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AN ALGORITHM FOR SEMI-INFINITE POLYNOMIAL

OPTIMIZATION

J.B. LASSERRE

Abstract. We consider the semi-infinite optimization problem:

f∗ := min
x∈X

{f(x) : g(x,y) ≤ 0, ∀y ∈ Yx },

where f, g are polynomials and X ⊂ R
n as well as Yx ⊂ R

p, x ∈ X, are
compact basic semi-algebraic sets. To approximate f∗ we proceed in two steps.
First, we use the “joint+marginal” approach of the author [9] to approximate
from above the function x 7→ Φ(x) = sup{g(x,y) : y ∈ Yx} by a polynomial
Φd ≥ Φ, of degree at most 2d, with the strong property that Φd converges to
Φ for the L1-norm, as d → ∞ (and in particular, almost uniformly for some
subsequence (dℓ), ℓ ∈ N). Therefore, to approximate f∗ one may wish to solve
the polynomial optimization problem f0

d = minx∈X{f(x) : Φd(x) ≤ 0} via
a (by now standard) hierarchy of semidefinite relaxations, and for increasing
values of d. In practice d is fixed, small, and one relaxes the constraint Φd ≤ 0
to Φd(x) ≤ ǫ with ǫ > 0, allowing to change ǫ dynamically. As d increases, the
limit of the optimal value f ǫ

d is bounded above by f∗ + ǫ.

1. Introduction

Consider the semi-infinite optimization problem:

(1.1) P : f ∗ := min
x∈X

{f(x) : g(x,y) ≤ 0, ∀y ∈ Yx },

where X ⊂ R
n, Yx ⊂ R

p for every x ∈ X, and some functions f : Rn → R,
g : Rn × R

p :→ R.
Problem P is called a semi-infinite optimization problem because of the infin-

itely many constraints g(x,y) ≤ 0 for all y ∈ Yx (for each fixed x ∈ X). It has
many applications and particularly in robust control.

In full generality P is a very hard problem and most methods aiming at com-
puting (or at least approximating) f ∗ use discretization to overcome the difficult
semi-infinite constraint g(x,y) ≤ 0 for all y ∈ Yx. Namely, in typical approaches
where Yx ≡ Y for all x ∈ X (i.e. no dependence on x), the set Y ⊂ R

p is dis-
cretized on a finite grid and if the resulting nonlinear programming problems
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are solved to global optimality, then convergence to a global optimum of the
semi-infinite problem occurs as the grid size vanishes (see e.g. the discussion
and the many references in [10]). Alternatively, in [10] the authors provide lower
bounds on f ∗ by discretizing Y and upper bounds via convex relaxations of the
inner problem maxy∈Y{g(x,y)} ≤ 0. In [11] the authors also use a discretiza-
tion scheme of Y but now combined with a hierarchy of sum of squares convex
relaxations for solving to global optimality.

Contribution. We restrict ourselves to problem P where :

• f, g are polynomials, and
• X ⊂ R

n and Yx ⊂ R
p, x ∈ X, are compact basic semi-algebraic sets.

For instance many problems of robust control can be put in this framework; see
e.g. their description in [4]. Then in this context we provide a numerical scheme
whose novelty with respect to previous works is to avoid discretization of the set
Yx. Instead we use the “joint+marginal” methodology for parametric polynomial
optimization developed by the author in [9], to provide a sequence of polynomials
(Φd) ⊂ R[x] (with degree 2d, d ∈ N) that approximate from above the function
Φ(x) := maxy {g(x,y) : y ∈ Yx}, and with the strong property that if d → ∞
then Φd → Φ in the L1-norm. (In particular, Φdℓ → Φ almost uniformly on X

for some subsequence (dℓ), ℓ ∈ N.) Then, ideally, one could solve the nested
sequence of polynomial optimization problems:

(1.2) Pd : f ∗
d = min {f(x) : Φd(x) ≤ 0 }, d = 1, 2, . . .

For fixed d, one may approximate (and often solve exactly) (1.2) by solving
a hierarchy of semidefinite relaxations, as defined in [6]. However, as the size
O(dn) of these semidefinite relaxations increases very fast with d, in practice one
rather let d be fixed, small, and relax the constraint Φd(x) ≤ 0 to Φd(x) ≤ ǫ
for some scalar ǫ > 0 that one may adjust dynamically during the algorithm.
As d increases, the resulting optimal value f ǫ

d is bounded above by f ∗ + ǫ. The
approach is illustrated on a sample of small problems taken from the literature.

2. Notation, definitions and preliminary results

Let R[x] (resp. R[x,y]) denote the ring of real polynomials in the variables
x = (x1, . . . , xn) (resp. x and y = (y1, . . . , yp)), whereas Σ[x] (resp. Σ[x,y])
denote its subset of sums of squares.

Let R[y]k ⊂ R[y] denote the vector space of real polynomials of degree at most
k. For every α ∈ N

n the notation xα stands for the monomial xα1

1 · · ·xαn
n and

for every d ∈ N, let N
n
d := {α ∈ N

n :
∑

j αj ≤ d} with cardinal s(d) =
(

n+d

n

)

.

Similarly N
p
d := {β ∈ N

p :
∑

j βj ≤ d} with cardinal
(

p+d

p

)

. A polynomial

f ∈ R[x] is written

x 7→ f(x) =
∑

α∈Nn

fα x
α,
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and f can be identified with its vector of coefficients f = (fα) in the canonical
basis. For a real symmetric matrix A the notation A � 0 stands for A is positive
semidefinite.

A real sequence z = (zα), α ∈ N
n, has a representing measure if there exists

some finite Borel measure µ on R
n such that

zα =

∫

Rn

xα dµ(x), ∀α ∈ N
n.

Given a real sequence z = (zα) define the linear functional Lz : R[x] → R by:

f (=
∑

α

fαx
α) 7→ Lz(f) =

∑

α

fα zα, f ∈ R[x].

Moment matrix. The moment matrix associated with a sequence z = (zα),
α ∈ N

n, is the real symmetric matrix Md(z) with rows and columns indexed
by N

n
d , and whose entry (α, β) is just zα+β , for every α, β ∈ N

n
d . If z has a

representing measure µ then Md(z) � 0 because

〈f ,Md(z)f〉 =

∫

f 2 dµ ≥ 0, ∀ f ∈ R
s(d).

Localizing matrix. With z as above and g ∈ R[x] (with g(x) =
∑

γ gγx
γ), the

localizing matrix associated with z and g is the real symmetric matrix Md(g z)
with rows and columns indexed by Nn

d , and whose entry (α, β) is just
∑

γ gγzα+β+γ ,
for every α, β ∈ N

n
d . If z has a representing measure µ whose support is contained

in the set {x : g(x) ≥ 0} then Md(g z) � 0 because

〈f ,Md(g z)f〉 =

∫

f 2 g dµ ≥ 0, ∀ f ∈ R
s(d).

Definition 2.1 (Archimedean property). A set of polynomials qj ∈ R[x], j =
0, . . . , p (with q0 = 1), satisfy the Archimedean property if the quadratic polyno-
mial x 7→M − ‖x‖2 can be written in the form:

M − ‖x‖2 =

p
∑

j=0

σj(x) qj(x),

for some sums of squares polynomials (σj) ⊂ Σ[x].

Of course the Archimedean property implies that the set D := {x ∈ R
n :

qj(x) ≥ 0, j = 1, . . . , p} is compact. For instance, it holds whenever the level
set {x : qk(x) ≥ 0} is compact for some k ∈ {1, . . . , p}, or if the qj ’s are affine
and D is compact (hence a polytope). On the other hand, if D is compact then
M − ‖x|2 ≥ 0 for all x ∈ D and some M sufficiently large. So if one adds the
redundant quadratic constraint x 7→ qp+1(x) =M −‖x‖2 ≥ 0 in the definition of
D then the Archimedean property holds. Hence it is not a restrictive assumption.
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Let D := {x ∈ R
n : qj(x) ≥ 0, j = 1, . . . , p}, and given a polynomial h ∈ R[x],

consider the hierarchy of semidefinite programs:

(2.1)

{

ρℓ = min
z

Lz(h)

s.t. Mℓ(z),Mℓ−vj (qj z) � 0, j = 1, . . . , p,

where z = (zα), α ∈ N
n
2ℓ, and vj = ⌈(deg qj)/2⌉, j = 1, . . . , p.

Theorem 2.2 ([6, 8]). Let a family of polynomials (qj) ⊂ R[x] satisfy the
Archimedean property. Then as ℓ → ∞, ρℓ ↑ h∗ = minx{h(x) : x ∈ D}.
Moreover, if z∗ is an optimal solution of (2.1) and

(2.2) rankMℓ(z
∗) = rankMℓ−v(z

∗) (=: r)

(where v = maxj vj) then ρℓ = h∗ and one may extract r global minimizers
x∗
k ∈ D, k = 1, . . . , r.

The size (resp. the number of variables) of the semidefinite program (2.1)
grows as

(

n+ℓ

n

)

(resp. as
(

n+2ℓ
n

)

) and so becomes rapidly prohibitive, especially
in view of the present status of available semidefinite solvers. Therefore, and
even though practice reveals that convergence is fast and often finite, so far, the
above methodology is limited to small to medium size problems (typically, and
depending on the degree of the polynomials appearing in the data, problems with
up to n ∈ [10, 20] variables). However, for larger size problems with sparsity in
the data and/or symmetries, adhoc and tractable versions of (2.1) exist. See for
instance the sparse version of (2.1) proposed in [12], and whose convergence was
proved in [7] when the sparsity pattern satifies the so-called running intersection
property. In [12] this technique was shown to be successful on a sample of non
convex problems with up to 1000 variables.

3. Main result

Let B ⊂ R
n be a simple set like a box or an ellipsoid. Let ps ∈ R[x], s =

1, . . . , sx, and hj ∈ R[x,y], j = 1, . . . , m, be given polynomials and let X ⊂ R
n

be the basic semi-algebraic set

X := {x ∈ R
n : ps(x) ≥ 0, s = 1, . . . , sx}.

Next, for every x ∈ R
n, let Yx ⊂ R

p be the basic semi-algebraic set described by:

(3.1) Yx = {y ∈ R
p : hj(x,y) ≥ 0, j = 1, . . . , m },

and with B ⊇ X, let K ⊂ R
n × R

p be the set

(3.2) K := {(x,y) ∈ R
n+p : x ∈ B; hj(x,y) ≥ 0, j = 1, . . . , m}.

Observe that problem P in (1.1) is equivalent to:

P : f ∗ = min
x∈X

{ f(x) : Φ(x) ≤ 0 }(3.3)

where Φ(x) = max
y

{g(x,y) : y ∈ Yx }, x ∈ B.(3.4)
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Lemma 3.1. Let K ⊂ R
n+p in (3.2) be compact and assume that for every

x ∈ B ⊂ R
n, the set Yx defined in (3.1) is nonempty. Then Φ is upper semicon-

tinuous (u.s.c.) on B. Moreover, if there is some compact set Y ⊂ R
p such that

Yx = Y for every x ∈ B, then Φ is continuous on B.

Proof. Let x0 ∈ B be fixed, arbitrary, and let (xk)k∈N ⊂ B be a sequence that
converges to x0 and such that

lim sup
x→x0

Φ(x) = lim
k→∞

Φ(xk).

As K is compact then so is Yx for every x ∈ B. Therefore, as Yx 6= ∅ for
all x ∈ B and g is continuous, there exists an optimal solution y∗

k ∈ Yxk
for

every k. By compactness there exist a subsequence (kℓ) and y∗ ∈ R
p such that

(xkℓ ,y
∗
kℓ
) → (x0,y

∗) ∈ K, as ℓ→ ∞. Hence

lim sup
x→x0

Φ(x) = lim
k→∞

Φ(xk)

= lim
k→∞

g(xk,y
∗
k) = lim

ℓ→∞
g(xkℓ,y

∗
kℓ
)

= g(x0,y
∗) ≤ Φ(x0),

which proves that Φ is u.s.c. at x0. As x0 ∈ B was arbitrary, Φ is u.s.c. on B.
Next, assume that there is some compact set Y ⊂ R

p such that Yx = Y for
every x ∈ B. Let x0 ∈ B be fixed arbitrary with Φ(x0) = g(x0,y

∗
0) for some

y∗
0 ∈ Y. Let (xn) ⊂ B, n ∈ N, be a sequence such that xn → x0 as n → ∞,

and Φ(x0) ≥ lim inf
x→x0

Φ(x) = lim
n→∞

Φ(xn). Again, let y
∗
n ∈ Y be such that Φ(xn) =

g(xn,y
∗
n), n ∈ N. By compactness, consider an arbitrary converging subsequence

(nℓ) ⊂ N, i.e., such that (xnℓ
,y∗

nℓ
) → (x0,y

∗) ∈ K as ℓ → ∞, for some y∗ ∈ Y.
Suppose that Φ(x0) (= g(x0,y

∗
0)) > g(x0,y

∗), say Φ(x0) > g(x0,y
∗)+δ for some

δ > 0. By continuity of g, g(xnℓ
,y∗

nℓ
) < g(x0,y

∗)+ δ/2 for every ℓ > ℓ1 (for some
ℓ1). But again, by continuity, |g(xnℓ

,y∗
0)− g(x0,y

∗
0)| < δ/3 whenever ℓ > ℓ2 (for

some ℓ2). And so we obtain the contradiction

Φ(xnℓ
) ≥ g(xnℓ

,y∗
0) > Φ(x0)− δ/3

Φ(xnℓ
) = g(xnℓ

,y∗
nℓ
) < Φ(x0)− δ/2,

whenever ℓ > max[ℓ1, ℓ2]. Therefore, g(x0,y
∗
0) = g(x0,y

∗) and so,

g(x0,y
∗
0) = Φ(x0) = g(x0,y

∗) = lim
ℓ→∞

Φ(xnℓ
) = lim inf

x→x0

Φ(x) ≤ Φ(x0),

which combined with Φ being u.s.c., yields that Φ is continuous at x0. �

We next explain how to

• approximate the function x 7→ Φ(x) on B by a polynomial, and
• evaluate (or at least approximate) Φ(x) for some given x ∈ B, to check
whether Φ(x) ≤ 0.

Indeed, these are the two main ingredients of the algorithm that we present later.
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3.1. Certificate of Φ(x) ≤ 0. For every x ∈ X fixed, let gx, h
x
j ∈ R[y] be the

polynomials y 7→ gx(y) = g(x,y) and y 7→ hxj (y) := hj(x,y), j = 1, . . . , m, and
consider the hierarchy of semidefinite programs:

(3.5) Qℓ(x) :

{

ρℓ(x) = max
z

Lz(gx)

s.t. Mℓ(z),Mℓ−vj(h
x
j z) � 0, j = 1, . . . , m,

where z = (zβ), β ∈ N
p
2ℓ, and vj = ⌈(deg hxj )/2⌉, j = 1, . . . , m. Obviously one has

ρℓ(x) ≥ Φ(x) for every ℓ, and

Corollary 3.2. Let x ∈ X and assume that the polynomials (hxj ) ⊂ R[y] satisfy
the Archimedean property. Then:

(a) As ℓ → ∞, ρℓ(x) ↓ Φ(x) = max{g(x,y) : y ∈ Yx}. In particular, if
ρℓ(x) ≤ 0 for some ℓ, then Φ(x) ≤ 0.

(b) Moreover, if z∗ is an optimal solution of (3.5) that satisfies

rankMℓ(z
∗) = rankMℓ−v(z

∗) (=: r),

(where v := maxj vj), then ρℓ(x) = Φ(x) and there are r global maximizers
y(k) ∈ Yx, k = 1, . . . , r.

Corollary 3.2 is a direct consequence of Theorem 2.2.

3.2. Approximating the function Φ. Recall that B ⊇ X is a simple set like
e.g., a simplex, a box or an ellipsoid and let µ be the finite Borel probability
measure uniformly distributed on B. Therefore, the vector γ = (γα), α ∈ N

n, of
moments of µ, i.e.,

γα :=

∫

B

xα dµ(x), α ∈ N
n,

can be computed easily. For instance, in the sequel we assume thatB = [−1, 1]n =
{x : θi(x) ≥ 0, i = 1, . . . n} with θi ∈ R[x,y] being the polynomial (x,y) 7→
θi(x,y) := 1− x2i , i = 1, . . . , n.

Observe that the function Φ is defined in (3.4) via a parametric polynomial
optimization problem (with x being the parameter vector). Therefore, following
[9], let rj = ⌈(deg hj)/2⌉, j = 1, . . . , m, and consider the hierarchy of semidefinite
relaxations indexed by d ∈ N:

(3.6)















ρd = max
z

Lz(g)

s.t. Md(z),Md−rj(hj z) � 0, j = 1, . . . , m
Md−1(θi z) � 0, i = 1, . . . , n
Lz(x

α) = γα, α ∈ N
n
2d,

6



where the sequence z is now indexed in N
n+p
2d , i.e., z = (zαβ), (α, β) ∈ N

n+p
2d .

Writing g0 ≡ 1, the dual of the semidefinite program (3.6) reads
(3.7)







































ρ∗d = min
q,σj ,θi

∫

B

q(x) dµ(x)

s.t. q(x)− g(x,y) =

m
∑

j=0

σj(x,y)hj(x,y) +

n
∑

i=1

ψi(x,y)θi(x,y)

q ∈ R[x]2d, σj, ψi ∈ Σ[x,y]
deg σj hj ≤ 2d, j = 0, . . . , m.
degψi θi ≤ 2d, i = 1, . . . , n.

It turns out that any optimal solution of the semidefinite program (3.7) permits
to approximate Φ in a strong sense.

Theorem 3.3 ([9]). Let K ⊂ R
n+p in (3.2) be compact. Assume that the polyno-

mials hj , θi ∈ R[x,y] satisfy the Archimedean property and assume that for every
x ∈ B, the set Yx defined in (3.1) is nonempty. Let Φd ∈ R[x]2d be an optimal
solution of (3.7). Then :

(a) Φd ≥ Φ and as d→ ∞,

(3.8)

∫

B

(Φd(x)− Φ(x)) dµ(x) =

∫

B

|Φd(x)− Φ(x) | dµ(x) → 0,

that is, Φd → Φ for the L1(B, µ)-norm
1.

(b) There is a subsequence (dℓ), ℓ ∈ N, such that Φdℓ → Φ, µ-almost uniformly2

in B, as ℓ→ ∞.

The proof of (a) can be found in [9], whereas (b) follows from (a) and [1, The-
orem 2.5.3].

3.3. An algorithm. The idea behind the algorithm is to approximate P in (1.1)
with the polynomial optimization problem: (Pǫ

d):

(3.9) Pǫ
d : f ǫ

d = min
x∈X

{ f(x) : Φd(x) ≤ ǫ }, d = 1, 2, . . .

with d ∈ N, ǫ > 0 fixed, and Φd as in Theorem 3.3, for every d = 1, . . ..
Obviously, for ǫ = 0 one has f 0

d ≥ f ∗ for all d because by definition Φd ≥ Φ
for every d ∈ N. However, it may happen that P0

d has no solution. Next, if x∗

is an optimal solution of P and Φ(x∗) < 0, it may also happen that Φd(x
∗) > 0

if d is not large enough. This is why one needs to relax the constraint Φ ≤ 0
to Φd ≤ ǫ for some ǫ > 0. However, in view of Theorem 3.3, one expects that
f ǫ
d ≈ f ∗ provided that d and ǫ are sufficiently large and small, respectively. And
indeed:

1L1(B, µ) is the Banach space of µ-integrable functions on B, with norm ‖f‖ =
∫

B
|f |dµ.

2If one fixes ǫ > 0 arbitrary then there is some A ∈ B(B) such that µ(A) < ǫ and Φdℓ
→ Φ

uniformly on B \A, as ℓ → ∞.
7



Theorem 3.4. Assume that X is the closure of an open set. Let ǫ ≥ 0 be fixed,
arbitrary and with f ǫ

d be as in (3.9), let xǫ
d ∈ X be any optimal solution of (3.9)

(including the case where ǫ = 0), and let

f̃ ǫ
d := min{f ǫ

ℓ : ℓ = 1, . . . , d} = f(xǫ
ℓ(d)) for some ℓ(d) ∈ {1, . . . , d}.

(a) If ǫ > 0 there exists dǫ ∈ N such that for every d ≥ dǫ, f(x
ǫ
ℓ(d)) < f ∗ + ǫ.

(b) If there is an optimal solution x∗ ∈ X of (1.1) such that Φ(x∗) < 0, then
there exists d0 ∈ N such that for every d ≥ d0, f

∗ ≤ f(x0
ℓ(d)) < f ∗ + ǫ.

Proof. (a) With ǫ > 0 fixed, arbitrary, let x∗
ǫ ∈ X be such that Φ(x∗

ǫ ) ≤ 0 and
f(x∗

ǫ) < f ∗ + ǫ/2. We may assume that x∗
ǫ is not on the boundary of X. Let

O1
ǫ := {x ∈ intX : Φ(x) < ǫ/2} which is an open set because Φ is u.s.c. (by

Lemma 3.1), and so µ(O1
ǫ ) > 0. Next, as f is continuous, there exists ρ0 > 0

such that f < f ∗ + ǫ whenever x ∈ O2
ǫ := {x ∈ intX : ‖x− x∗

ǫ‖ < ρ0}. Observe
that ρ := µ(O1

ǫ ∩ O
2
ǫ ) > 0 because O1

ǫ ∩ O
2
ǫ is an open set (with x∗

ǫ ∈ O1
ǫ ∩ O

2
ǫ ).

Next, by Theorem 3.3(b), there is a subsequence (dℓ), ℓ ∈ N, such that Φdℓ → Φ,
µ-almost uniformly on B. Hence, there is some Borel set Aǫ ⊂ B, and integer
ℓǫ ∈ N, such that µ(Aǫ) < ρ/2 and sup

x∈X\Aǫ

|Φ(x)−Φdℓ(x)| < ǫ/2 for all ℓ ≥ ℓǫ. In

particular, as µ(Aǫ) < ρ/2 < µ(O1
ǫ ∩O

2
ǫ ), the set ∆ǫ := (O1

ǫ ∩O
2
ǫ )\Aǫ has positive

µ-measure. Therefore, f(x) < f ∗+ǫ and Φdℓ(x) < ǫ whenever ℓ ≥ ℓǫ and x ∈ ∆ǫ,

which in turn implies f ǫ
dℓ
< f ∗ + ǫ, and consequently, f̃ ǫ

d = f(xǫ
ℓ(d)) < f ∗ + ǫ, the

desired result.
(b) Let ǫ′ := −Φ(x∗), and let O1

ǫ′ := {x ∈ intX : Φ(x) < −ǫ′/2} which is a
nonempty open set because it contains x∗ and Φ is u.s.c.. Let O2

ǫ′ be as O2
ǫ in

the proof of (a), but now with x∗
ǫ′ = x∗ ∈ X. Both O1

ǫ′ and O2
ǫ′ are open and

nonempty because they contain x∗. The rest of the proof is like for the proof of
(a), but noticing that now for every x ∈ ∆ǫ′ one has Φdℓ(x) < −ǫ′/2 + ǫ′/2 = 0,
and so x is feasible for (3.9) with ǫ = 0. Next, by feasiblity f(x) ≥ f ∗ since the
resulting feasible set in (3.9) is smaller than that of (1.2) because Φd ≥ Φ, for
all d. And so f ∗ ≤ f(x) < f ∗ + ǫ whenever x ∈ ∆ǫ, and ℓ ≥ ℓǫ, from which (b)
follows. �

Theorem 3.4 provides a rationale behind the algorithm that we present below.
In solving (3.9) with d sufficiently large and small ǫ (or even ǫ = 0), f ǫ

d would
provide a good approximation of f ∗. But in principle, computing the global
optimum f ǫ

d is still a difficult problem. However, Pǫ
d is a polynomial optimization

problem. Therefore, by Theorem 2.2, if the polynomials (ps) ⊂ R[x] that define
X satisfy the Archimedean property (see Definition 2.1) we can approximate f ǫ

d

from below, as closely as desired, by a monotone sequence (f ǫ
dt), t ∈ N, obtained
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by solving the hierarchy of semidefinite relaxations (2.1), which here read:

(3.10)







f ǫ
dt = min

z
Lz(f)

s.t. Mt(z),Mt−d(ǫ− Φd z) � 0
Mt−ts(ps z) � 0, s = 1, . . . , sx,

where ts = ⌈(deg ps)/2⌉, s = 1, . . . , sx.

Corollary 3.5. Assume that the polynomials (ps) ⊂ R[x] satisfy the Archimedean
property. Then f ǫ

dt ↑ f
ǫ
d as t→ ∞. Moreover, if z∗ is an optimal solution of (3.10)

and

(3.11) rankMt(z
∗) = rankMt−t0(z

∗) (=: r)

(where t0 := max[d,maxs[ts]]) then f ǫ
dt = f ǫ

d and one may extract r global mini-
mizers x∗

d(k) ∈ X, k = 1, . . . , r. That is, for every k = 1, . . . , r, f(x∗
d(k)) = f ǫ

d

and Φd(x
∗
d(k)) ≤ ǫ.

However, given a minimizer x∗
d ∈ X, if on the one hand Φd(x

∗
d) ≤ ǫ, on the other

hand it may not satisfy Φ(x∗
d) ≤ 0. (Recall that checking whether Φ(x∗

d) ≤ 0 can
be done via solving the hierarchy of relaxations Qℓ(x) in (3.5) with x := x∗

d.) If
this happens then one solves again (3.10) for a smaller value of ǫ, etc., until one
obtains some x∗

d ∈ X with Φ(x∗
d) ≤ 0.

Finally, and as already mentioned, if d is relatively large, the size of semidefinite
relaxations (3.10) to compute f ǫ

dt becomes too large for practical implementation
(as one must have t ≥ d). So in practice one let d be fixed at a small value,
typically the smallest possible value of d, i.e., 1 (Φd is quadratic) or 2 (Φd is
quartic)), and one updates ǫ as indicated above. So the resulting algorithm
reads:

Algorithm.

Input: ℓ, d, k∗ ∈ N, ǫ0 > 0 (e.g. ǫ0 := 10−1), d ∈ N, x̃ := ⋆, f(⋆) = +∞.
Output: f(x∗

d) with x∗
d ∈ X and Φ(x∗

d) ≤ 0.
Step 1: Set k = 1 and ǫ(k) = 1.

Step 2: While k ≤ k∗, solve P
ǫ(k)
d in (3.9) → x∗

k ∈ X.
Step 3: Solve Qℓ(x

∗
k) in (3.5) → ρℓ(x

∗
k).

If −ǫ0 ≤ ρℓ(x
∗
k) ≤ 0 set x∗

d := x∗
k and STOP.

If ρℓ(x
∗
k) < −ǫ0 then:

• if f(x̃) > f(x∗
k) then set x̃ := x∗

k. If k = k∗ then x∗
d := x∗

k.
• set ǫ(k + 1) := 2ǫ(k), k := k + 1 and go to Step 2.

If ρℓ(x
∗
k) > 0 then:

• If k < k∗ set ǫ(k + 1) := ǫ(k)/2, k := k + 1 and go to Step 2.
• If k = k∗ then set set x∗

d = x̃.

Observe that in Step 2 of the above algorithm, one assumes that by solving

P
ǫ(k)
d one obtains x∗

k ∈ X.
9



3.4. Numerical experiments. We have taken Examples 2, 7, 9, K, M, N, all
from Bhattacharjee et al. [2, Appendix A] and whose data are polynomials, ex-
cept for problem L. For the latter problem, the non-polynomial function x 7→
min[0, (x1 − x2)] is semi-algebraic and can be generated by introducing an addi-
tional variable x3, with the polynomial constraints:

x23 = (x1 − x2)
2; x3 ≥ 0.

Indeed, 2min[0, (x1 − x2)] = x1 − x2 − x3.
Although these examples are quite small, they are still non trivial (and even

difficult) to solve, and we wanted to test the above methodology with small
relaxation order d. In fact we have even considered the smallest possible d, i.e.,
d = 1 (Φd is quadratic). Results in Table 1 are quite good since by using the
semidefinite relaxation of minimal order “d” one obtains an optimal value f ∗

d

quite close to f ∗, at the price of updating ǫ several times.
Next, for Problem L, if we now increase d to d = 2, we improve the opti-

mal value which becomes f ∗
d = 0.3849 with ǫ = 2.2. However, for Problem M,

increasing d does not improve the optimal value.
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best known value f ∗
d final value of ǫ

problem 2 0.194 0.198 1.895
problem 7 1.0 1.41 5
problem 9 -12.0 -14.47∗ 0
problem K -3.0 -3.0 3.037
problem L 0.3431 0.435 2.295
problem M 1.0 2.25 2.592
problem N 0.0 10−8 0

Table 1. Examples of [2, Table 6.1] with minimal d

4. Conclusion

We have presented an algorithm for semi-infinite (global) polynomial optimiza-
tion whose novelty with respect to previous works is to not rely on a discretization
scheme. Instead, it uses a polynomial approximation Φd of the function Φ, ob-
tained by solving some semidefinite relaxation attached to the “joint+marginal”
approach developed in [9] for parametric optimization, which guarantees (strong)
convergence Φd → Φ in L1-norm. Then for fixed d, one has to solve a polynomial
optimization problem, which can be done by solving an appropriate hierarchy
of semidefinite relaxations. Of course, as already mentioned and especially in
view of the present status of semidefinite solvers, so far the present methodology
is limited to small to medium size problems, unless sparsity in the data and/or
symmetries are taken into account appropriately, as described in e.g. [7, 12].
Preliminary results on non trivial (but small size) examples are encouraging.
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