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We present a construction of divergence-free and curl-free wavelets on the square, that
could satisfy suitable boundary conditions. This construction is based on the existence
of biorthogonal multiresolution analyses (BMRA) on [0, 1], linked by differentiation and
integration. We introduce new BMRAs and wavelets for the spaces of divergence-free and
curl-free vector functions on the square. The interest of such constructions is illustrated
on examples including the Helmholtz-Hodge decomposition of vector flows and the Stokes
problem.
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1. Introduction

In many physical problems, like the numerical simulation of in-
compressible flows or in electromagnetism, the solution has to fulfill
a divergence-free condition. For the numerical treatment of the rele-
vant equations (Navier-Stokes equation in fluid mechanism or Max-
well’s equation in electromagnetism) it is helpful to have at hand bases
satisfying a divergence-free or a curl-free condition. In the context of
solution schemes for Partial Differential Equations, wavelet bases pro-
vide very efficient algorithms, characterized by a reduced computational
complexity, with respect to standard methods’. Divergence-free wavelet
bases on R?, with compact support, were originally defined by Lemarié-
Rieusset in 19922° and applied by Urban to the numerical solution of
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the Stokes-problem?®. In the periodic case, anisotropic divergence-free
wavelets have been constructed in'®, and firstly used to compute the
numerical solution of the Navier-Stokes equation in velocity-pressure
formulation!*. Such numerical scheme requires, at each time-step, the
Helmholtz-Hodge decomposition of the nonlinear term, which is no
more divergence-free. In Fourier space, this decomposition writes expli-
citly, whereas in wavelet domain, it can be computed using divergence-
free and curl-free wavelets 2613, In the general case with physical boun-
dary conditions, it is the key of Navier-Stokes numerical simulations
to have at hand an explicit and efficient procedure to compute the
Helmholtz-Hodge decomposition of the nonlinear term.

Precisely, the Helmholtz-Hodge decomposition of a vector field u
on the square Q = [0,1]? consists in splitting u into a divergence-free
part and a curl-free part!6. A first formulation leading to an orthogonal
splitting is the following : there exist a stream function ¢ and a potential
field ¢ such that :

u=curl ¥ + Vgin Q (1.1)
curly-v=0 onl =00 '

where 7 is the outward normal to I'. This decomposition corresponds
to the orthogonal splitting of the space (L?(£2))? :

(L(€))* = Hain,0 () & Hgs, () (1.2)
where
Hainr(Q) = {u € (L*(Q))?: div(u) =0, u- 7|r = 0}

is the divergence-free function space with velocity tangent to the boun-
dary. It can also be seen as the "curl” space :

Hain(Q) = {u = curl ¢ ; ¥ € H}(Q)}
On the other side the space of gradient functions

Hiio(?) = {Va; g€ H'(Q)}

corresponds to a curl-free function space!S.

Other types of boundary conditions for the divergence-free space can
be considered. For instance, the decomposition :

(L*()? = Haw(Q) @ {Vq 5 ¢ € Hy(Q)} (1.3)
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where now
Hain(Q) ={u € (LQ(Q))2 cdiviu) =0} ={u=curl ¢ ; ¢ € Hl(Q)}

does not incorporate boundary condition on I'. In fluid mechanism,
this type of boundary condition is less considered since in general T'
corresponds to a physical wall that cannot be crossed by fluid particles
(except for porous media). A more useful condition corresponds to the
homogeneous Dirichlet boundary condition on I', which leads to :

(Hy(2))? = Haino(Q) & Hgio() (1.4)
where now
Haino(2) = Hain(2) N (Hy(2))?

while Hg;, ,(2) is a subspace of Hg,, ()N (Hg(2))?, see'® for details. For
sake of simplicity, we will focus in this article to the divergence-free
spaces being involved in decompositions (1.3,1.4).

Accordingly, the objective of the present paper is to provide multire-
solution analyses and wavelet bases of the spaces Hg;, (Q) and Hz;, ().
We present in the next section a new construction, based on wavelets
on the interval [0, 1] that can satisfy homogeneous boundary conditions,
as in 2!, Indeed, the key to our construction lies on the definition of a
couple of wavelet bases on the interval, linked by differentiation, as in
the theoretical approach of Jouini-Lemarié-Rieusset!®. The construc-
tion of divergence-free and curl-free approximation spaces and wavelets
satisfying suitable boundary conditions are then straightforward. Mo-

reover, our method extends readily to the cube [0.1]? by tensor product
22

The outline of the paper is as follows. Section 2 details the prin-
ciples of the construction of divergence-free and curl-free BMRAs and
wavelets on the square. Section 3 is dedicated to the description of the
divergence-free fast wavelet transform. Finally, section 4 illustrates ap-
plications of these new wavelets for numerical simulations : nonlinear
approximation of a divergence-free vector field, the Helmholtz decom-
position and the Stokes problem.

2. Divergence-free and curl-free wavelets on the square

Divergence-free wavelets on the whole space R¢ have been firstly
constructed by Battle-Federbush 2 in the orthogonal case. Since these
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previous functions don’t have compact support they where not imple-
mented, contrarily to the biorthogonal bases arising from the construc-
tion proposed by Lemarié-Rieusset in 2°. Urban was the first who used
them in a practical framework, the Stokes problem ?°. Later, Urban
proposed to extend this construction to derive curl-free wavelets 26. An
alternative fast decomposition into divergence-free wavelets was propo-
sed by Deriaz-Perrier, based on anisotropic (tensor-product) wavelets
in the periodic case 1. The objective below is to extend these construc-
tions to the square [0,1]?, following the construction principle already
exposed in the theoretical work of Jouini-Lemarié-Rieusset 8.

2.1. Construction principle

The construction of divergence-free wavelets on the cube [0, 1]¢ uses
the same arguments as in the whole domain R? 2018, The key ingredient
is to have at hand two one-dimensional multiresolution analyses (V}')
and (V) of L?(0,1) linked by differentiation :

d 1 0
%V] =V; (2.1)

On the interval [0, 1], following '8, the biorthogonal spaces should sa-
tisfy :

79— HY(0,1) N /xvjlz{f S feviand £(0)=f(1) =0} (22)
0

The existence of such spaces follows from the fundamental proposition
of Lemarié-Rieusset, used at the beginning to construct divergence-free
wavelets on the whole space R¢ 20 :

Proposition 2.1.

Let (V1 (R)) be a multiresolution analysis (MRA) of L*(R), with diffe-
rentiable and compactly supported scaling function @' and associated
wavelet '. Then there exists a MRA (Vjo(]R)), with associated scaling
function ¢° and wavelet ¢°, such that :

@) (@) = () = @=1)  and  ()(2) = 4 ¢ (z) (2.3)
Similar relations hold for the dual functions (@1,151) and <¢0,1,Z~)0> of
the primal ones (¢*,¢!) and (¢°,¢Y) :

x+1 ~ -
/ Gl dt=3"(x) and  @)(x) = —49'@)  (24)
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In '8, Jouini-Lemarié-Rieusset prove that from the scaling functions
(o', @), (¢°, @%) and wavelets (¢!, 91), (°,4°) of proposition 2.1, it is
possible to exhibit multiresolution analyses on the interval satisfying
the relations (2.1,2.2).

Our objective in the present paper is first to provide an effective
construction of such multiresolution analyses, which enable boundary
conditions, fast wavelet algorithms, approximation results and practical
computations. This is done in section 2.2.

Then the construction of biorthogonal MRAs and wavelets bases of
Hain(Q) (with suitable boundary conditions) and HZ;, (2), are obtained
by considering resp. the curl of (V! ® V}'), and the grad of (V' @ V!).
This will be described in section 2.3.

2.2. Construction of biorthogonal MRAs on [0,1] linked
by differentiation

We detail now the construction of spaces (V;', V) and (V?, V) satis-
fying (2.1) and (2.2). We proceed in two steps. "The first step (construc-
tion of (le,f/jl), section 2.2.1) is classical and based on biorthogo-
nal multiresolution analyses on the interval reproducing polynomials
IL2LIT4 “hyt it is needed to introduce the sequels. The second step
(section 2.2.2) introduces a practical and new way to provide spaces

(V0,V9) and associated wavelets. It is based on proposition 2.1.

2.2.1. Construction of (V',V}') on [0,1] with polynomial
reproduction (r,T)

We first recall the definition of a biorthogonal multiresolution ana-
lysis (BMRA) on [0,1] 188 :

Definition 2.1.

The sequence (le, VJI) 3 > Jmin (Jmin € N¥) is a biorthogonal MRA of
approximation order (r,7) on the interval [0,1] associated to the gene-
rators (ob, @), if it satisfies :

(1) le C Vj-i-l’ Vl C V]1+1 and UJ>J mV] = UJ>J Vl LQ(O, 1).

s 1,2nt 1 sint

(ii) V; CVJ1~C VIR, V;"™ c V} c VIR )|[0,1}-

(iii) V}l and le are finite dlmenswnal biorthogonal spaces spanned
by biorthogonal bases {pj, : &k € A;} and {¢;, : Kk € A;} :
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< QO}’k,tﬁ}’k/ >= 5k,k’7 vV Ek, kK e A]’.
(iv) le and I7j1 have respectively r and 7 polynomial exactness.

In point (i), V}'(R)|j,1) means the restriction of V}'(R)-functions to
the interval [0, 1], whereas le’mt means interior functions of le (R), as
introduced below (definition 2.2), and same for the biorthogonal spaces.
The dimension A; ~ 27 of spaces V}' and f/jl will be explicited later.

To construct such spaces (le, f/jl), as described in the numerous and
now classical approaches 1121174 we start with generators (o', 3'),
that are biorthogonal scaling functions of a BMRA on R. We suppose
that ¢! is compactly supported on [nin, maez] and reproduces polyno-
mials up to degree r —1 :

¢ oo
X ~
0</l<r-—1, i g (k) oYz — k), Yz eR (2.5)
k=—00

£

with pj(k) = (4, @' (x — k)). We suppose also that ¢! reproduces poly-
nomials up to degree 7 — 1 :

4 I
- € ~
0<e<r—1, i g pi(k) ¢(x —k), Yz eR (2.6)
k=—0oc0

with pj(k) = (%, o' (z — k).

To define a BMRA on [0, 1] we first define the set of interior scaling
functions :

Definition 2.2.

Let 6,, 6; € N be two fixed parameters. For j > 0, interior scaling
functions of V}' are defined as scaling functions ¢}, (z) = 27/%! (272 — k)
whose supports are included into [$,1 — g—ﬁ] C [0,1].

If supp ' = [Nmin, Nmaz], they correspond to indices k such that :

5b_nmin Skgzj_(sﬁ_nmax
The space generated by interior scaling functions is then given by :
VI = span{p]y s k =k, 27—k}
with ky, = 0, — Nmin and kjﬁ = 5ﬁ + Nomaz-

Similarly, let Oy Sﬁ € N be two parameters. Interior scaling functions
of V} are defined as scaling functions ¢}, (z) = 2//2¢! (272 — k) whose
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supports are included into [‘255 1 — —] The space generated by interior

scaling functions is then given by :

Vi = span{@}y 5 k= ky, 20 — ky}

with k, = 8, —fumin and &y = dy+imag, if the support of ¢! is [Fmin, Fmaz)-

Remark 2.1.

The parameters (8, d, 5, Sﬁ) are "free” parameters (chosen as small as
possible), and chosen in practice to adjust the dimension of the spaces
V!and V1.

To preserve the polynomial reproduction (2.5, 2.6) on the interval
[0, 1], we follow the approach of 214 and define edge scaling functions at
the edge 0 :

Definition 2.3.
The edge scaling functions at the edge 0 are defined by :

ky—1
0<t<r-—1, @é’b(x) = Z pi (k) i () X[0,400]

k=1—Nmaax
and for the biorthogonal space :
L k1
0<t<i—1, @)= Z pe(k) B() X{o4o00]

k=1-Nmaz

At the edge 1, the edge scaling functions @, ’ﬁ are constructed on
| — 00,1] by symmetry, using the transform 7'f(x ) f(1—x).

As usual, one define the multiresolution spaces le on [0,1], by the
direct sum :
1y Lb 1,int 1
vi=vilev;tey, 27
where :
le’b = spcm{q)},’z(:v) = 2j/2<1>é’b(2jx) ; £=0,---,r—1}
le’ﬁ = spcm{q);’g(l —x) = 2j/2<1>;’ﬁ(2j(1 —x)); £=0,---,r—1}

are the edge spaces. In practice we have to choose j > jin Where join
is the smallest integer which verifies :

Jmin > 1082 [Nmaz — Mmin + o + 0y
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This condition ensures that the supports of edge scaling functions at 0
do not intersect the supports of edge scaling functions at 1.

The polynomial reproduction in le is then satisfied since, for 0 < ¢ <
r—1 and z € [0, 1] we have :

e T | |
EEL _ 92l (0 1 Y phK) elale) + 2B - 1) (28)
k=k,

Similarly, multiresolution spaces f/jl are defined with the same struc-
ture, allowing the polynomial reproduction up to degree 7 —1 :

- < 1b o -
le = Span{q);:g bo=0,7—1 @ le’mt ® span{¢;7’2}4:075_1 (2.9)

In order to obtain the equality between dimensions of V}l and f/jl, we
have to adjust the parameters &, = k, — fimqee and Sﬁ = l%ﬁ + Aoynin 10 the
definition 2.2 such that :

k‘b—’l“:];:b—’lz and kjﬁ—T’:];:ﬁ—’lz (210)
which leads to :
AJ = dlm(V]l) = dlm(f/jl) =2/ - (5b + 61:1) - (nma:v - nmzn) +2r+1

where (4, d;) remain "free” parameters of the construction. Like for V!
we have to choose j > jimin With Jimin > 1085 [Rmaz — fimin + 04 + 0y).

The last point of the construction lies in the biorthogonalization
process of the new basis functions, since edge scaling functions of le
and V! are not biorthogonal. Several biorthogonalization methods exist
LILIT.21 “here we apply on one hand the method proposed by Dahmen
and al. ' when using B-spline generators, and on the other hand a
Gram-Schmidt process with Daubechies orthogonal generators 2'. In
both cases, it requires the inversion of the Gram matrix associated
with the two systems, which for orthogonal and B-Spline generators is
non singular 121,

Finally, the spaces (V}', le)jZmaX{jmmem},
L?(0,1) in the sense of definition 2.1.

form a biorthogonal MRA of

Moreover, homogeneous boundary conditions can be simply imposed
to le, of the form f™(a) =0 at point a =0 or 1, with A=0,--- ,r —1,
by removing the edge scaling function @i’b if a=0or @i’ﬁ ifa=1in
the definition 2.3 of edge spaces (see 2! for more details). In such case,
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we also remove the function &% \ > or o, L% from V1 prior to biorthogona-
lization, to adjust the dimension of the blorthogonal space.

2.2.2. Construction of (V2,V)) on [0,1] linked by differentiation

/integration with (V}', V')

We will now construct spaces (V,V0), related to the spaces (V;!, V)
of section 2.2.1 by the relations (2.1,2.2) of differentiation/integration.
Given (o', @!) biorthogonal scaling functions with approximation or-
ders (r,7) (with » > 1 and 7 > r), and compact supports [Pmin, Mmaz)s
[Fomin, Tmaz), We consider (¢, ¢%) arising from proposition 2.1. Then
(0%, @Y) satisfy some properties on R, that we recall below.

First, the scaling functions (¢°, 3") are defined such that :

d z+1
L@ =@ - Pe-) ad [ Pwi =@ (21

This implies that ¢° has for compact support [1min, maz — 1], and re-
produces polynomials up to degree r — 2 :

‘ too
iy ~
0<l<r—2 5= > Bp(k) @ (x — k) (2.12)
k=—00

with p(k) = (%, 3" (z — k)).
Equation (2.11) implies : 5y (k) = pj, (k) —ppq (k—1) for £ =0,--- ,r—2.

In the same way ¢° has for compact support [fimin — 1, fimaz], and
reproduces polynomials up to degree 7 :

/ +oo
0<t<i =3 k) k) (2.13)
k=—o00
with p9(k) = (5. (@ — ).
Equation (2.11) implies : p;(k) = pf, ,(k+1) —py, (k) for £ =1,--- |7

Like for le, we first define the set of interior scaling functions of

0.
Vi

Definition 2.4.
Let 6,, 64 € Nand k, = 6, — nyin, and ky = 6y + nmas be the parameters
introduced in definition 2.2. For j > 0, the interior scaling functions of
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V) are defined as scaling functions ¢9, () = 27/20°(272 — k) whose sup-
ports are included into [, 1—%] C [0,1]. Since supp ©° = [Nmin, Mmaz—1],

the space generated by interior scaling functions is given by :
Vjo’mt = spcm{goak s hk=hy, 20 —ky+1}

Similarly, let 6, Sﬁ eN, and k, = 6, — fmin, léﬁ = Sﬁ + Tmaz D€ ﬁ)ged by
definition 2.2 and relation (2.10). Interior scaling functions of V;’ are
defined as scaling functions 9, (z) = 2//2¢%(27z — k) whose supports
are included into [%,1 - g—ﬁ] The space generated by interior scaling
functions is then given by :

f/jo’i”t = span{@%k s k=k 4+ 1, 20 — Ky}

To preserve the polynomial reproduction (2.12,2.13) on [0,1] in
(V2, V), we define edge scaling functions at the edge 0 :

Definition 2.5.
The edge scaling functions at the edge 0 are defined by :

k,—1
0<t<r—2, @)= > 5K GU) X0 ool

k=2—Nmaz
and for the biorthogonal space, they must vanish at 0 :
b k.
1<<r, @2’ (z) = Z pp (k) @p(x) X[0,4-00]

k=1-Mmax

At the edge 1, the edge scaling functions @?’2 and i)% are constructed
by symmetry, using the transform 7'f(z) = f(1 — ).

Remark 2.2.
Following Jouini-Lemarié-Rieusset 18, to preserve the commutation bet-
ween the derivation and the multiscale projectors, the space Vjo must

satisfy (2.2) : f/jo C H{(0,1) . Indeed we impose by construction homoge-
neous Dirichlet boundary conditions to f/jo’ since we do not consider @8"’
and and ®)7 (¢ = 0) in definition 2.5. Nevertheless, in the following we

will need to use i>8"’ = Zﬁlpﬁmm @h X[o,+oo] IN practical computation.

The multiresolution spaces VjO on [0,1] are then defined by :

0 _ 1/0b 0,int 0,4
=vrevitey,
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where :
Vjo’b = span{q)g”z(x) = 2j/2<1>2’b(2jx) ; 0=0,---,r—2}
Vjo’ti = span{q)g”g(l —x) = 2j/2<1>2’ﬁ(2j(1 —x)); £=0,---,r—2}

The polynomial reproduction up to degree » — 2 in Vjo is then ensured.
In practice j > jmin Where the parameter j,,;, is now adapted to both

BMRAs (V}!, V') and (V?,V?) by :
Jmin > Max{10gs [Mmaz — Nmin + 6 + 8, + 1],1085 [Amaz — Fomin + 04 + 0, + 1]}

Multiresolution spaces f/jo are defined with similar structure, allo-
wing a polynomial reproduction up to degree 7, and satisfying vanishing
boundary conditions at 0 and 1.

Vjo = span{(i?:z}g:lf ® f/jo’i”t D span{(f},’g}gzm (2.14)
A simple calculation shows that :
dim(V)) =27 —ky —k, +2r and dim(V)) =27 —k; — k, + 27 (2.15)

Since the parameters k,, ky, k, and ky are chosen to satisfy equation
(2.10), we obtain : dim(V}?) = dim(V}) = A; — 1 The following proposi-
tion proves that & SV = VO and £ V0 C V1

Proposition 2.2.
(i) Thg interior scaling-functions of (V;1, V) and (V}!, V) introduced in
definitions 2.2, 2.4 satisfy :

d , d
@(w},k) = 27[00 k=) k1l - —(31) = 2@} 1—Pjpls for ky <k <2 —ky

and
dim(‘/}o’int) dim (Vl lnt) + 1, dim(f/jo,int) dim (Vl znt) 1

(i1) Th¢ edge scaling functions of(le, Vjo) introduced in definitions 2.3,
2.5 satisfy : for 0 =1,r —1,

(@5") (z) =~} <<1>“>/<x> = )7 — ik — 1) ¢},
(D" (1 —2) =93 4, (D% (1 =) = —B)F (1 — ) + PH(2 — ky) 9y,
whereas those of (V! V) are linked by : for £ =1,7 —1,
(8)°) = &%, - p(k,) &},
(@51~ ) = —@p% (1 —2) +p)(2 — k) ),

Moreover, the function ®0 verifies : (957) = —¢7
b
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Proof.

The point (i) follows from (2.11) and since interior functions are defined
by ¢} (x) = 207201 (272 — k) (and the same for ¥, 3, &9,).

The point (ii) comes directly from definitions 2.3, 2.5 of edge scaling
functions. We focus on the first line of equalities : at edge 0 and for
0 <¢<r—1, the edge scaling functions of (V}') are defined by dilation
of :

ki, —1
b ~ .
O (x) = Y pplk) Ph(@)Xo 00| With @h(z) = @' (z — k)
k=1-nmax
Differentiating in ]0, +oc[, one obtains for £ =0 (py(k) = 1,Vk) :
b ki, —1
17
(®07) = D (98 = 0R11) Xjotool = P Xostoo| = Phy = —Fh,
k=1-nmazx
since supp ¢)_,, = [Nmin — Nmaz + 1,0].
In the same way, for £ =1,r — 1 :
b ky—1
1, .
(@) = Y 5i(k) (A = Pha1) Xjotoo]

k=1-Nmax
ky—1

= > [Br(k) — ik = )] @Pxj0 oo — PE(Ry — 1) @},
k=2—TNmax
From (2.4), since pY_, (k) = pi(k) — ps(k — 1) we get :
b = b
@) = D 51 (k) Ao oo — BH By — 1) G, = 257 — 5}y — 1) A,
k=2—Nmazx

This proves the relation between edge scaling functions at 0 of V}l and
Vjo. The proof for edge scaling functions at edge 1 and in the biortho-
gonal spaces f/jl and f/jo is obtained with similar arguments. |

For easy reading, the two pairs of biorthogonal bases of (V}l, f/jl) and
V7, f/jo), arising from the biorthogonalization process, will be now deno-
ted by (@}7,6, ‘ﬁ]l,k)k:l,Aj and (@?7,6, @?7;9);@:1,@71 respectively. The oblique

projector on le parallel to (f/jl)L will be denoted by 73} :

A

77} 1 L%(0,1) — le7 [ P}(f) = Z<f7 ‘ﬁ},k> ‘P},k (2.16)

k=1
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while P! will denote its adjoint, and P, P? the biorthogonal projectors
associated with (V?,V0).

The following proposition proves that the constructed biorthogo-
nal MRAs take place in the theoretical framework of Jouini-Lemarié-
Rieusset in 18,

Proposition 2.3.

- - 171 0 170
tThe two pairs of biorthogonal spaces (V;, Vi) and (VP,V?) are related
0:

d 0 o0 1 “ o

@V] =V; and V; :HOO/O Vi

Proof.

The inclusion %le C Vjo is straightforward according to proposition
2.2. The equality of dimensions between spaces leads to the first equa-
lity. Moreover proposition 2.2 implies :

[0 = 0@ span(27°8 232 - 3 0)

0
Since for j > jmin, V) C H$(0,1) and 207200 (29) — 207 (0) = —)”(0) # 0
we obtain the second equality. O

We then define the change of bases between the spaces (%le, %f/jo)
and (V,V}!) as follows.

Definition 2.6.
Let (L}, L}) and (L}, LY) be the two pairs of sparse matrices defined by
the change of bases between spaces involved in proposition 2.3 :

d i d A,
Pk = Zl Lk Hne = Zl(Lg),m sl (217)
and
x A
—/ k=D LDkm Pjm (2.18)
m=1
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Remark 2.3. )
The matrices L? and L? are rectangular of size (A; — 1) x A;. The

biorthogonality between V and V?, and the inclusion V' c H{(0,1)
lead to :
Li(L5)" = L3I = Ia, 1)

where I (o, _1y denotes the matrix identity of size (A;—1). These matrices
are useful in numerical computations, their explicit form will be given
in section 3.

With this definition, we prove the commutation between multiscale
projectors and differentiation.

Proposition 2.4.
Let (P}, P}) and (P9, P?) be the multiscale projectors defined by (2.16) :

(i) ¥ fe HY0,1), dio'P]lf:Pjooi

(@) V f € H}0,1), foP)f="Plos

Proof.

(1) Since proposition 2.3 is valid, the relation of commutation % 073]1 f=
P o AL f follows from '® in a general setting.

(ii) Let (9, #%,) be the biorthogonal scaling functions of (V, V). For
f € H}(0,1) we have (f,«p?k> = - %f,foxgo?k ), then :

d
@PJO(JC) Z<f%k ‘P]k ZZZ <%f7()0]1',m> Pin

where L? and L? have been introduced in definition 2.6. This ends the
proof. |

2.2.3. Wawvelet spaces

We begin with the construction of wavelet bases of the biorthogonal
MRA (V}!, V). This point is classical, although different kinds of wave-
lets may be de51gned L9IL2LIT4 For § > jun, the biorthogonal wavelet
spaces associated to V1 and le are in all cases defined by :

Wl=vin@hHt and W} =V5L, nVjH)*
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The wavelet space le has the following structure :
1 1,2 1
wh=w P Wt g gy Lt
J J J
where

W = span{W}y(z) = 2120, (272) ; £=0, p,— 1}

W = span{y ) = 20121 (20w — k) ; k=p,, 2 —py—1}
le’ﬁ = span{\I’;’g(l —x) = 2j/2\1’é’ﬁ(2j(1 —x)); £=0, py—1}

(2.20)

p, and py introduced above are suitable integers to ensure that the

support of each interior wavelet 1/1}7,?(95) of le’mt is included into

[2;%,1 - 25%] Recall that the support of %! (wavelet on R introdu-
ced in proposition 2.1) is [Zen=lmeetl Mmae—lmintl] “then we deduce :

Nmaz + kb -1
2

ki — N 1
| and p, = L% ]
with k, = 8, — nunin and ky = 04 + Nmas. This construction of edge wa-

velets \I/;z and \I/}? is borrowed from the work of Grivet-Talocia and

p=

Tabacco 7. The biorthogonal spaces le are constructed with the same
structure, finally the wavelet bases of the two spaces must to be bior-
thogonalized identically as the scaling functions. The resulting wavelet
bases are denoted by {4]; }r=12 and {¢j;}r=12 without distinction.

Such construction leads to fast wavelet transforms, since the scaling
functions and wavelets satisfy both a two-scale relations. Indeed, there
exist sparse matrices Hj, H}, G} and G} such that :

SD}JC = Z(H]l)kn%lﬂn and }k = Z(G})k,ngp}ﬂ,n

n n

S Z(g})km@]l‘ﬂ,n and bi = Z(G})k,nsb}-i-l,n
n n
The main objective of this section is now to construct biorthogonal
wavelet bases of W) and W7, that will be linked to 4;, and ¢, by
differentiation /integration. A first result in this direction is given by
the following proposition :

Proposition 2.5.

Let (V}, V) and (V2,V)) be two biorthogonal multiresolution analyses
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satisfying proposition 2.35. .
The wavelet spaces W) and W) defined by :

W=V, n(V))": and W)=V n({V)*

are linked to the biorthogonal wavelet spaces associated to (le,Vl) by
differentiation and integration :

d ~ r .
0 1 0 1
Proof.
- Firgt we prove the relation : £W} = W?. Since V!, = V' @ W}, we
obtain :
d . doq, do
de T g g
By proposition 2.3, we have :
d d
Vi = dz Vi and V)= %Vl
Moreover -LW} c (V0)*. Indeed, let w} € W}. Proposition 2.4 (i) leads
to :
PO(Lt) = L PHw!) =0
Thdx Y dr '’
thus Lw! € (V). Then LW}l =w?.

- We now prove the relation W9 = [ W

On one hand we consider @) € W0 As @ € VJOH, there exists w} €
V%, | such that £a? = @l Usmg proposmon 2.4 (i) (w) € Hy(0,1)) we
get :
751~1_751d0_ P9 0

j(wj)_ (d.%'w])_% ]( )
This irflplies u?]l € leﬂ N (le) :~Wj1, thu§ %WJO C le. By integration,
since W) C Hj(0,1), we obtain W C [ W},

On the other hand, let w} € Wl First we prove that [ @] € f/jOH
Indeed, @} € V', then f[; ] ~1 € fo VL 1. Moreover, W} being a wave-
let space (orthogonal to the Constants), then fol w]l = 0, which implies

” )
€ H(0,1).

ThlS leads to the result : [ @} € [ VY NH(0,1) =V,
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1

Now to prove [f ;]

obtain :

€ (Vjo)L we use again proposition 2.4 (ii) to

~ d z d ~ z
1/ ~1\ __ 1 ~1\ 0 ~1\

siilc§175§](J§@}) GO on C~0H01(O’ 1). Then [f@} € (V) and finally
i W3 V8 A = 7

The proof is then complete. |

This proposition implies that the wavelet bases of W and W can
be readily constructed by differentiating and integrating the wavelets
of W} and W}, as it was suggested in 2% :

Definition 2.7. .
Let {¢]; k=12 and {4}, }x=12: be two biorthogonal wavelet bases of
W1 and W} respectively. The wavelets of WP and WY are defined by :

X
ZZ)?,k = 27](%1‘,0/ and lf)?,k = —2]/ ¢]1‘,k
0

Interior wavelets 0 (z) = 2//2¢°(27z — k) in this definition cor-
respond to the classical wavelets arising from previous constructions
SIL2LI74 0 heing a wavelet on R associated to the scaling function
Y as in proposition 2.1. On the other hand, in standard constructions,
the edge wavelets do not verify the relations :

d _1p

T ik =

xT

uhy

b (2.22)

YR U 700 o
2\IJM or \IJM— 2 ;

The following proposition guarantees (2.22) and the new edge wavelets
provided by definition 2.7 preserve fast algorithms since they satisfy
two-scale equations.

Proposition 2.6.
Let {%{k}k:m]‘ and {wjl,k}k:lﬂj be two biorthogonal wavelet bases of W}
and le associated respectively to filters G} and @Jl, .

w}’k N Z(G})k’" Lp]l'“v" and 1[}]1’? - Z(éjl‘)k,n @Jl‘ﬂ,n

Then the following propositions hold : ) )
(i) The system {99, = 277 (b)) =12 and {47, = =27 [T 0], th=129
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form biorthogonal wavelet bases of W]Q and W]Q respectively.
(i) There exist sparse matrices GO and GO defined by :
GY=27GiL},, and G)=-2G]LI, (2.23)
such that the wavelets ¢, and zﬁok satisfy :
?,k = Z(G?)k,ns0?+1,n and 7/)] k= Z(ég)km@?H,n

n n

Proof.
(7) This point follows directly from proposition 2.5.
(i7) The filters are derived from the definition of wavelets. Indeed :

2]¢j k— Z(Gl)k n(@}+1,n)l - Z(G})k,n(L}Jrl)n,m‘P?jLLm

n,m
Z Lj )k m®G1,m

since ¢, = zm(Gg)hm‘Pﬁl,m’ we obtain the expression of GY.
Similarly, for 47, we obtain :

d 7 ~ ~ ~ T ~
_1' ;)k = Z(Go)k m(@?—i—l,m), = Z(G?)k,m(l/?-i-l)m,n@}_;_l,n

m,n

= E : ]+1 k n30]+1 n

since fLy0, = 209l = 215" (G1)pn@),,, this provides the expres-
sion of GY. m
Remark 2.4.

The above construction of wavelets 1/1? , and 1/1? , has two main interests :

their filters are directly accessible from those of 1/1]1 , and 1/7]1 i» and there
is no need for biorthogonalization as for classical constructions.

Example 2.1.

Figure 1 shows the plot of edge scaling functions and wavelets at 0 in
(V;l, ~] ). The generators (o', ') used are biorthogonal B-Splines with
r =7 = 3. Then we have : n,im = —1, Nunaz = 2, nin = —3 and Mpee = 4.
The "free” integer parameters are chosen as ¢, = 63 = 2 and o, = Sﬁ =0.
Figure 2 plots the corresponding edge scaling functions and wavelets of
(Vjo,f/jo) at 0. Figure 3 draws the corresponding non zero elements of
filters GY and G‘? and Figure 4 these of matrices L9 and L} respectively,
for j = 6.
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2.3. Biorthogonal MRA of Haiv(2)

Let Q be the square [0,1]2. The aim of the present section is to

provide a divergence-free MRA and wavelet bases of the space Hg;, ()
16 .

Hain(Q) = {u e (L2(Q))? : div(u) =0 and u-7 =0}
Since this space is equal to :
Hain(Q) = {u = curl x ; x € Hy()}
our construction consists in taking the curl of a regular MRA of the

two-dimensional scalar space H{ ().

Such MRA of H}(Q) is usually defined as tensor-product of
one-dimensional MRA of H}(0,1). We now consider a regular one-
dimensional MRA satisfying homogeneous boundary conditions :

VP =V nHj0,1)
as constructed in section 2.2, and which takes the form :
VjD = span{q);v’z s l=1r—1}® le’mt @ spcm{q);’g s 0=1,r—1}
To simplify, we denote by ¢P, the scaling functions of V;” :
VjD:span{gofk k=0, 2j—kﬁ—k‘|,—|—2r—2}

and Q,Z)ka the corresponding wavelets. With these notations, the
divergence-free scaling function spaces are defined below.

Definition 2.8.
For j > jmin, the divergence-free scaling function spaces V?i” are defined

by :
Vi = curl(V” @ V}P) = span{q)?fﬁ} (2.24)
where the divergence-free scaling functions are given by ? :
@jk = curl[pf, @ P ], § > fmin (2.25)

The spaces V;-“” defined above constitute an increasing sequence of
subspaces of (L?(Q))? :
Vit C Vi
ov B\I/)

a. The curl of a 2D scalar function ¥ is defined by curl ¥ = By "8z
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of dimension :
dim(V?i”) = dim(VjD)2 = (2j —ky —ky, +2r — 1)2
= (2j - (nmax - nmln) - (6|; + 5;1) + 2r — 1)2

We will also consider a more standard multiresolution analysis \7'j
of (L?(2))? defined as :

Vi= V) x (e V) (2.26)
Vjo being the spaces defined in section 2.2.2. By proposition 2.3, this
discrete space \7]‘ preserves the divergence-free condition, as stated by
Jouini-Lemarié-Rieusset!® :
ue (L3(Q)%, div(u) =0 = div[P;(u)] =0 (2.27)
where 13j is the biorthogonal projector on \7'j :
P, = (P! e P}, P! o P} (2.28)

In the same way, we now introduce anisotropic divergence-free wavelets
and wavelet spaces :

Definition 2.9.
The anisotropic divergence-free wavelets and wavelet spaces are given
by :

div,1 | _ D D div,1 __ div,ly . .
\Ilj,zli T Curl[%pjwn‘nvkl ® j27k2] and ij - Spa’n{\lljvlli }? J2 2 JImin

\I/jjli’Q = curl[wﬁkl ® ‘men,lm] and WjiU’Z = span{\I/fﬁ’Z}, J1 > Jmin

‘I’jhlig = Curl[l/ff,kl ® %Z'Z,kz] and Wshv’g = Spa“{‘l’jfﬁ’g}a J1,J2 = Jmin

The following proposition proves that (V;'hv)jzjmm is a multiresolu-
tion analysis of Hg;, ().

Proposition 2.7.
. , ‘ di
The divergence-free scaling function spaces V$" and wavelet spaces

W;iv,e fore=1,2,3, satisfy :

(Z) V;lizn c---C V;-lw C V;lfl c---C Hd@'v(ﬂ) and UV;-MU = Hd@'v(Q).
(ZZ) dezv = V;lf:}”z ]m1n§]17]2§]71(@6:1’273W§ZU76)

(#4i) For all j and e =1,2,3, {‘I’;iﬁ’e} is a Riesz basis of WS””’E,
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Then each vector function u of Hgy;, (Q2) has a unique decomposition

into the basis {(I)d:’m I \I’dwe}]h]pjmm =123
= C;.lw (I)jw + Z Z djlw E\I]dZ'U €
& k k jke=123

with the norm-equivalence :

uuuLwZ\cd;inkmz YO

jke=123

Proof.

(i) Let \7’ be the spaces defined in (2.26). Since the spaces Hg;,(Q2) ﬂ\7j
provide a multlresolutlon analysm of Hai, ()8, point (i) is reduced to
prove that : Vd“’ Hain() NV

According to proposition 2.2, we have V{* V; and VI C Hgin(Q)
by construction.

Conversely, let u € Hdw(Q)ﬁV'j, and f’j be the biorthogonal projector on
\7'j defined in (2.28). We are going to prove that u € V;-“”. On one hand,
as u € V; we have u = P;(u), on the other hand due to u € Hg;,, (Q) we
have u = curl () with x € H}(Q), and thus :

u = P;[curl (y)]

Since the spaces (V,” @ V,P);>;,.. form a MRA of Hj(Q), we can de-
compose x as :

x=PP0)+ Y QP00 +QF () + QP ()

Ji1,J22>]
where
PD ch (P] k1 ® (P] koo QQ Z d2 k %l,kl ® SOJ ko
k j1>j,k
D _
Q' (x) = Z dj k el @ul L QY (x Z k P @YE
j2>j5.k Jl,JzZJ,k

are the biorthogonal projectors on respectively VjD ® VjD , lel) ® VjD )
VP @ WP and W @ WP Proposition 2.2 implies that :

curl [ @) 1€ (VP oWD) x (V) @ W)
hence :

lsj(curl [(pfkl ® ¢g,k2]) =0
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and same for P;(curl W7 1, ®¢P,]) and P;(curl (7 1, ® ¥ 1), This
leads to :

P (curl (x)) = Pj(curl [P} (x)]) = curl [P?(x)]
By construction we have curl [PP(x)] € V#, which implies u € V§*
and then completes the proof : V;“” = Hain(2) N \7j.

(17) The spaces VjD form a multiresolution analysis of HE(0,1), and we
can write :

j—1 j—1
D D D D D

jlzjmin j2:jmin
By definition of V¥, we obtain :

VI = curl (V2. @VP.) D (%

Jmin

FWE) & (Wi @ Vi) e Wy @ Wf;)]]
Jmin<J1,j2<j—1
which is exactly Vi = Vit @ [@jmms]‘mﬁj—l (@5 123ij>}'
(iii) Following 298 this point is a consequence of the proposition 2.8
below. O

We now introduce the biorthogonal divergence-free scaling functions
and wavelets. Let :

. . j
@(?Z’U = SO_] kl ® fY] kz , qlc‘llﬁl = 2 2"0]77”717]{}1 ® 1/}]27]{;2 (2.29)
o 7] kl ® SO_] kz ‘]7 ’y]wunyk;l ® ’IIZ)JQ,kz
= div,2 | 7/; ke @7 ks = div,3 229P ®7/~)0
YiK g v Y| i i (2.30)
J 2 ¢]17k1 ® SDszm J —2 T’Z)J ® ¢]27 ko
where : 3, = — [ QEM. Remark that 4;5(0) = 4;%(1) since gbfk €
H{(0,1).
Proposition 2.8.
For a fixed j > Jmin, the normalized families
1 gmdiv div,1 1 div,2 1 div,3 .. .
{\/_(I)J k' /a1 1/4]2+ ‘Ij‘] k \/4J1+1‘11‘] k " /491 44i2 ‘Ij‘] k o JbJ2 27 k} and
1 div 1 T div,1 1 T div,2 1 div,3 . . . - _
{f(I)Jk’,/yz.:,_ jk NZEs jk V491 4472 ‘Iij P g2 27 k} are  bior

thogonal in (L?(£2))2.

Remark 2.5.
Unlike the classical definitions of MRAs, the (L?normalized)
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divergence-free scaling functions (@j’ﬁ)k don’t form a Riesz basis of

the space V;“”, since they do not verify :
div div (|2 div |2
1D~ ek Xkl ~ 21kl
k k

for all (c?“ﬁ) € /2 and independently of j. A counterexample is given
by :
u = Z ¢?7i]:f)17k2’
ky <ki,ka<27—ky
which satisfy : >y ]cjiﬁP = (2 —ky — b, + 1)* ~ 2%,
On the other hand :

u= —
ky <ki,ka <27 —ky V2 —(wfkl)/@“ﬂsz
and
D i 0 0 i 0 0
Z (@ih,) = Z 2(5 ks = Pikat1) = 2 (P, — P25 —kyt1)
ky <ko <29 —ky ky <ko <27 —ky
then

1 1
HuH%LQ(Q))Q =27 (/0 h2> (/0 22](@?,1% - ¢2,2j—ku+1)2> ~2

Example 2.2.

Figure 5 and Figure 6 show the vector representation of divergence-free
edge scaling functions curl [®}” ® 1], curl [@}° ® ®1°] and wavelets
curl [U1” ® U1°], curl [W)” @ W)’], constructed from biorthogonal B-
Spline generators (!, ¢') with » = 7 = 3 used in example 2.1.

2.4. Biorthogonal MRA of H;, ()

In this section, the curl-free function space H..;(2) that we consider
is the following :

Heur1(Q) ={u=V q: g€ H}(Q)}
This space is a proper subspace of Hz: () :
Higio () = Heurt(Q&HA (), with HQ) ={V¢: g€ H'(2) and A g = 0}
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To construct a multiresolution analysis of H.,;(2), it suffices to
consider the gradient of a MRA of H}(Q2). With the same notations
as in previous section 2.3, curl-free scaling functions spaces are defined

by :

Definition 2.10.
For j > jmin, a curl-free scaling function space Vjv is defined by :

vy =V e V) = span{®7)} (2.31)
where the curl-free scaling functions are given by :
(I)jv,k = V[‘Pfkl ® <P§?k2]7 J 2 Jmin (2.32)

The spaces (V]V) form an increasing sequence of subspaces of
(L*(92))?, of dimension : dim(V}') = dim(V;"®@V;") = (27 —ky—k,+2r—1)*.
Let \7; be the standard multiresolution analysis of (L?*())? defined
by :
T 0 1 1 0
Vi= (P eV x (e VD) (239

By proposition 2.3, the spaces Vjv are contained in \7;‘ We now define
the corresponding irrotational wavelets.

Definition 2.11.
The anisotropic curl-free wavelets and wavelet spaces are defined by :

v,1 v,1 Vi, .
\I’J k= v[@ijm,kl ® 7/)3‘[2),192] and WJ = span{\l’j k}a J2 2 Jmin

\I’JVJ’{Z = V[T,Z)jl»?,kl ® @fnm,;@] and ij’2 = span{\I’jv,l’{Z}, 1> Jmin

V,3 v,3 V.3 .. .
\IIJ i{ = v[w]ﬁ)ykl ® w]eJ%] and WJ = spcm{\Ilj i(}v J1,J2 > Jmin

The following proposition holds :

Proposition 2.9.

The spaces Vjv and ij’e for e=1,2,3 verify :

() VY, CCVYCVYy Cor CHoyn(Q) and UVY = Heum()
. v,

(ZZ) Vjv = Vjku'n jWLinth_jZSj_l(®€:1’273Wj 8)

(i73) For allj and e =1,2,3, {\IIJVIE} is a Riesz basis of ij’s.
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The proof uses the same arguments as in proposition 2.7. In addition,
these construction of curl-free scaling functions and wavelets can readily
be extended to higher dimensions, for more details see 2%23.

Example 2.3.

Figure 7 and Figure 8 show the vector representation of curl-free edge
scaling functions V[Cb%"’ ® @%’b], V[Cbé’b ® tI)é’b] and wavelets V[\D%’b ®
vl VWi’ © w1’ constructed from biorthogonal B-Spline generators
(o, @') with r = 7 = 3 used in example 2.1.

3. Fast divergence-free wavelet transform

We describe in this section the practical computation of divergence-
free scaling function and wavelet coefficients of a vector field u € V;-l“’.
We use the same notations as in previous sections. The starting point
is the decomposition of u in the MRA of (L2(2))? provided by V; :

Vi=eV)) x (Ve V)
On the scaling functions basis of V;, the vector field u = (uy,uy) can

be written as :

u; = c;k Qi ® @)y, and uy = Zcik O ® Qi (3.1)
k k

The computation of divergence-free coefficients will use the change of

bases between (4} ,) and (¢9,) introduced in definition 2.6. The fol-

lowing proposition explicits the form of the change of basis matrices

(before the biorthogonalization process, or when it does not operate on

these functions, which will be the case in our numerical tests).

Proposition 3.1.
Let A; be the dimension of le (7 > jmin) and consider the matrices L?
and le- defined in definition 2.6, renormalized by :

Ly =21 and LY=2771°
Then the only non zero elements of matrices L' and L° are given below.

(i) L is a rectangular matriz of size A; x (A; — 1) whose non zero
elements are :

Lip1=1 Ligy=-1, r+1<k<Aj—r
and for 2 <k <r :
Lir = -1, Lllc,kfl =1, Lllc,r = _ﬁllcfl(kb - 1)

1 1 1 1 o
La,n;—r =1 La,—kr1,8,-k41 = — 1 LA, —pr1,n,—r = Pp-1(2) — kg +1)
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(i) L° is a rectangular matriz of size (A; — 1) x A; whose no zero
elements are :

Lg’m:—l, L%Aj =—1, k+1<m<Aj—randr<k<A;—r

and for2<k<r :

L(r),1 =1, Lg—l,k =-1 Lg—m :ﬁllc—l(kb - 1)

LA, rn, = =1 LA, pi1a, ki1 =1 LA, pi1a, = —Pp (2 — ks +1)
Proof.
(i) The expression of L! is straightforward using proposition 2.2.
Indeed, the differentiation relation on interior scaling functions (propo-
sition 2.2 (i)) leads to Ly , =1, Li,=-1, r+1<k<Aj—r.

In the same way, proposition 2.2 (ii) corresponds to the differentiation
relation on edge scaling functions, for instance :

1,b 0,b ~
(P, ) = Q0 — P}(kb - 1)90%
rewrites with the new notations for the scaling functions :
(p5x) = 2[5 51 —Prlhy = 1)¢5,], 2<k<r
leading to : Ly, =1, Ly . = —pp_,(k, — 1).

(ii) To obtain the relation on L, as it is still true by differentiation we
get :

r—1 r—1
0b _ 0 1,bys 0,4 _ 0 1,8\s
—00y =2 L (@) and - @5F =3 LA pa i (255)
k=0 k=0

Then using the proposition 2.2 again, we have :
00 o—jrrald _ 1
‘I)j,z =2 ][((I)éﬂ)/ o p%ﬂ(kb -1) (‘I’j,o)/]
and
0, i/l . ‘ 1,
OPH1 =) = 277 (@ (1= ) + (2 =y +1) (@51 =)'
since :
—jralb il
Pr, = —27(®jp) and @y g, =277 (@551 )
For interior scaling functions, proposition 2.2 leads to :
@?,k = 27j(80]1‘,k+1)l + 802,k+1, r<k<Aj—r
and recursively we get :
ﬂP?,k = zfj(@},k)l + <P?,k+1 = 27j[(‘»0},k)/ +ot (@},Qj—km,)/] + <P?,2j—kmw+1
i 1
= 279(0j )+ (Pharmk,) + (@51 = )]



21 janvier 2011 16:33 WSPC/INSTRUCTION FILE articleenD

Divergence-free and Curl-free Wavelets on the Square for Numerical Simulations 27

This completes the proof. |

Using matrices L? and le- we can rewrite the components of u as

follows :
u; = Zci,k Pign @ Phpy = — Z[C;L?]k Gt ® (P5h,) (3.2)
k k
and
= Z Cik P @ P, = — Z[L? TCHx (Pin) @ @i, (3.3)
k k
with C} = [cl‘,k] and C7 = [c%k]. If u € VY it can be uniquely written
as :

u= Z dw q)dw (34)

Therefore, we have the following proposmon.

Proposition 3.2.
The matm’ges of coefficients le and le are linked to the matriz of coef-
ficients C{" = [ dw] by :
1/2 ~div O\T (2 170
and conversely :
c}=2712cdvLy  and  C}=-27""2(L)TCfm (3.6)

Proof.
Following the form of divergence-free scaling functions (proposition 2.8,
and using (3.2) and (3.3) we have :

(/@) = 2712 (LT CF — L]

which proves (3.5). The second relation (3.6) is proved using the change
of basis provided by Lj. O

Now the objective is to compute the divergence-free wavelet coeffi-
cients of u :
_ div dw dw 1 dw 1
MG LA LD
j2>j.k

+ Z dde \dewZ + Z dde \dew?)

j1>5.k J1,J227,
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We start with the standard wavelet decomposition of u = (uj,ug) in
‘7]' .

1 1 0 1,1 1 0
- Z ik ik ©Ljk, T Z djz,k Pier @ Vja ey

j2>j.k
1 0
+ Z d Ji,k1 ® (pj,kz + Z k 1/}]17]?1 ®1/}J2,k2
Ji>j.k 1225,k

and

2 0 1 2,1 0 1
uz = ch,k SDjvk‘l ® SDjvk'Z + Z dj%k ijng ® rliz)jmk‘z

k j2>5.k
+ d kwjlykl ® 90] ke T Z k 1/}]17]?1 ® 1/}]27]?2
i>5k Jr.g2>5.k

This rewrites, using the matrices LY and Lj

w ==Y [CiLYg ik, © (Pin,) + dl K Phi © VY, k,

k j22j7
1,2 1,3
a Z d LO Jllvkl ® (@;7k2)l T dJ k }lykl ® w??ykZ
g2k jria2j K
and
2,1
w == [(L)TCFk (Pn) ©@0hp, — O [ENTE Tk (Pa,) @9,k
k jz>j,k
+ Z d kwjhkl ® "OJ ke T Z d k wjhkl ® wjz’kQ
=ik Jr.da>5.K
. 12 _ 1,2 21 _ 21 .
noting d;° = [dj " and ;" = [dj k- We now prove the following
proposition. ’ ’

Proposition 3.3.

For e =1,2,3, the coefficients d;’E = [dji{] and dj’e = [dji{] are linked to

the divergence-free wavelet coefficients [d;iﬁe] by :

v 1 i , ,

dJC'lvk,1 - THW (dj - <L9>T(d§ ik (3.7)
div,2 1 1,2\ 70 2,2

Gy = JragdL =2 ik (3.8)
div, 1 . )

G = ) - 2 e 39
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Inversely we have :

272 . 1 )
dil] = —— ! d [d] = ———(HT [ (3.10
[J7k] T 1 +1[ ik ] an [J7k] T 1 +1( ]) [J,k ] ( )
2= Lt g 2= o2 gty (311)
Jvk \/4.71 + 1 Jvk J Jvk \/4.71 + 1 Jvk
2J2 . 21 .
AP ] = e [d{"? d [d3] = ————=[d?""] (3.12
[ .],k] Nz _|_4j2[ ik Ioan [ .Lk] Nz _|_4j2[ Jk ] (312)
Proof.
Using proposition 2.8, the formula are obtained by considering the inner
products :

= div,1 = div,2 = div,3
<u/\I’J?ﬁ ) <u/\IjJ,Zli ) and <u/\IJJ7Zli )
The reconstruction formula are still a consequence of proposition 2.20

Example 3.1.

We have considered a velocity field u of resolution 256 x 256, arising
from a numerical simulation of lid driven cavity flow 22, and we have
computed its divergence-free scaling function and wavelet coefficients
using propositions 3.2 and 3.3, with the B-Spline generators of Figure 1.
Figure 9 shows the vector field u (left) and corresponding coefficients.
Divergence-free wavelet coefficients are localized near shear zones.

4. Applications

This section illustrates some practical uses of the divergence-free
and curl-free wavelets constructed before. We first show on a numerical
example their powerful properties of nonlinear approximation. Then, we
consider two problems relevant for the numerical simulation of incom-
pressible flows : the Helmholtz decomposition and the Stokes problem,
with homogeneous boundary conditions.

4.1. Nonlinear approxrimation

Constructed by tensor-product, divergence-free and curl-free wave-
let bases provide nonlinear approximation estimates, governed by the
approximation orders of the one-dimensional spaces involved in their
construction 7. In this part, we investigate the convergence rate obtai-
ned from the N-best terms approximation.
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We consider the vector field u introduced in example 3.1 and the
same wavelets. On Figure 10, we plot the /5 error on each component,
provided by the nonlinear approximation on u onto the divergence-
free wavelet basis. We obtain the same approximation order as that
obtained with the standard multiresolution analysis \7j. It is consistent
with the theoretical result proved in 22, since we recover a slope ~ —3,
which corresponds to the lowest approximation order provided by Vjo,
equal to 2. Figure 11 highlights the classical boundary wavelet error
phenomenon on the interval. It is well known that this error at the
boundary does not affect the convergence of the multiscale projector
on the whole domain 2.

4.2. Helmholtz decomposition

The Helmholtz decomposition of a vector field u of (L%())?, is a
unique decomposition of u of the form :

u = curl (x) + Vg (4.1)

with x € H}(Q) and ¢ € HY(Q). The objective in this section is to
compute an approximation in V?i” of the divergence-free part uv =
curl (), using the divergence-free bases built in section 2.3. For simpli-
city, we use the scaling function basis (@?iﬁ) , but the wavelet one can
be deduced using one-dimensional fast wavelet transform along each

direction. uz»”” is searched as its decomposition :

uf = c;l’fé @;llﬁ (4.2)

By orthogonality of the decomposition (4.1) in (L?(2))2, one obtains :
(/o) = /o) thus M) = ((w/ely)  (43)

where M the Gram matrix of the basis {(I)j’ﬁ} The computation of the

coefficients (c?“ﬁ) is then reduced to the resolution of a linear system of

matrix M. This system can be easily inverted, since M is no more than
the stiffness matrix of the Laplacian onto the scalar scaling function
basis {¢7, @ ¢ }. Indeed :

Vb ¢ € HY(Q): /

Q

curl(y) - curl(¢)dxr = / Vi - Vodz (4.4)
Q
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More details on the implementation and resolution of (4.3) can be found
in 2. Figure 12 presents the £, error on u” of the algorithm, according
to the space resolution j, using wavelets of example 3.1. This test is
performed with the following vector field u, where u®? is known analy-

tically :
u = curl [sin(2rz)z?(1 — 2)**(1 — y)?] + V [cos(27mx)z%y?]

The convergence rate (—2.3) is in accordance with the slope provided
by the approximation order r =3 in V! and r =2 in V.

4.3. Stokes problem

The Stokes problem is a simple test case for the simulation of in-
compressible flows. In the non-stationary case, and for a velocity u
vanishing at the boundary, it is described by the following equations :

Ov—vAv+Vp=f in [0,T] xQ
V:v=0 in Q

v=0 on I

v(0,z) = vo

(4.5)

where p is the corresponding pressure.

Urban was the first who uses interior divergence-free wavelets for
the resolution of the stationary case?”. His method uses a variational
method!® in Hg, () and thus requires the inversion of the stiffness
matrix in the divergence-free wavelet basis.

We propose here to use the Helmholtz decomposition to simplify a
classical method of resolution, called the Chorin projection method®.
Our algorithm to compute v"(x) = v(z,ndt) is the following :

Starting with an initial value v¥ = v(0,z), repeat for 1 <n < N

Step 1 : Find a(x) € \7j solution of

a:stvn :VA%(a"i_Vn)‘i‘]P’(f), = [071]2 (46)
a=0 on T (4.7)

Step 2 Find v"*! € V4" solution of

vl = P(a) (4.8)
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where P is the orthogonal projector from (L?())? onto Hg;,(2) com-
puted in practice by the Helmholtz decomposition described in section
4.2.

This method has the advantage of decoupling the resolution of the
diffusion term and the incompressibility constraint. Moreover, for more
general boundary conditions (for example v-7 =0 on I'), we can incor-
porate this boundary condition directly in the basis of Hg;, (2) for the
computation (4.8).

Figure 13 plots the ¢5 error between v and its approximation v € Vj,
at time ¢t = 1072 for v = 107® and §t = 1/1000. The exact solution v is
taken from 19 :

2
v(z,y,t) = curl [100022(1 — z)?y(1 — y)?] Vp=a2?+y*— =

= (4.9)

We used the divergence-free wavelets of example 3.1 to compute the
Step 2. The stationary solution is achieved at ¢ = 1072. The convergence
slope behaves as s ~ —2.3, which is in accordance with the approxima-
tion order provided by \7j.

5. Conclusion

In this article we have presented a practical construction of
divergence-free and irrotational multiresolution analyses and wavelets
on the square. Our construction, based on one-dimensional analyses on
the interval allowing the reproduction of polynomials, respects the theo-
retical framework established by Jouini and Lemarié-Rieusset '¥. Mo-
reover our construction can incorporate homogeneous boundary condi-
tions in the basis functions, which allows the representation of more
physical divergence-free vector functions spaces. This ability is not
present, for instance, in the attempt addressed by Stevenson 24.
Associated fast wavelet transforms have been implemented satisfacto-
rily, opening new prospects for the realistic simulation of incompressible
flows. First realizations have been successfully presented in this article
with the Helmholtz decomposition of a vector flow, or with the compu-
tation of a Stokes problem solution. Work on more complex problems
are underway, such as the direct simulation of turbulence, and this will
be the subject of a forthcoming paper.
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FIGURE 1. Left : scaling functions <I>;’b (three first rows) and wavelets \Il;’b (three last rows) and

their biorthogonals é;’b, \i/é’b (right) : B-Spline generators with » = 7 = 3.
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of Figure 2 for j = 6.
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FIGURE 4. Matrices of change of bases L? (left) and L; (right), for j = 6.




articleenD

21 janvier 2011 16:33 WSPC/INSTRUCTION FILE

38 S. Kadri Harouna € V. Perrier

Curlgyg)at 0.0)

Curlgg] at 00)

/
/
/
/
-y
/

NN NN N\
Sasssssss 07

35

b
I,

16 o a1
2 ® P

’b} and curl[®

»b®q)i

1
1

FIGURE 5. Vector field of divergence-free scaling functions curl[®

constructed from edge scaling functions

=1, 2.

At 00)

Curl[y;

at (0,0)

1l
lwl

Curly:

|, construc-

1,b
2

}‘b] and curl[\IJ;’b W

P ow

1
1

FIGURE 6. Vector field of divergence-free wavelets curl[¥

ted from edge wavelets

=1, 2.



articleenD

21 janvier 2011 16:33 WSPC/INSTRUCTION FILE

39

Divergence-free and Curl-free Wavelets on the Square for Numerical Simulations

Ot 00)

Ogiaylat 00)

~
N
N
N
\
N
\
\
N
\
N
\

N
N
~
N
N
N
\
\
\
\
\
A
E]
—

|, constructed

b 1,b
®q)2

1
2

‘b} and V[®

7b®¢,}

1
1

FIGURE 7. Vector field of curl-free scaling functions V[®

from edge scaling functions

4=1,2.

wplat00)

1
2

Ol

Mt (00)

vy

R

PR

Caaa e

], constructed from

16 1
2 @Y,

‘b} and V[¥

»b®\1,}

1
1

FIGURE 8. Vector field of curl-free wavelets V[¥

edge wavelets

L=1,2.



21 janvier 2011 16:33 WSPC/INSTRUCTION FILE

40 S.

Kadri Harouna € V. Perrier

articleenD

FIGURE 9. Example of vector field (left), its divergence-free scaling function coefficients (middle)

and renormalized wavelet coefficients (right).
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provided by the nonlinear approximation of u in V‘f’“’, versus the ratio of retained coefficients

(log-log scale).
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FIGURE 13. Relative £5 errors on the components u; and ug of the numerical Stokes problem
solution, according to the resolution j, at time ¢ = 10~2 for v = 10~5.



