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We consider the semi-infinite optimization problem:

where f, g are polynomials and X ⊂ R n as well as Y x ⊂ R p , x ∈ X, are compact basic semi-algebraic sets. To approximate f * we proceed in two steps. First, we use the "joint+marginal" approach of the author [9] to approximate from above the function x → Φ(x) = sup{g(x, y) : y ∈ Y x } by a polynomial Φ d ≥ Φ, of degree at most 2d, with the strong property that Φ d converges to Φ for the L 1 -norm, as d → ∞ (and in particular, almost uniformly for some subsequence (d ℓ ), ℓ ∈ N). Therefore, to approximate f * one may wish to solve the polynomial optimization problem f 0 d = min x∈X {f (x) : Φ d (x) ≤ 0} via a (by now standard) hierarchy of semidefinite relaxations, and for increasing values of d. In practice d is fixed, small, and one relaxes the constraint Φ d ≤ 0 to Φ d (x) ≤ ǫ with ǫ > 0, allowing to change ǫ dynamically. As d increases, the limit of the optimal value f ǫ d is bounded above by f * + ǫ.

Introduction

Consider the semi-infinite optimization problem: where X ⊂ R n , Y x ⊂ R p for every x ∈ X, and some functions f : R n → R, g : R n × R p :→ R.

Problem P is called a semi-infinite optimization problem because of the infinitely many constraints g(x, y) ≤ 0 for all y ∈ Y x (for each fixed x ∈ X). It has many applications and particularly in robust control.

In full generality P is a very hard problem and most methods aiming at computing (or at least approximating) f * use discretization to overcome the difficult semi-infinite constraint g(x, y) ≤ 0 for all y ∈ Y x . Namely, in typical approaches where Y x ≡ Y for all x ∈ X (i.e. no dependence on x), the set Y ⊂ R p is discretized on a finite grid and if the resulting nonlinear programming problems are solved to global optimality, then convergence to a global optimum of the semi-infinite problem occurs as the grid size vanishes (see e.g. the discussion and the many references in [START_REF] Mitsos | Relaxation-based bounds for semi-infinite programs[END_REF]). Alternatively, in [START_REF] Mitsos | Relaxation-based bounds for semi-infinite programs[END_REF] the authors provide lower bounds on f * by discretizing Y and upper bounds via convex relaxations of the inner problem max y∈Y {g(x, y)} ≤ 0. In [START_REF] Parpas | An algorithm for the global optimization of a class of continuous minimax problems[END_REF] the authors also use a discretization scheme of Y but now combined with a hierarchy of sum of squares convex relaxations for solving to global optimality.

Contribution. We restrict ourselves to problem P where :

• f, g are polynomials, and • X ⊂ R n and Y x ⊂ R p , x ∈ X, are compact basic semi-algebraic sets. For instance many problems of robust control can be put in this framework; see e.g. their description in [START_REF] Calafiore | A probabilistic analytic center cutting plane method for feasibility of uncertain LMIs[END_REF]. Then in this context we provide a numerical scheme whose novelty with respect to previous works is to avoid discretization of the set Y x . Instead we use the "joint+marginal" methodology for parametric polynomial optimization developed by the author in [START_REF] Lasserre | A "joint+marginal" approach to parametric polynomial optimization[END_REF], to provide a sequence of polynomials (Φ d ) ⊂ R[x] (with degree 2d, d ∈ N) that approximate from above the function Φ(x) := max y {g(x, y) : y ∈ Y x }, and with the strong property that if d → ∞ then Φ d → Φ in the L 1 -norm. (In particular, Φ d ℓ → Φ almost uniformly on X for some subsequence (d ℓ ), ℓ ∈ N.) Then, ideally, one could solve the nested sequence of polynomial optimization problems:

(1.2) P d : f * d = min {f (x) : Φ d (x) ≤ 0 }, d = 1, 2, . . .
For fixed d, one may approximate (and often solve exactly) (1.2) by solving a hierarchy of semidefinite relaxations, as defined in [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF]. However, as the size O(d n ) of these semidefinite relaxations increases very fast with d, in practice one rather let d be fixed, small, and relax the constraint Φ d (x) ≤ 0 to Φ d (x) ≤ ǫ for some scalar ǫ > 0 that one may adjust dynamically during the algorithm. As d increases, the resulting optimal value f ǫ d is bounded above by f * + ǫ. The approach is illustrated on a sample of small problems taken from the literature.

Notation, definitions and preliminary results

Let R[x] (resp. R[x, y]) denote the ring of real polynomials in the variables x = (x 1 , . . . , x n ) (resp. x and y = (y 1 , . . . , y p )), whereas Σ[x] (resp. Σ[x, y]) denote its subset of sums of squares.

Let R[y] k ⊂ R[y] denote the vector space of real polynomials of degree at most k. For every α ∈ N n the notation x α stands for the monomial

x α 1 1 • • • x αn n and for every d ∈ N, let N n d := {α ∈ N n : j α j ≤ d} with cardinal s(d) = n+d n . Similarly N p d := {β ∈ N p : j β j ≤ d} with cardinal p+d p . A polynomial f ∈ R[x] is written x → f (x) = α∈N n f α x α ,
and f can be identified with its vector of coefficients f = (f α ) in the canonical basis. For a real symmetric matrix A the notation A 0 stands for A is positive semidefinite.

A real sequence z = (z α ), α ∈ N n , has a representing measure if there exists some finite Borel measure µ on R n such that

z α = R n x α dµ(x), ∀ α ∈ N n .
Given a real sequence z = (z α ) define the linear functional L z : R[x] → R by:

f (= α f α x α ) → L z (f ) = α f α z α , f ∈ R[x].
Moment matrix. The moment matrix associated with a sequence z = (z α ), 

α ∈ N n ,
(z) 0 because f, M d (z)f = f 2 dµ ≥ 0, ∀ f ∈ R s(d) .
Localizing matrix. With z as above and g ∈ R[x] (with g(x) = γ g γ x γ ), the localizing matrix associated with z and g is the real symmetric matrix M d (g z) with rows and columns indexed by N n d , and whose entry (α, β) is just γ g γ z α+β+γ , for every α, β ∈ N n d . If z has a representing measure µ whose support is contained in the set {x : g(x) ≥ 0} then M d (g z) 0 because

f, M d (g z)f = f 2 g dµ ≥ 0, ∀ f ∈ R s(d) .
Definition 2.1 (Archimedean property). A set of polynomials q j ∈ R[x], j = 0, . . . , p (with q 0 = 1), satisfy the Archimedean property if the quadratic polynomial x → Mx 2 can be written in the form:

M -x 2 = p j=0 σ j (x) q j (x),
for some sums of squares polynomials (σ

j ) ⊂ Σ[x].
Of course the Archimedean property implies that the set D := {x ∈ R n : q j (x) ≥ 0, j = 1, . . . , p} is compact. For instance, it holds whenever the level set {x : q k (x) ≥ 0} is compact for some k ∈ {1, . . . , p}, or if the q j 's are affine and D is compact (hence a polytope). On the other hand, if D is compact then M -x| 2 ≥ 0 for all x ∈ D and some M sufficiently large. So if one adds the redundant quadratic constraint x → q p+1 (x) = Mx 2 ≥ 0 in the definition of D then the Archimedean property holds. Hence it is not a restrictive assumption.

Let D := {x ∈ R n : q j (x) ≥ 0, j = 1, . . . , p}, and given a polynomial h ∈ R[x], consider the hierarchy of semidefinite programs:

(2.1)

ρ ℓ = min z L z (h) s.t. M ℓ (z), M ℓ-v j (q j z) 0, j = 1, . . . , p,
where z = (z α ), α ∈ N n 2ℓ , and v j = ⌈(deg q j )/2⌉, j = 1, . . . , p. Theorem 2.2 ( [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF][START_REF] Lasserre | Moments, Positive Polynomials and Their Applications[END_REF]). Let a family of polynomials (q j ) ⊂ R[x] satisfy the Archimedean property. Then as ℓ → ∞, ρ ℓ ↑ h * = min x {h(x) : x ∈ D}. Moreover, if z * is an optimal solution of (2.1) and ) and so becomes rapidly prohibitive, especially in view of the present status of available semidefinite solvers. Therefore, and even though practice reveals that convergence is fast and often finite, so far, the above methodology is limited to small to medium size problems (typically, and depending on the degree of the polynomials appearing in the data, problems with up to n ∈ [10, 20] variables). However, for larger size problems with sparsity in the data and/or symmetries, adhoc and tractable versions of (2.1) exist. See for instance the sparse version of (2.1) proposed in [START_REF] Waki | Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity[END_REF], and whose convergence was proved in [START_REF] Lasserre | Convergent SDP-relaxations in polynomial optimization with sparsity[END_REF] when the sparsity pattern satifies the so-called running intersection property. In [START_REF] Waki | Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity[END_REF] this technique was shown to be successful on a sample of non convex problems with up to 1000 variables.

(2.2) rank M ℓ (z * ) = rank M ℓ-v (z * ) (=: r) (where v = max j v j ) then ρ ℓ = h * and one may extract r global minimizers x * k ∈ D, k = 1, . . . ,

Main result

Let B ⊂ R n be a simple set like a box or an ellipsoid. Let p s ∈ R[x], s = 1, . . . , sx, and h j ∈ R[x, y], j = 1, . . . , m, be given polynomials and let X ⊂ R n be the basic semi-algebraic set

X := {x ∈ R n : p s (x) ≥ 0, s = 1, . . . , sx}.
Next, for every x ∈ R n , let Y x ⊂ R p be the basic semi-algebraic set described by:

(3.1) Y x = { y ∈ R p : h j (x, y) ≥ 0, j = 1, . . . , m },
and with B ⊇ X, let K ⊂ R n × R p be the set (3.2) K := {(x, y) ∈ R n+p : x ∈ B; h j (x, y) ≥ 0, j = 1, . . . , m}.
Observe that problem P in (1.1) is equivalent to:

P : f * = min x∈X { f (x) : Φ(x) ≤ 0 } (3.3) where Φ(x) = max y {g(x, y) : y ∈ Y x }, x ∈ B. (3.4) Lemma 3.1. Let K ⊂ R n+p in (3.

2) be compact and assume that for every

x ∈ B ⊂ R n , the set Y x defined in (3.1) is nonempty. Then Φ is upper semicon- tinuous (u.s.c.) on B. Moreover, if there is some compact set Y ⊂ R p such that Y x = Y for every x ∈ B, then Φ is continuous on B.
Proof. Let x 0 ∈ B be fixed, arbitrary, and let (x k ) k∈N ⊂ B be a sequence that converges to x 0 and such that lim sup

x→x 0 Φ(x) = lim k→∞ Φ(x k ).
As K is compact then so is Y x for every x ∈ B. Therefore, as Y x = ∅ for all x ∈ B and g is continuous, there exists an optimal solution y * k ∈ Y x k for every k. By compactness there exist a subsequence (k ℓ ) and

y * ∈ R p such that (x k ℓ , y * k ℓ ) → (x 0 , y * ) ∈ K, as ℓ → ∞. Hence lim sup x→x 0 Φ(x) = lim k→∞ Φ(x k ) = lim k→∞ g(x k , y * k ) = lim ℓ→∞ g(x k ℓ , y * k ℓ ) = g(x 0 , y * ) ≤ Φ(x 0 ),
which proves that Φ is u.s.c. at x 0 . As x 0 ∈ B was arbitrary, Φ is u.s.c. on B.

Next, assume that there is some compact set

Y ⊂ R p such that Y x = Y for every x ∈ B. Let x 0 ∈ B be fixed arbitrary with Φ(x 0 ) = g(x 0 , y * 0 ) for some y * 0 ∈ Y. Let (x n ) ⊂ B, n ∈ N, be a sequence such that x n → x 0 as n → ∞, and Φ(x 0 ) ≥ lim inf x→x 0 Φ(x) = lim n→∞ Φ(x n ). Again, let y * n ∈ Y be such that Φ(x n ) = g(x n , y * n ), n ∈ N.
By compactness, consider an arbitrary converging subsequence (n ℓ ) ⊂ N, i.e., such that (x n ℓ , y * n ℓ ) → (x 0 , y * ) ∈ K as ℓ → ∞, for some y * ∈ Y. Suppose that Φ(x 0 ) (= g(x 0 , y * 0 )) > g(x 0 , y * ), say Φ(x 0 ) > g(x 0 , y * ) + δ for some δ > 0. By continuity of g, g(x n ℓ , y * n ℓ ) < g(x 0 , y * ) + δ/2 for every ℓ > ℓ 1 (for some ℓ 1 ). But again, by continuity, |g(x n ℓ , y * 0 )g(x 0 , y * 0 )| < δ/3 whenever ℓ > ℓ 2 (for some ℓ 2 ). And so we obtain the contradiction

Φ(x n ℓ ) ≥ g(x n ℓ , y * 0 ) > Φ(x 0 ) -δ/3 Φ(x n ℓ ) = g(x n ℓ , y * n ℓ ) < Φ(x 0 ) -δ/2, whenever ℓ > max[ℓ 1 , ℓ 2 ]. Therefore, g(x 0 , y * 0 ) = g(x 0 , y * ) and so, g(x 0 , y * 0 ) = Φ(x 0 ) = g(x 0 , y * ) = lim ℓ→∞ Φ(x n ℓ ) = lim inf x→x 0 Φ(x) ≤ Φ(x 0 ),
which combined with Φ being u.s.c., yields that Φ is continuous at x 0 .

We next explain how to • approximate the function x → Φ(x) on B by a polynomial, and • evaluate (or at least approximate) Φ(x) for some given x ∈ B, to check whether Φ(x) ≤ 0. Indeed, these are the two main ingredients of the algorithm that we present later.

3.1. Certificate of Φ(x) ≤ 0. For every x ∈ X fixed, let g x , h x j ∈ R[y] be the polynomials y → g x (y) = g(x, y) and y → h x j (y) := h j (x, y), j = 1, . . . , m, and consider the hierarchy of semidefinite programs:

(3.5) Q ℓ (x) : ρ ℓ (x) = max z L z (g x ) s.t. M ℓ (z), M ℓ-v j (h x j z) 0, j = 1, . . . , m,
where z = (z β ), β ∈ N p 2ℓ , and v j = ⌈(deg h x j )/2⌉, j = 1, . . . , m. Obviously one has ρ ℓ (x) ≥ Φ(x) for every ℓ, and Corollary 3.2. Let x ∈ X and assume that the polynomials (h x j ) ⊂ R[y] satisfy the Archimedean property. Then:

(a) As ℓ → ∞, ρ ℓ (x) ↓ Φ(x) = max{g(x, y) : y ∈ Y x }.
In particular, if ρ ℓ (x) ≤ 0 for some ℓ, then Φ(x) ≤ 0.

(b) Moreover, if z * is an optimal solution of (3.5) that satisfies

rank M ℓ (z * ) = rank M ℓ-v (z * ) (=: r),
(where v := max j v j ), then ρ ℓ (x) = Φ(x) and there are r global maximizers

y(k) ∈ Y x , k = 1, . . . ,
Corollary 3.2 is a direct consequence of Theorem 2.2.

3.2.

Approximating the function Φ. Recall that B ⊇ X is a simple set like e.g., a simplex, a box or an ellipsoid and let µ be the finite Borel probability measure uniformly distributed on B. Therefore, the vector γ = (γ α ), α ∈ N n , of moments of µ, i.e.,

γ α := B x α dµ(x), α ∈ N n ,
can be computed easily. For instance, in the sequel we assume that B = [-1, 1] n = {x : θ i (x) ≥ 0, i = 1, . . . n} with θ i ∈ R[x, y] being the polynomial (x, y) → θ i (x, y) := 1x 2 i , i = 1, . . . , n. Observe that the function Φ is defined in (3.4) via a parametric polynomial optimization problem (with x being the parameter vector). Therefore, following [START_REF] Lasserre | A "joint+marginal" approach to parametric polynomial optimization[END_REF], let r j = ⌈(deg h j )/2⌉, j = 1, . . . , m, and consider the hierarchy of semidefinite relaxations indexed by d ∈ N:

(3.6)        ρ d = max z L z (g) s.t. M d (z), M d-r j (h j z) 0, j = 1, . . . , m M d-1 (θ i z) 0, i = 1, . . . , n L z (x α ) = γ α , α ∈ N n 2d ,
where the sequence z is now indexed in N n+p 2d , i.e., z = (z αβ ), (α, β) ∈ N n+p 2d . Writing g 0 ≡ 1, the dual of the semidefinite program (3.6) reads (3.7)

                   ρ * d = min q,σ j ,θ i B q(x) dµ(x) s.t. q(x) -g(x, y) = m j=0 σ j (x, y)h j (x, y) + n i=1 ψ i (x, y)θ i (x, y) q ∈ R[x] 2d , σ j , ψ i ∈ Σ[x, y] deg σ j h j ≤ 2d, j = 0, . . . , m. deg ψ i θ i ≤ 2d, i = 1, . . . , n.
It turns out that any optimal solution of the semidefinite program (3.7) permits to approximate Φ in a strong sense.

Theorem 3.3 ([9]). Let K ⊂ R n+p in (3.
2) be compact. Assume that the polynomials h j , θ i ∈ R[x, y] satisfy the Archimedean property and assume that for every

x ∈ B, the set Y x defined in (3.1) is nonempty. Let Φ d ∈ R[x]
2d be an optimal solution of (3.7). Then :

(a) Φ d ≥ Φ and as d → ∞, (3.8) 
B (Φ d (x) -Φ(x)) dµ(x) = B | Φ d (x) -Φ(x) | dµ(x) → 0, that is, Φ d → Φ for the L 1 (B, µ)-norm 1 . (b) There is a subsequence (d ℓ ), ℓ ∈ N, such that Φ d ℓ → Φ, µ-almost uniformly 2 in B, as ℓ → ∞.
The proof of (a) can be found in [START_REF] Lasserre | A "joint+marginal" approach to parametric polynomial optimization[END_REF], whereas (b) follows from (a) and [1, Theorem 2.5.3].

3.

3. An algorithm. The idea behind the algorithm is to approximate P in (1.1) with the polynomial optimization problem: (P ǫ d ): (3.9) d has no solution. Next, if x * is an optimal solution of P and Φ(x * ) < 0, it may also happen that Φ d (x * ) > 0 if d is not large enough. This is why one needs to relax the constraint Φ ≤ 0 to Φ d ≤ ǫ for some ǫ > 0. However, in view of Theorem 3.3, one expects that f ǫ d ≈ f * provided that d and ǫ are sufficiently large and small, respectively. And indeed: Theorem 3.4. Assume that X is the closure of an open set. Let ǫ ≥ 0 be fixed, arbitrary and with f ǫ d be as in (3.9), let x ǫ d ∈ X be any optimal solution of (3.9) (including the case where ǫ = 0), and let

P ǫ d : f ǫ d = min x∈X { f (x) : Φ d (x) ≤ ǫ }, d = 
f ǫ d := min{f ǫ ℓ : ℓ = 1, . . . , d} = f (x ǫ ℓ(d) )
for some ℓ(d) ∈ {1, . . . , d}.

(a) If ǫ > 0 there exists d ǫ ∈ N such that for every

d ≥ d ǫ , f (x ǫ ℓ(d) ) < f * + ǫ. (b)
If there is an optimal solution x * ∈ X of (1.1) such that Φ(x * ) < 0, then there exists

d 0 ∈ N such that for every d ≥ d 0 , f * ≤ f (x 0 ℓ(d) ) < f * + ǫ.
Proof. (a) With ǫ > 0 fixed, arbitrary, let x * ǫ ∈ X be such that Φ(x * ǫ ) ≤ 0 and f (x * ǫ ) < f * + ǫ/2. We may assume that x * ǫ is not on the boundary of

X. Let O 1 ǫ := {x ∈ int X : Φ(x) < ǫ/2}
which is an open set because Φ is u.s.c. (by Lemma 3.1), and so µ(O 1 ǫ ) > 0. Next, as f is continuous, there exists

ρ 0 > 0 such that f < f * + ǫ whenever x ∈ O 2 ǫ := {x ∈ int X : x -x * ǫ < ρ 0 }. Observe that ρ := µ(O 1 ǫ ∩ O 2 ǫ ) > 0 because O 1 ǫ ∩ O 2 ǫ is an open set (with x * ǫ ∈ O 1 ǫ ∩ O 2 ǫ ). Next, by Theorem 3.3(b), there is a subsequence (d ℓ ), ℓ ∈ N, such that Φ d ℓ → Φ, µ-almost uniformly on B.
Hence, there is some Borel set A ǫ ⊂ B, and integer ǫ ′ be as O 2 ǫ in the proof of (a), but now with

ℓ ǫ ∈ N, such that µ(A ǫ ) < ρ/2 and sup x∈X\Aǫ |Φ(x) -Φ d ℓ (x)| < ǫ/2 for all ℓ ≥ ℓ ǫ . In particular, as µ(A ǫ ) < ρ/2 < µ(O 1 ǫ ∩O 2 ǫ ), the set ∆ ǫ := (O 1 ǫ ∩O 2 ǫ ) \ A ǫ has positive µ-measure. Therefore, f (x) < f * + ǫ and Φ d ℓ (x) < ǫ whenever ℓ ≥ ℓ ǫ and x ∈ ∆ ǫ , which in turn implies f ǫ d ℓ < f * + ǫ, and consequently, f ǫ d = f (x ǫ ℓ(d) ) < f * + ǫ,
x * ǫ ′ = x * ∈ X. Both O 1 ǫ ′ and O 2
ǫ ′ are open and nonempty because they contain x * . The rest of the proof is like for the proof of (a), but noticing that now for every x ∈ ∆ ǫ ′ one has Φ d ℓ (x) < -ǫ ′ /2 + ǫ ′ /2 = 0, and so x is feasible for (3.9) with ǫ = 0. Next, by feasiblity f (x) ≥ f * since the resulting feasible set in (3.9) is smaller than that of (1.2) because Φ d ≥ Φ, for all d. And so f * ≤ f (x) < f * + ǫ whenever x ∈ ∆ ǫ , and ℓ ≥ ℓ ǫ , from which (b) follows.

Theorem 3.4 provides a rationale behind the algorithm that we present below. In solving (3.9) with d sufficiently large and small ǫ (or even ǫ = 0), f ǫ d would provide a good approximation of f ] is semi-algebraic and can be generated by introducing an additional variable x 3 , with the polynomial constraints:

:= 10 -1 ), d ∈ N, x := ⋆, f (⋆) = +∞. Output: f (x * d ) with x * d ∈ X and Φ(x * d ) ≤ 0. Step 1: Set k = 1 and ǫ(k) = 1. Step 2: While k ≤ k * , solve P ǫ(k) d in (3.9) → x * k ∈ X. Step 3: Solve Q ℓ (x * k ) in (3.5) → ρ ℓ (x * k ). If -ǫ 0 ≤ ρ ℓ (x * k ) ≤ 0 set x * d := x * k and STOP. If ρ ℓ (x * k ) < -ǫ 0 then: • if f (x) > f (x * k ) then set x := x * k . If k = k * then x * d := x * k . • set ǫ(k + 1) := 2ǫ(k), k := k + 1 and go to Step 2. If ρ ℓ (x * k ) > 0 then: • If k < k * set ǫ(k + 1) := ǫ(k)/2, k := k + 1
x 2 3 = (x 1 -x 2 ) 2 ; x 3 ≥ 0. Indeed, 2 min[0, (x 1 -x 2 )] = x 1 -x 2 -x 3 .
Although these examples are quite small, they are still non trivial (and even difficult) to solve, and we wanted to test the above methodology with small relaxation order d. In fact we have even considered the smallest possible d, i.e., d = 1 (Φ d is quadratic). Results in Table 1 are quite good since by using the semidefinite relaxation of minimal order "d" one obtains an optimal value f * d quite close to f * , at the price of updating ǫ several times.

Next 

Conclusion

We have presented an algorithm for semi-infinite (global) polynomial optimization whose novelty with respect to previous works is to not rely on a discretization scheme. Instead, it uses a polynomial approximation Φ d of the function Φ, obtained by solving some semidefinite relaxation attached to the "joint+marginal" approach developed in [START_REF] Lasserre | A "joint+marginal" approach to parametric polynomial optimization[END_REF] for parametric optimization, which guarantees (strong) convergence Φ d → Φ in L 1 -norm. Then for fixed d, one has to solve a polynomial optimization problem, which can be done by solving an appropriate hierarchy of semidefinite relaxations. Of course, as already mentioned and especially in view of the present status of semidefinite solvers, so far the present methodology is limited to small to medium size problems, unless sparsity in the data and/or symmetries are taken into account appropriately, as described in e.g. [START_REF] Lasserre | Convergent SDP-relaxations in polynomial optimization with sparsity[END_REF][START_REF] Waki | Sums of squares and semidefinite programming relaxations for polynomial optimization problems with structured sparsity[END_REF]. Preliminary results on non trivial (but small size) examples are encouraging.

  x∈X {f (x) : g(x, y) ≤ 0, ∀y ∈ Y x },

1 , 2 ,

 12 . . . with d ∈ N, ǫ > 0 fixed, and Φ d as in Theorem 3.3, for every d = 1, . . .. Obviously, for ǫ = 0 one has f 0 d ≥ f * for all d because by definition Φ d ≥ Φ for every d ∈ N. However, it may happen that P 0

  the desired result. (b) Let ǫ ′ := -Φ(x * ), and let O 1 ǫ ′ := {x ∈ int X : Φ(x) < -ǫ ′ /2} which is a nonempty open set because it contains x * and Φ is u.s.c.. Let O 2

  is the real symmetric matrix M d (z) with rows and columns indexed by N n d , and whose entry (α, β) is just z α+β , for every α, β ∈ N n d . If z has a representing measure µ then M d

  However, given a minimizer x * d ∈ X, if on the one hand Φ d (x * d ) ≤ ǫ, on the other hand it may not satisfy Φ(x * d ) ≤ 0. (Recall that checking whether Φ(x * d ) ≤ 0 can be done via solving the hierarchy of relaxations Q ℓ (x) in (3.5) with x := x * d .) If this happens then one solves again (3.10) for a smaller value of ǫ, etc., until one obtains some x * d ∈ X with Φ(x * d ) ≤ 0. Finally, and as already mentioned, if d is relatively large, the size of semidefinite relaxations (3.10) to compute f ǫ dt becomes too large for practical implementation (as one must have t ≥ d). So in practice one let d be fixed at a small value, typically the smallest possible value of d, i.e., 1 (Φ d is quadratic) or 2 (Φ d is quartic)), and one updates ǫ as indicated above. So the resulting algorithm reads:

	by solving the hierarchy of semidefinite relaxations (2.1), which here read:
	(3.10)	 	f ǫ dt = min z s.t. M t (z), M t-d (ǫ -Φ d z) L z (f )	0
			M t-ts (p s z)	0, s = 1, . . . , sx,
	where t s = ⌈(deg p s )/2⌉, s = 1, . . . , sx.	
	Corollary 3.5. Assume that the polynomials (p s ) ⊂ R[x] satisfy the Archimedean
	property. Then f ǫ dt ↑ f ǫ d as t → ∞. Moreover, if z * is an optimal solution of (3.10)
	and			
	(3.11)		rank M t (z * ) = rank M t-t 0 (z * ) (=: r)
	(where t 0 := max[d, max s [t s ]]) then f ǫ dt = f ǫ d and one may extract r global mini-mizers x * d (k) ∈ X, k = 1, . . . , r. That is, for every k = 1, . . . , r, f (x * d (k)) = f ǫ d and Φ d (x * d (k)) ≤ ǫ.
	Algorithm.			
	Input: ℓ, d, k		
			. But in principle, computing the global
	optimum f ǫ d is still a difficult problem. However, P ǫ d is a polynomial optimization problem. Therefore, by Theorem 2.2, if the polynomials (p s ) ⊂ R[x] that define
	X satisfy the Archimedean property (see Definition 2.1) we can approximate f ǫ d from below, as closely as desired, by a monotone sequence (f ǫ dt ), t ∈ N, obtained

* * ∈ N, ǫ 0 > 0 (e.g. ǫ 0

  and go to Step 2. • If k = k * then set set x * d = x. Observe that in Step 2 of the above algorithm, one assumes that by solving P Numerical experiments. We have taken Examples 2, 7, 9, K, M, N, all from Bhattacharjee et al. [2, Appendix A] and whose data are polynomials, except for problem L. For the latter problem, the non-polynomial function x → min[0, (x 1x 2 )

	3.4.
	ǫ(k) d	one obtains x * k ∈ X.

Table 1 .

 1 , for Problem L, if we now increase d to d = 2, we improve the optimal value which becomes f * d = 0.3849 with ǫ = 2.2. However, for Problem M, increasing d does not improve the optimal value. Examples of [2, Table6.1] with minimal d

		best known value	f * d	final value of ǫ
	problem 2	0.194	0.198	1.895
	problem 7	1.0	1.41	5
	problem 9	-12.0	-14.47 *	0
	problem K	-3.0	-3.0	3.037
	problem L	0.3431	0.435	2.295
	problem M	1.0	2.25	2.592
	problem N	0.0	10 -8	0

L 1 (B, µ) is the Banach space of µ-integrable functions on B, with norm f = B |f |dµ.

If one fixes ǫ > 0 arbitrary then there is some A ∈ B(B) such that µ(A) < ǫ and Φ d ℓ → Φ uniformly on B \ A, as ℓ → ∞.
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