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ABSTRACT

The vibrations of the soundboard of an upright piano in playing condition are investigated. It is first shown that the linear
part of the response is at least 50 dB above its nonlinear component at normal levels of vibration. Given this essentially
linear response, a modal identification is performed in the mid-frequency domain [300-2500] Hz by means of a novel
high resolution modal analysis technique (Ege, Boutillon and David, JSV, 2009). The modal density of the spruce board
varies between 0.05 and 0.01 modes/Hz and the mean loss factor is found to be approximately 2%. Below 1.1 kHz,
the modal density is very close to that of a homogeneous isotropic plate with clamped boundary conditions. Higher in
frequency, the soundboard behaves as a set of waveguides defined by the ribs. A numerical determination of the modal
shapes by a finite-element method confirms that the waves are localised between the ribs. The dispersion law in the
plate above 1.1 kHz is derived from a simple waveguide model. We present how the acoustical coincidence scheme is
modified in comparison with that of thin plates. The consequences in terms of radiation of the soundboard in the treble
range of the instrument are also discussed.

INTRODUCTION

The purpose of this study is to describe the vibration regime
of the soundboard of an upright piano in playing condition
in a large frequency range [300-2500] Hz with only a few
parameters. To this end, we have investigated the modal be-
haviour of the soundboard by means of a recently published
high-resolution modal analysis technique (Ege et al. 2009).
Compared to techniques based on the Fourier transform, it
avoids the customary frequency-resolution limitation and thus,
gives access to a larger frequency-range and to a better preci-
sion on damping determinations. In the first section, we study
the linearity of the board. Given the essential linear response,
we present in the second section the results of two modal iden-
tifications of the soundboard from which we derive the modal
density and the loss factor up to 2.5–3 kHz. The frequency
evolution of the modal density of the piano soundboard re-
veals two well-separated vibratory regimes of the structure.
The low-frequency behaviour (homogeneous isotropic plate) is
presented in section 3 and the mid- and high-frequency be-
haviour (as exhibited by a set of waveguides) in section 4.

LINEARITY

Nonlinear phenomena (such as jump phenomenon, hysteresis or
internal resonance) appear when the vibration of a
bi-dimensional structure reaches amplitudes in the order of
magnitude of its thickness (Touzé et al. 2002). In the case
of the piano, the soundboard displacement w measured at the
bridge remains in a smaller range, even when played ff and
in the lower side of the keyboard. Askenfelt and Jansson re-
port maximum values of displacement at the bridge wmax ≈ 6 ·
10−6 m in the frequency range [80-300] Hz
(Askenfelt and Jansson 1992). This maximum value is less
than 10−3 times the board thickness. We can therefore assume
that large displacements are far to be reached and the vibrations
of the soundboard can be expected as linear to a high level of
approximation.

The technique

In order to quantify experimentally the (non)linearity, we per-
formed measurements on an upright piano soundboard. An expo-
nential sine sweep technique proposed by Farina
(Farina 2000), mathematically proved by Rébillat et al.
(Rébillat et al. 2010), is used. It gives access both to the lin-
ear part of the impulse response of either system and to the
nonlinear part of the response, that is the distortion level in the
frequency-domain.

The technique goes as follows:
(a) Let’s consider first a linear system excited by x(t), a swept-
sine of duration T with initial and final angular frequencies ω1
and ω2: x(t) = sin [φ(t)] with the instantaneous phase φ(t) =

ω1t +
ω2−ω1

T
t2

2
. The impulse response γimp(t) can be re-

constructed by a deconvolution process: the measured signal
γmeas(t) (acceleration for example) is convolved with the time-
reversal of the excitation signal, that is γimp(t) = γmeas(t) ∗
x(−t).
(b) For a system with a weakly non-linear behaviour, Farina
proposes to use a sine sweep for which the frequency varies
exponentially with time – exponential sine sweep – in order to
separate the linear and nonlinear parts of the impulse response:

x(t) = cos [φ(t)]

φ(t) =
ω1T

ln(ω2/ω1)

(
e

t
T ln(ω2/ω1)−1

)
−π/2

(1)

This signal verifies the fundamental property (Rébillat et al.
2010):

∀k ∈ N∗ , cos [kφ(t)] = cos [φ(t +∆ tk)]

where ∆ tk =
T lnk

ln(ω2/ω1)

(2)

Multiplying the phase of a logarithmic sweep by a factor k
shifts it up in time by ∆ tk. Rébillat et al. shown moreover that

1



a logarithmic sweep to the power n, xn(t) = cosn[φ(t)], can be
written as a linear function of cos[kφ(t)] with k ∈ [1,n] (Rébillat
et al. 2010). This property is at the basis of the method for test-
ing nonlinearity. The convolution product of the output signal
y(t) with the inverted excitation signal x(−t) yields the linear
impulse response preceded in time by the non-linear impulse
responses of successive orders. If the excitation time T is long
enough, the responses do not overlap and can be separated in
time by simple windowing. The experimental problem consists
in separating the sources of nonlinearity.

Results

An upright piano of no particular merit has been put in a pseudo-
anechoic room (anechoic walls and ceiling, ordinary ground).
The piano was tuned normally but its strings were muted by
strips of foam inserted between them or by woven in two or
three places. Two configurations – {loudspeaker, room} and
{loudspeaker, piano, room} – have been analysed with the fol-
lowing procedure. The electrical excitation of the loudspeaker
was a logarithmic swept-sine [50-4000] Hz with a 40 kHz sam-
pling frequency and a T = 26 s duration. The amplitude of the
loudspeaker was set at the beginning of the study in order to
obtain displacements of the soundboard corresponding to the ff
playing: ≈ 10−6 m at ≈ 370 Hz in this case.

In the first configuration {loudspeaker, room}, the response of
the room is measured with a microphone (prepolarised pressure-
field 1/2” – Brüel & Kjær 4947) placed in front of the loud-
speaker (Bose – 802 Series II). The spectrogram of the complete
pressure response of the room (without the piano) is shown in
Fig. 1. Some distortion is clearly visible which may safely be
attributed to the loudspeaker rather than to the microphone.
The spectra of the linear and nonlinear impulse responses sepa-
rated with the method exposed above are shown in Fig. 2. By
convention, the non-linear response of order n as displayed at
frequency f in these spectra, is the response to a sinusoid at
f , measured at frequency n f in a Fourier transform of the re-
sponse. In other words, what is common to points belonging to
different curves with the same abscissa is the frequency of the
excitation signal. Except below 500 Hz where the distortion of
the loudspeaker is large, the nonlinear response level is about
50-60 dB lower than the linear contribution.
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Figure 1: Spectrogram of the acoustical response of the loud-
speaker, room system to an electrical signal. The distortion
appears as successive harmonics of the swept-sine. The spectro-
gram is calculated with FFT over overlapping windows of 0.1 s
with an 50% overlap.

In the second configuration {loudspeaker, piano, room}, the
motion of the soundboard was measured with an accelerometer
(Brüel & Kjær 4393) put mid-way between two adjacent ribs, at
≈ 10 cm from the bridge, close to the F#4 strings (fundamental
frequency of ≈ 370 Hz). The spectra of the linear and nonlinear
contributions to the response in each configuration (with and
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Figure 2: Spectra of the linear and the nonlinear responses
shown in Fig. 1. Except below 500 Hz, the nonlinear part of the
response is ≈ 50-60 dB less than the linear part.

without the piano) are shown in Fig. 3. The distortion level
appears to be approximately the same in both configurations.
This shows that the soundboard intrinsic nonlinearity (distrosion
rate) is of the order of -60 dB.
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Figure 3: Nonlinearities of the two systems {loudspeaker, room}
and {loudspeaker, piano, room}. The distorsion rate is compa-
rable in both situations.

To conclude this preliminary study, it appears that a linear model
is sufficient to predict the vibratory behaviour of a piano sound-
board in playing situations, within the precision of customary
measurements. Given this essentially linear character of the
response, modal identifications of the soundboard have been
performed. When a loudspeaker was used to excite the piano,
the excitation level was comparable to the one used in this
linearity study and the linear contribution was extracted. The
ordinary impulse excitation does not permit to separate the lin-
ear and nonlinear contributions. Nevertheless, in the light of the
results presented above, and considering the small amplitudes
of displacement caused by the impacts on the tables (typically
less than 8 · 10−6 m, mostly due to a very low-frequency dis-
placement and still less than 1/100 of the board thickness) we
consider the linear approximation is also verified.

MODAL IDENTIFICATION BY A HIGH-RESOLUTION
METHOD

The method

The modal behaviour of the upright soundboard is investigated
by means of a recently published high-resolution modal anal-
ysis technique (Ege et al. 2009) which avoids the frequency-
resolution limitations of the Fourier transform. This new tech-
nique is particularly well suited for structures made of mod-
erately damped materials such as spruce, and at frequencies
where the modal overlap is high (more than 30%). Based on
the ESPRIT algorithm (Roy and Kailath 1989), it assumes that
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the signal is a sum of complex exponentials and white noise; it
projects the signal onto two subspaces: the subspace spanned
by the sinusoids (signal subspace) and its supplementary (noise
subspace). Rotational invariance property of the signal subspace
is used to estimate the modal parameters (frequencies, damp-
ing factors and complex amplitudes). The dimensions of both
subspaces must be chosen a priori and the quality of the estima-
tion depends on a proper choice for these parameters. The best
choice for the dimension of the modal subspace is the number
of complex exponentials actually present in the signal. This
number, called K̃, is twice the number of decaying sinusoids. It
is therefore advisable to estimate this number prior to the anal-
ysis. This is done by means of the ESTER technique (Badeau
et al. 2006), recently developed: it consists in minimising the er-
ror on the rotational invariance property of the signal subspace
spanned by the sinusoids. The block diagram of the method
given in Figure 4 describes the three main steps of the method:
(a) reconstruction of the acceleration impulse response (b) sig-
nal conditioning (c) order detection and determination of modal
parameters.

αk

Data acquisition and normalisation

Time-
reversal

Band-pass
filter

Frequency-
shift

Down-
sampling

Signal conditioning

Time-
reversal s(t)

s(t) ESTER ESPRIT

Order detection and determination of modal parameters

bk

fk

ϕk

ak

zk

γimp(t)

γimp(t)
γmeas(t)

fmeas(t)

K̃

Deconvolution
process

Figure 4: Block diagram of the high-resolution modal analysis
method (after (Ege et al. 2009))

Impulse excitation

The experimental study presented here aims at estimating the
modal parameters (modal frequencies, modal dampings and
modal shapes) of the upright piano soundboard in the [0-500] Hz
frequency range. The piano was put in a pseudo-anechoic room
and excited with an impact hammer (Kistler – type 9722A) at
the nodes of a rectangular mesh of 12× 10 points regularly
spaced (Figure 5). The motion of the board is measured at
five points with accelerometers (two B&K 2250A-10 and three
B&K 4393) located in different zones of the board (Figure 5).

A1

A2

A3

A4

A5

9 cm

y′

12 cm
Ox′

Figure 5: Rear view of the upright piano, with the mesh for
modal analysis (in red) and the locations of the five accelerome-
ters (in black).

For each of the 120×5 measures, the impulse response is recon-

structed and analysed with the high-resolution modal analysis
method. Results are summarised in Figure 6. In order to mea-
sure the damping with some precision, it proved necessary to
band-filter the impulse responses prior to analysis, as shown by
the comparison between (a) and (b) of Fig. 6 and as illustrated
by Fig. 7.

Except for the first four low-frequency resonances – for which
the rim probably adds non-negligible losses to the distributed
ones – modal dampings are very close of the loss factors of the
spruce (about 1-3%). The average modal spacing (inverse of
the modal density) is about 22 Hz for these 21 lowest modes, in
agreement with comparable low-frequency studies (≈ 24.8 Hz
for a similar upright piano (Dérogis 1997),≈ 22.3 Hz for a baby
grand one (Suzuki 1986)). Above 550 Hz no cloud of points
is clearly identifiable in Fig. 6(a) owing to a too-high Signal-
to-Noise Ratio (≈ 35 dB). Note that the modal overlap µ1 is
around 30% at 150 Hz and reaches 70% at 550 Hz.
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Figure 6: High-resolution modal analysis for the [0-
600] Hz frequency-band (impulse excitation). Modal frequen-
cies/damping factors map. (a) first rough analysis. (b) After
narrow band-pass filtering. (c) After suppression of the (low-
precision) estimations in nodal regions. ◦ : retained modal pa-
rameters.× : weighted mean of the modal parameters estimated
at four points of the soundboard (acoustical excitation, see
following section). – · –: constant loss factors (η = 1 to 3 %).
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Figure 7: Necessity of the narrow band-pass filtering step. Re-
sults for five modes in the [230-330] Hz frequency-band before
filtering (top diagrams), after filtering (bottom diagrams).

Acoustical excitation

In order to improve the SNR and thus extend the estimation of
the modal parameters towards higher frequencies (higher modal
overlap, in fact), we have replaced the impulsive mechanical
excitation by a continuous acoustical one (Fig. 8).

The excitation of the loudspeaker is the same as in section 1 (a
1The modal overlap is the ratio between the half-power modal bandwidth and

the average modal spacing.
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Piano

Loudspeaker

Accelerometer

Figure 8: Acoustical excitation of the piano placed in a pseudo-
anechoic room. The acceleration of the board is measured at
four points.

logarithmic swept-sine [50-4000] Hz with a 40 kHz sampling
frequency and a T = 26 s duration). The impulse response of
the board is reconstructed by the deconvolution technique and
analysed with a filter bank (a typical bank filtering analysis
is displayed in Fig. 9 between 550 and 1150 Hz). The cutoff
frequencies of the finite-impulse-response (FIR) filters were
chosen at local minima of the Fourier spectrum of the response.
If necessary, when there is a doubt on the number of components
in one frequency-band, two successive filters were occasionally
chosen to overlap.
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Figure 9: Typical bank-filtering analysis of a reconstructed im-
pulse response between 550 et 1150 Hz (acoustical excitation).
— : Fourier spectrum of the impulse response at point A2. • :
modes estimated by ESPRIT (modal amplitudes and frequen-
cies). · · · : amplitude responses of the narrow pass-band filters.

The modal damping factors as identified up to 3 kHz are re-
ported in Fig. 10, together with available bibliographical results
(limited to ≈ 500 Hz). The advantage of the acoustical exci-
tation technique in terms of frequency spanning is obvious.
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Figure 10: (•) : Modal damping factors estimated at point A2 up
to 3 kHz. Comparison with bibliographical results: • (Suzuki
1986); • (Dérogis 1997); • (Berthaut et al. 2003).

Up to around 1200 Hz, loss factors range from 1% to 3% (mean
of η ≈ 2.3% for the 55 estimations, lowest in frequency). Be-
tween 1200 and 1500 Hz, damping increases from a mean value
of ≈ 80 s−1 below 1200 Hz to ≈ 130 s−1 in this domain. This
increase can be attributed to the acoustical radiation of the
structure since this frequency-band is the critical domain of the
soundboard where modes radiate most efficiently. It is inter-
esting to note that these results (obtained on an upright piano)
coincide with the ones obtained by Suzuki (Suzuki 1986) on a

small grand of which he estimated the critical domain around
1400 Hz. Above 1.8 kHz the loss factors are of the order of the
internal losses of spruce and influence of radiation is no more
visible. A reason for this may be the alteration of the acoustical
coincidence phenomenon at those high-frequencies, due to the
localisation of the waves between the ribs (see last section).

Modal density

The modal density n is a global descriptor of the vibratory be-
haviour of the structure in the mid- and high-frequency domain.
It is given as a function of frequency in Fig. 11 at four points
of measurements (see Fig. 5 for the exact locations), as derived
from an estimation of the modal spacing (moving average, six
successive modes retained for each estimation). The frequency
evolution of n reveals two well-separated vibratory regimes of
the structure.

a. Below 1.1 kHz, the 4 experimental curves are almost
similar. n( f ) raises slowly and tends to a constant value
of≈ 0.05 modes Hz−1 independently of the zones of the
board where the measure is done. The ribbed board be-
haves as a homogeneous isotropic plate (see next sec-
tion). The slow rise confirms moreover that the boundary
conditions are constraint.

b. For frequencies above 1.1 kHz, n( f ) decreases signifi-
cantly. Ribs confine the wave propagation: the sound-
board behaves as a set of waveguides (see last sec-
tion).
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Figure 11: Modal densities of the board measured at points
A1 (•), A2 (∆), A3 (∇), A5 (∗) and calculated for the first waveg-
uide mode (1,n) of the corresponding inter-rib space (—, with
the corresponding color). Asymptotic values of the modal den-
sities of the inter-rib plates (– –, with the corresponding color).
Theoretical modal density of the homogeneous isotropic equiv-
alent clamped plate (– ·–), see next section.

MODELLING THE LOW-FREQUENCY BEHAVIOUR:
A THIN HOMOGENEOUS PLATE IN AN ISOTROPIC
EQUIVALENT MATERIAL

A simple finite-element model

The modal density of the soundboard below 1.1 kHz suggests
that a homogeneous isotropic plate represents a good model
in this frequency domain. In order to confirm this numerically,
we realised a two-dimensional finite-element model (FEM)
of the soundboard by means of the free software CAST3M
(triangular elements of 2 cm). The ribbed zone was replaced by
an isotropic plate with a dynamical rigidity equal to the one of
the orthotropic spruce plate in the direction of the grain:

DH/(ρH hH) = Dp
x /(ρ

p hp) = 156 m4 s−2 (3)

where the constants of rigidity are generically D=Eh3/(12(1−
ν2)), with the Young’s modulus E and the Poisson’s ratio ν .
The plate density and thickness are ρ and h respectively. The
superscript p refers to the unribbed orthotropic spruce plate and
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H refers to the homogeneous equivalent isotropic plate. The
x-axis corresponds to the direction of the grain of the wood,
orthogonal to the ribs (see Fig. 5). In the numerical model, the
two dead zones in the upper right and bottom left corners of the
soundboard are modelled as orthotropic spruce plates with a
constant thickness of 8 mm. The two bars delimiting these two
zones are made of fir. The mechanical characteristics used in the
numerical model for spruce and fir are summarised in Table 1,
as derived from measurements made by Berthaut (Berthaut
2004) on spruce and fir species selected for piano soundboards.

EL ER GLR νLR ρ [kg m−3]
Spruce 11.5 0.47 0.5 0.005 392

Fir 8.86 0.54 1.6 0.005 691

Table 1: Mechanical characteristics of spruce and fir species
selected for piano soundboard, after (Berthaut 2004). The lon-
gitudinal and radial Young’s moduli (EL and ER) and shear
modulus (GLR) are given in GPa.

Results

The numerical solution of the eigenvalue problem is obtained
in the conservative case and for clamped boundary conditions.
The numerical average modal spacings is presented in Fig. 12
together with the experimental estimations. The theoretical aver-
age modal spacing of an isotropic clamped plate is also included.
Numerical results match well the experimental estimations in
the frequency domain of interest. Moreover the first numerical
modal shapes for the isotropic plate – presented in Fig. 13 – are
remarkably similar to those obtained experimentally, whereas
the one obtains with a numerical model of the ribbed board
without bridges are less similar. This confirms that on a typical
piano soundboard, the ribs and the bridges compensate globally
the anisotropy of spruce.
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Figure 12: Average modal spacing of the piano soundboard:
measured at pointsA1 (•), A2 (∆), A3 (∇), A5 (∗), numerically cal-
culated with a finite-element model of a homogeneous isotropic
clamped plate (�) and theoretical for the same plate (—).

To conclude this section, we reproduce on figure 14 the re-
lation of dispersion of flexural waves in the isotropic plate.
The coincidence frequency (for which the dispersion curve in
the plate intersects the one in air) is ≈ 1500 Hz which is con-
sistent with previous experimental conclusions. However, the
half-wavelength λ/2 in the plate become equal or less to the
average distance p between two consecutive ribs (≈ 13 cm)
at ≈ 1160 Hz so that beyond this frequency, the structure can-
not be modelled as a homogeneous plate any more (see next
section).

 

 

(a) (1,1)-mode (b) (2,1)-mode (c) (3,1)-mode

Figure 13: First three modal shapes of the upright piano sound-
board: measured (first line), numerical (FEM) after replacement
of the ribbed zone by a homogeneous isotropic equivalent plate
(middle line), numerical (FEM) for the ribbed board without
bridges (bottom line).
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Figure 14: Dispersion curves in the isotropic plate (—), and
in air (– –). The critical frequency of radiation of the plate is
≈ 1500 Hz. At ≈ 1160 Hz, the half-wavelength λ/2 is equal to
the average distance p between two consecutive ribs.

MODELLING THE MID- AND HIGH-FREQUENCY
BEHAVIOUR: SET OF WAVEGUIDES AND MOD-
IFIED COINCIDENCE PHENOMENON

Numerical observations

For frequencies above 1.1 kHz, n( f ) falls significantly. At 1.1
kHz, the transverse waves in a soundboard without ribs would
have a half-wavelength equal to the average distance p between
two consecutive ribs. Berthaut et al. (Berthaut 2004) made the
observation that ribs confine the wave propagation. This is con-
firmed here by numerical simulations. Modal shapes obtained
through the finite-element model of the ribbed board (Fig. 15)
exhibit a localisation of the waves for frequencies above 1.1 kHz.
The soundboard behaves as a set of waveguides.

The waveguide model

We adopt the simplest possible waveguide model (Fig. 16) in
order to derive a dispersion law of this non-homogeneous plate
and to calculate its modal density.

The hypotheses are :

• The inter-rib region behaves like an orthotropic plate
with clamped boundaries.

• Wavenumbers kxm in the direction x normal to the ribs2

2The direction x is parallel to the grain of the spruce board and, by construction,
perpendicular to the ribs (see figure 5).
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(a) 32nd numerical modal shape,
fn = 776 Hz

(b) 48th numerical modal shape,
fn = 1089 Hz

(c) 74th numerical modal shape, fn = 1593 Hz

Figure 15: Modal shapes obtained by a FEM of the ribbed board.
The positions of the ribs and of the two bars are indicated in
black. At 1593 Hz, the antinodes of vibration are localised
between the ribs (nodes of vibration). This behaviour is already
visible for the modal shapes at 1089 Hz, but not at 776 Hz. In
(c), the sign of the phase is represented: red and blue zones
denote regions vibrating with opposite phases.

p
x

Ly

y

Figure 16: The board between two consecutive ribs can be
considered in the high-frequency range as a finite waveguide.

are imposed by the inter-rib distance p: kxm = mπ/p
with m ∈ N∗.

• Wavenumbers kyn in the direction y parallel to the ribs
are imposed by the boundary conditions at rim.

According to the first hypothesis, the dispersion law is:

k4
y + k2

y
D2 +D4

D3
k2

xm
+

D1

D3
k4

xm
−

ρ hω2

D3
= 0 (4)

where the Di are the constants of rigidity of spruce, considered
as an orthotropic material (of main axes x and y):
D1 = Exh3/(12(1−νxyνyx)), D2 = νyxExh3/(6(1−νxyνyx)),
D3 = Eyh3/(12(1−νxyνyx)) and D4 = Gxyh3/3.

With A =
D2 +D4

D3
k2

xm
, B =

D1

D3
k4

xm
and C =

ρ h
D3

, the equation 4

becomes a second order equation in k2
y : k4

y +Ak2
y +B−C ω2 =

0. Finally the dispersion law in each waveguide is:

ky =±

(√
A2 +4Cω2−4B−A

2

)1/2

(5)

The pulsation ωc,p,m =
√

B/C =

(
mπ

p

)2
√

D1

ρ h
is a low cutoff

pulsation for the transverse modes m in ribs separated by p.
Below this pulsation, there is no real solution and waves are
evanescent in the y direction.

For a given kxm , the modal density in the wave guide can be
calculated as follows. The wavenumbers kyn are approximated
by nπ/Ly with n ∈ N∗. The number of modes of pulsation less
than ω is N(ω) = ky(ω)Ly/π and the modal density:

n(ω)=
dN
dky

dky

dω
=

Ly

π

√
2Cω

√
A2 +4Cω2−4B

(√
A2 +4Cω2−4B−A

)1/2

(6)

In the high-frequency limit, the waveguide has the same modal
density as that of a beam of length Ly, with a ω−1/2 depen-
dency:

n(ω) →
ω→+∞

Ly

π

C1/4

2
√

ω
=

Ly

2π
√

ω

(
ρ h
D3

)1/4

(7)

The modal density of waveguides with different values of p and
Ly are reported in Fig. 11.

The modified acoustical coincidence

The acoustical coincidence phenomenon is deeply modified in
comparison with the one occurring in a thin plate (see figure 17).
The dispersion curve of a waveguide can present one, two, or
no coincidence frequencies depending on the value of p. This
creates a nonuniformity in the radiation of the soundboard in
the treble range of the instrument compared to the lower range
and this may explain the difference in timbre. For example, for
the key D]6 having a fundamental frequency around 1245 Hz,
the damping factor due to the acoustical radiation of the fun-
damental may be higher (supersonic waves) than the damping
factors of the next two partials (subsonic waves).
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Figure 17: Relations of dispersion for flexural waves in the
orthotropic plate (· · · along x and · · · along y), in the air (—) and
for the two first waveguide modes (— and – –) of the waveguide
between the second and third ribs. We add the discretes values
corresponding to the waveguide modes (1,n) in • and (2,n) in
(◦), together with the supposed perfectly harmonic partials of
the D]6 strings in �.

CONCLUSION

We have investigated the vibrations of the soundboard of an
upright piano in playing condition. At normal levels of vibra-
tion, the linear part of the mechanical response to an acoustical
response is ≈50–60 dB above the nonlinear component. Given
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the essentially linear response, a modal identification was per-
formed in the mid-frequency domain [300-2500] Hz by means
of a novel high-resolution modal analysis technique: the modal
density and the loss factor could be measured up to 2.5–3 kHz.
The frequency evolution of the modal density of the piano
soundboard reveals two well-separated vibratory regimes of the
structure. Below 1.1 kHz, the modal density is very close to
that of a homogeneous isotropic plate with clamped boundary
conditions. Higher in frequency, the soundboard behaves as
a set of waveguides defined by the ribs. A numerical (FEM)
determination of the modal shapes confirms that the waves are
localised between the ribs. The measured modal density is con-
sistent with an estimation based on the dispersion law of waves
in each waveguide. The acoustical coincidence phenomenon
is deeply modified in comparison with that occurring in thin
plates. The dispersion curve of a waveguide can present one,
two, or no coincidence frequencies. This creates a nonunifor-
mity in the radiation of the soundboard in the treble range of the
instrument compared to the lower range and this may explain
the difference in timbre.

Finally, we would like to notify the reader that the measure-
ments presented in this paper have been used to give a synthetic
description of the piano soundboard mechanical mobility (ad-
mittance): see the ISMA companion-paper (Ege and Boutillon
2010)).
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