This section illustrates some practical uses of the divergence-free
and curl-free wavelets constructed before. We first show on a numerical
example their powerful properties of nonlinear approximation. Then, we
consider two problems relevant for the numerical simulation of incom-
pressible flows : the Helmholtz decomposition and the Stokes problem,
with homogeneous boundary conditions.

4.1. Nonlinear approximation

Constructed by tensor-product, divergence-free and curl-free wave-
let bases provide nonlinear approximation estimates, governed by the
approximation orders of the one-dimensional spaces involved in their
construction 7. In this part, we investigate the convergence rate obtai-
ned from the N -best terms approximation.
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We consider the vector field u introduced in example 3.1 and the
same wavelets. On Figure 10, we plot the ℓ2 error on each component,
provided by the nonlinear approximation on u onto the divergence-
free wavelet basis. We obtain the same approximation order as that
obtained with the standard multiresolution analysis ~Vj. It is consistent
with the theoretical result proved in 22, since we recover a slope ≈ −3,
which corresponds to the lowest approximation order provided by V 0

j ,
equal to 2. Figure 11 highlights the classical boundary wavelet error
phenomenon on the interval. It is well known that this error at the
boundary does not affect the convergence of the multiscale projector
on the whole domain 21.

4.2. Helmholtz decomposition

The Helmholtz decomposition of a vector field u of (L2(Ω))2, is a
unique decomposition of u of the form :

u = curl (χ) + ∇q (4.1)

with χ ∈ H1
0 (Ω) and q ∈ H1(Ω). The objective in this section is to

compute an approximation in V
div
j of the divergence-free part udiv =

curl (χ), using the divergence-free bases built in section 2.3. For simpli-
city, we use the scaling function basis (Φdiv

j,k) , but the wavelet one can

be deduced using one-dimensional fast wavelet transform along each
direction. udiv

j is searched as its decomposition :

udiv
j =

∑

k

cdiv
j,k Φdiv

j,k (4.2)

By orthogonality of the decomposition (4.1) in (L2(Ω))2, one obtains :

〈u/Φdiv
j,k〉 = 〈udiv

j /Φdiv
j,k〉 thus M(cdiv

j,k) = (〈u/Φdiv
j,k〉) (4.3)

where M the Gram matrix of the basis {Φdiv
j,k}. The computation of the

coefficients (cdiv
j,k) is then reduced to the resolution of a linear system of

matrix M. This system can be easily inverted, since M is no more than
the stiffness matrix of the Laplacian onto the scalar scaling function
basis {ϕD

j,k1
⊗ ϕD

j,k2
}. Indeed :

∀ ψ, φ ∈ H1
0 (Ω);

∫

Ω
curl(ψ) · curl(φ)dx =

∫

Ω
∇ψ · ∇φdx (4.4)
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More details on the implementation and resolution of (4.3) can be found
in 23. Figure 12 presents the ℓ2 error on udiv

j of the algorithm, according
to the space resolution j, using wavelets of example 3.1. This test is
performed with the following vector field u, where udiv is known analy-
tically :

u = curl [sin(2πx)x2(1 − x)2y2(1 − y)2] + ∇ [cos(2πx)x2y2]

The convergence rate (−2.3) is in accordance with the slope provided
by the approximation order r = 3 in V 1

j and r = 2 in V 0
j .

4.3. Stokes problem

The Stokes problem is a simple test case for the simulation of in-
compressible flows. In the non-stationary case, and for a velocity u

vanishing at the boundary, it is described by the following equations :














∂tv − ν∆v + ∇p = f in [0, T ] × Ω

∇ · v = 0 in Ω

v = 0 on Γ

v(0, x) = v0

(4.5)

where p is the corresponding pressure.

Urban was the first who uses interior divergence-free wavelets for
the resolution of the stationary case27. His method uses a variational
method16 in Hdiv(Ω) and thus requires the inversion of the stiffness
matrix in the divergence-free wavelet basis.

We propose here to use the Helmholtz decomposition to simplify a
classical method of resolution, called the Chorin projection method6.
Our algorithm to compute vn(x) ≈ v(x, nδt) is the following :

Starting with an initial value v0 = v(0, x), repeat for 1 ≤ n ≤ N

Step 1 : Find a(x) ∈ ~Vj solution of

a − vn

δt
= ν∆

1

2
(a + vn) + P(f), x ∈ [0, 1]2 (4.6)

a = 0 on Γ (4.7)

Step 2 Find vn+1 ∈ Vdiv
j solution of

vn+1 = P(a) (4.8)
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where P is the orthogonal projector from (L2(Ω))2 onto Hdiv(Ω) com-
puted in practice by the Helmholtz decomposition described in section
4.2.

This method has the advantage of decoupling the resolution of the
diffusion term and the incompressibility constraint. Moreover, for more
general boundary conditions (for example v ·~ν = 0 on Γ), we can incor-
porate this boundary condition directly in the basis of Hdiv(Ω) for the
computation (4.8).

Figure 13 plots the ℓ2 error between v and its approximation vn ∈ ~Vj ,
at time t = 10−2 for ν = 10−5 and δt = 1/1000. The exact solution v is
taken from 19 :

v(x, y, t) = curl [1000x2(1 − x)2y2(1 − y)2] ∇p = x2 + y2 − 2

3
(4.9)

We used the divergence-free wavelets of example 3.1 to compute the
Step 2. The stationary solution is achieved at t = 10−2. The convergence
slope behaves as s ≈ −2.3, which is in accordance with the approxima-
tion order provided by ~Vj .

5. Conclusion

In this article we have presented a practical construction of
divergence-free and irrotational multiresolution analyses and wavelets
on the square. Our construction, based on one-dimensional analyses on
the interval allowing the reproduction of polynomials, respects the theo-
retical framework established by Jouini and Lemarié-Rieusset 18. Mo-
reover our construction can incorporate homogeneous boundary condi-
tions in the basis functions, which allows the representation of more
physical divergence-free vector functions spaces. This ability is not
present, for instance, in the attempt addressed by Stevenson 24.
Associated fast wavelet transforms have been implemented satisfacto-
rily, opening new prospects for the realistic simulation of incompressible
flows. First realizations have been successfully presented in this article
with the Helmholtz decomposition of a vector flow, or with the compu-
tation of a Stokes problem solution. Work on more complex problems
are underway, such as the direct simulation of turbulence, and this will
be the subject of a forthcoming paper.
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Figure 1. Left : scaling functions Φ1,♭
ℓ

(three first rows) and wavelets Ψ1,♭
ℓ

(three last rows) and

their biorthogonals Φ̃1,♭
ℓ , Ψ̃1,♭

ℓ (right) : B-Spline generators with r = r̃ = 3.
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Figure 2. Left : scaling functions Φ0,♭
ℓ

(three first rows) and wavelets Ψ0,♭
ℓ

(three last rows) and

their biorthogonals Φ̃0,♭
ℓ , Ψ̃0,♭

ℓ (right), satisfying Dirichlet boundary condition.
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j (left) and conjugate wavelet filter G̃0

j (right), associated to functions
of Figure 2 for j = 6.
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Figure 4. Matrices of change of bases L0

j (left) and L1

j (right), for j = 6.
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Figure 5. Vector field of divergence-free scaling functions curl[Φ1,♭
1

⊗Φ1,♭
1

] and curl[Φ1,♭
2

⊗Φ1,♭
2

],
constructed from edge scaling functions : ℓ = 1, 2.
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Figure 6. Vector field of divergence-free wavelets curl[Ψ1,♭
1

⊗Ψ1,♭
1

] and curl[Ψ1,♭
2

⊗Ψ1,♭
2

], construc-
ted from edge wavelets : ℓ = 1, 2.
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Figure 7. Vector field of curl-free scaling functions ∇[Φ1,♭
1

⊗Φ1,♭
1

] and ∇[Φ1,♭
2

⊗Φ1,♭
2

], constructed
from edge scaling functions : ℓ = 1, 2.
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Figure 8. Vector field of curl-free wavelets ∇[Ψ1,♭
1

⊗ Ψ1,♭
1

] and ∇[Ψ1,♭
2

⊗ Ψ1,♭
2

], constructed from
edge wavelets : ℓ = 1, 2.
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Figure 9. Example of vector field (left), its divergence-free scaling function coefficients (middle)
and renormalized wavelet coefficients (right).
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Figure 10. Error on the first component u1 (left) and on the second component u2 (right),
provided by the nonlinear approximation of u in Vdiv

j , versus the ratio of retained coefficients
(log-log scale).
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Figure 11. Error on u1 (left) and u2 (right) reconstructed from 32% of their divergence-free
wavelet coefficients.
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Figure 12. l2-projection error of u onto Vdiv
j , versus 2j (log-log scale).
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Figure 13. Relative ℓ2 errors on the components u1 and u2 of the numerical Stokes problem
solution, according to the resolution j, at time t = 10−2 for ν = 10−5.


