
HAL Id: hal-00558085
https://hal.science/hal-00558085

Submitted on 21 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Event-B to construct instruction set architectures
Stephen Wright, Kerstin Eder

To cite this version:
Stephen Wright, Kerstin Eder. Using Event-B to construct instruction set architectures. Formal
Aspects of Computing, 2010, 23 (1), pp.73-89. �10.1007/s00165-009-0142-7�. �hal-00558085�

https://hal.science/hal-00558085
https://hal.archives-ouvertes.fr

Using Event-B to Construct Instruction

Set Architectures

Stephen Wright
1
 and Kerstin Eder

1

1Department of Computer Science, University of Bristol, UK

Abstract. The Instruction Set Architecture (ISA) of a computing machine is the definition of the binary

instructions, registers, and memory space visible to an executable binary image. ISAs are typically

implemented in hardware as microprocessors, but also in software running on a host processor, i.e.

Virtual Machines (VMs). Despite there being many ISAs in existence, all share a set of core properties

which have been tailored to their particular applications. An abstract model may capture these generic

properties and be subsequently refined to a particular machine, providing a reusable template for

development of robust ISAs by the formal construction of all normal and exception conditions for each

instruction. This is a task to which the Event-B [MAV05, Sch01] formal notation is well suited. This

paper describes a project to use the Rodin tool-set [ABH06] to perform such a process, ultimately

producing two variants of the MIDAS (Microprocessor Instruction and Data Abstraction System) ISA

[Wri08,Wri09/1] as VMs. The abstract model is incrementally refined to variant models capable of

automatic translation to C source code, which this is compiled to create useable VMs. These are capable

of running binary executables compiled from high-level languages such as C [KR88], and compilers

targeted to each variant allow demonstration programs to be executed on them.

1. Introduction

One of the most fascinating aspects of a computing machine is its instructions: a relatively small set of

obscure functions that, when combined in large sequences, forms the emergent properties of a computer

program. Thus, the same machine may be used to calculate a tax return, play a video game, or keep an

otherwise uncontrollable aircraft in the air, only by changing the seemingly unfathomable binary

sequence loaded into its memory. However, the lack of intuitive connection between the detail of a

computing machine‘s instructions and the large-scale functionality of a program presents a problem in

attempting to define those instructions: how to ensure the machine reliably handles all combinations of

instructions, whether functionally correct or erroneous. This problem has only been exacerbated with the

appearance of Reduced Instruction Set Computer machines, in which the instruction set is designed

purely for efficiency and simplicity, with no regard to easing the burden of a programmer attempting to

write programs or understand the rationale of an instruction sequence. This has motivated a method for

formally managing this comprehension gap through the use of abstraction (the simplification of a system

description to an understandable level), and subsequent refinement (the incremental additional of detail in

understandable steps).

2. Related Work

Since the 1980s there has been much activity in the field of automatic verification of processor

microarchitecture (i.e. the hardware used to implement the ISA). Two approaches have been taken:

definition of simplified academic examples capable of being studied in their entirety [GB90,Hun94], and

verification of fragments of pre-existing commercial processors [BH91,Fox03,SM95]. A common pattern

emerges throughout these projects. Instruction sets are defined as a series of individual specifications

defining the behavior of some or all of the entire instruction set. These target-specific specifications are

then used to manually or semi-automatically prove theorems stating the assumed adherence to these

behavioural descriptions by the microarchitecture, usually down to the level of gate logic.

In the domain of VMs, the ubiquitous Java Virtual Machine (JVM) has attracted much interest in its

formal verification. JVM implementations include an instruction interpreter (which performs the

functions of a microprocessor’s ISA) as well as other components. Architectural models have been

constructed [SSB01], and other components formally specified and verified, such as the byte-code verifier

[Cas02,KN01] and parts of the instruction interpreter [Qia99]. At implementation level, Event-B has been

used to construct a specification of some of the JVM instruction set in order verify an existing micro-

coded interpreter implementation [EG07].

Such work highlights the need for systematic construction of the specification itself: instruction sets

have been defined as a series of individual specifications for each instruction, making any verification

effort vulnerable to errors at this point. Such errors are generally only discovered by manual review or

mismatch with the very implementations they are intended to check. In [BH91] “a few” errors in the

specification are reported and two discussed in detail. One is a simple type mismatch, but another is more

serious in which handling of a possible invalid instruction during instruction fetching is omitted. In

[SM95] twenty-eight bugs in a formal specification were found by manual review, in comparison with the

two bugs finally found in the implementation

3. Event-B and Rodin

Event-B [MAV05] is a formal method that combines mathematical techniques, set theory, and first-order

logic. It is an evolution of B-Method [Abr96] (now often referred to as Classic-B), which was itself

derived from Z notation [Spi89]. Event-B is a simplification of Classic-B, decomposing machines into

small, discrete events explicitly linked to their abstractions. This allows more convenient practical

development by encouraging more incremental refinement and allowing easier verification of logical

proofs. Event-B’s other advantage is its flexibility, both in the notation itself and its supporting tools. For

example, Event-B does not strictly define a notation, but a methodology for the construction and analysis

of linked logical objects, and the notation seen when using support tools is actually an arbitrary front-end

for users familiar with Classic-B and Z notation. Event-B was therefore developed closely alongside a

supporting tool-set, Rodin [ABH06], which allows flexibility in the presentation and manipulation of an

underlying linked database representing a formal model. Rodin has a modular architecture based on the

Eclipse framework [Ecl09] with clearly defined Application Programming Interfaces exposing the

database and supporting expansion via the addition of Eclipse plug-ins.

4. Common Properties of Instruction Set Architectures

In spite of a vast number of general-purpose microprocessor ISAs in existence, all share a set of core

properties [HP03]. Programs are stored within the machine as a contiguous array of binary values, each

locatable via an integer address stored in a special register: the program counter (PC). The selection of the

next instruction to be executed (“control flow”) is achieved by simple incrementing of the PC, or its

overwriting with a calculated value to perform a jump operation. Taking one or two elements of a bank of

fixed-size registers (the “register file”), and outputting a result back to it performs calculations. In the

case of a destructive operation, the output register may be one of the input registers. Certain ISAs

implement specialist instructions with more than two inputs [AMD07], but are not targeted at general

purpose applications. Calculations consist of bit-manipulations, typically implementing the basic

arithmetic operations (i.e. addition, subtraction, multiplication and division) plus a number of application-

oriented operations. Data may be loaded into the register file via “immediate mode” addressing, in which

a constant value is incorporated in the executed instruction, moved between registers via “register direct

mode” addressing, or transferred from a specified location in a read-writable data memory via “register

indirect mode”. Register indirect mode may also be used to copy data back to this memory from the

register file. For all addressing modes source and destination registers are specified by index values

incorporated within the instruction. Variations on this general paradigm exist, such as PC-relative mode

[Hit98], which may be considered a form of indirect addressing. The data memory consists of a

contiguous array of binary values: large register values may be stored across two or more contiguous

memory locations.

 In order to execute binary images compiled from the C high level language using existing tools,

particularly the GNU Compiler Collection (GCC), the ISA must be further specified to implement

multiple thirty-two bit general registers, eight bit wide data memory and all instruction and data memory

addressing from a single register [Sta01].

5. The MIDAS VM

In order to demonstrate the completeness and usefulness of the modeling technique, a working ISA was

developed. Implementation of an existing instruction set and machine architecture was considered: such

an approach would allow use of existing support tools and benefit from existing development. Two

example machines were considered: an existing Virtual Machine standard, the Java Virtual Machine

(JVM), and a typical hardware microprocessor targeted at embedded systems, the Hitachi SH4. Existing

architectures and instruction sets contain complexities related to achieving particular requirements not

relevant to this application. For example, the JVM contains various features to allow efficient support for

the Java high level language [LY99], and the SH4 instruction set’s use of delay-slotted branch

instructions [Hit98], enhances performance in a hardware implementation but increases processor and

support tool complexity. Full control over the design allows the instruction set to be reduced to a

minimum required for program execution and instruction code formats to be selected that are logically

based on the formal model.

 The MIDAS (Microprocessor Instruction & Data Abstraction System) specification [Wri09/1]

describes two variants of a Modified Harvard Architecture, thirty two bit register ISA with a total of

thirty-five instructions in eight orthogonal groups [HP03], and a little-endian memory system. The two

variants are a stack-based machine and randomly accessible register array machine [HP03], employing

the same numerical values to implement similar instruction functionality, the differences being limited to

Register File behavior. Randomly accessible register array machines are now the most common form of

hardware-implemented microprocessors [HP03], but stack machines are still used, particularly in the field

of true VMs not intended for hardware implementation [LY99]. Therefore, demonstration of both

architectures is desirable.

The MIDAS instruction groups implement no-operation (one instruction), register-fetch (seven

instructions), register-store (four instructions), single-operand calculations (two instructions), dual-

operand calculations (thirteen instructions), operand compare (five instructions), control-flow jump (two

instructions), and machine halt (one instruction). A Harvard Architecture was selected for its guaranteed

prevention of executable corruption by bad data accesses, increasing integrity in safety-critical

applications. In order to reduce ISA size and complexity the MIDAS ISA is not optimized for

performance: for example the single operand compare-to-zero instruction provided by many typical ISAs

is not implemented [Hit98]. The basic instruction is an eight bit field, treated as two four bit sub-fields

(nibbles). The instruction group is specified by the most significant nibble (MSN) and the precise

operation given by a modifier in the least significant nibble (LSN). Instruction groups and modifiers are

derived from the groupings constructed in the formal model, allowing for an efficient decoding scheme to

be implemented, as events applying to whole instruction groups need only decode the MSN.

6. Model Description

6.1 High-Level Structure

The Event-B model addresses only those aspects of a microprocessor’s functionality needed to specify an

ISA. Therefore, only a functional description of the instruction set and its associated aspects are included,

such as those parts of the memory system visible to the instruction stream. No consideration of the

mechanisms within a typical microprocessor needed to efficiently implement an ISA is necessary. For

example the model does not address instruction pipelining, memory caching or speculative execution

mechanisms [HP03]. The model consists of a common refinement chain, which is then split into separate

refinements for two variants of an example ISA constructed for demonstration of the technique. The

refinement structure is summarized in Figure 1.

Figure 1: Model Refinement Structure

The model consists of twenty-eight stages of common refinement, which may be summarized into

seven distinct layers: StateMch, ControlFlow, RegArrayMch, MemMch, ConFlagMch, CalcMch and

MidasMch. Each layer confers particular properties on the model, described individually. The MidasStk

refinement branch introduces a further five layers of refinement: the MidasReg branch another two.

Consideration is given to the order of model refinement in order to allow the model to be re-used with

minimal modifications. Some layers of the model provide essential definitions necessary to facilitate later

refinements, and therefore these must be positioned earlier in the refinement process. For example, the

 StateMch

 ControlFlow

RegArrayMch

MemMch

 ConFlagMch

CalcMch

MidasMch

MidasReg MidasStk

StateMch layer is required to define the exception condition concept and its triggering of machine

deadlock, before any specific exception conditions, such as program counter out-of-range detection, may

be defined in the ControlFlow. Other refinements may be performed at any point in the modeling process,

and are therefore postponed to as late as possible in order to maximize the flexibility of the model. For

example, the refinements specifying the exact calculations supported by the MIDAS VM in CalcMch are

positioned prior to only the final MidasMch layer. The decision to place the CalcMch layer after the

ConFlagMch layer is made on the assumption that supported calculation operations will be modified

more regularly than the mechanism used to implement conditionality. Refinements describing the higher

level architectural features of the machine, such as the register and memory address spaces, may be easily

identified and placed before implementation-specific features, such as exact instruction code values.

Decisions on the relative importance of separate architectural issues are harder to make, and judgment

based on projected applications is required. However, such an approach does not consider the

consequences of a large number of events being constructed early in the refinement process, and therefore

propagating the associated management and proving burden to all subsequent refinements.

 The separate modeling of executable and data memories allows its applicability to Harvard or Von

Neumann memory architectures (i.e. whether the loaded binary program is visible or write-able in the

machine’s memory system) [LBSL97,Lee89]. In the case of the MIDAS demonstrator, a Modified

Harvard Architecture, in which the read-only region is visible but the binary program is not, is selected at

the MidasMch layer.

6.2 The StateMch Layer

StateMch initially abstracts the ISA to the most trivial possible form by defining a single unguarded event

acting on only two state variables: an instruction and a machine status, shown in the simplified event in

Equation (1).

Iterate ≙

BEGIN

 act1: inst :∈ INST

 act2: status :∈ STATE

END

(1)

The instruction is a member of INST, defined as an abstract SET in the accompanying context, which

represents the complete instruction space of the machine (i.e. both valid and invalid instructions). Thus all

aspects of the actual instruction, including its symbolic representation and method of extraction, are

abstracted. The StateMch layer then uses four more refinement steps to construct the state machine

illustrated in

Figure 2, defining the modes of operation of the machine and their possible transitions.

Figure 2: StateMch State Transitions

These modes are LOADING (of the program to be executed), RUNNING (of the loaded program),

HALTED (i.e. commanded shutdown of the machine) and FAILED (i.e. detection of an error in the

program). The model is initialized to LOADING and may continue in that state until loading is complete,

when RUNNING is entered. From RUNNING, RUNNING is re-entered on successful execution of a

valid instruction, HALTED is entered by the execution of a valid halt instruction, or FAILED entered by

execution of an invalid instruction or unsuccessful execution of a valid instruction. Execution results in

the modification of inst by unspecified means. Once HALTED or FAILED is entered, the machine enters

explicit deadlock by the definition of guarded events with no actions defined. Thus a mechanism for the

refining of execution exceptions and the guaranteed stopping of the machine in this event is defined.

Successive division of the INST SET defines instruction groups affecting the state machine.

Statements are introduced to explicitly state that the derived sub-sets are inclusive of the entire parent set

(in order to ensure that the entire instruction space is decoded) and that the constructed sub-sets are

mutually exclusive of each other (to ensure that instruction sub-sets take only one set of properties). This

technique is used throughout the model to hierarchically derive all instruction sub-sets. For example, the

Event-B fragment shown in Equation (2) describes the initial decomposition of INST into the valid and

invalid instructions within the instruction space. In the example the ValidInst sub-set is explicitly stated as

non-empty, whilst the InvalidInst sub-set is not. This represents the possibility of a machine in which all

possible instruction values are populated with decoded instructions, but a machine with no instructions

cannot occur. The actual numerical values of the instruction sub-sets is a feature of a particular ISA, and

is therefore postponed to the last refinement stages of the model.

CONSTANTS

 ValidInst // Valid instructions

 InvalidInst // Invalid instructions

AXIOMS

 ValidInst ⊆ INST // Subset of all instructions

 ValidInst ≠ ∅ // Some valid instructions must exist

 InvalidInst ⊆ INST // Subset of all instructions

 ValidInst ⋂ InvalidInst = ∅ // Mutually exclusive

 ValidInst ⋃ InvalidInst = INST // Complete coverage

(2)

An example refinement is shown in Equation (3), in which the detection of an invalid instruction

leading the FAILED state being entered is constructed.

Loading
incomplete

Loading
complete

Valid
instruction

Halt
instruction

Error

RUNNING

FAILED

HALTED

LOADING

BadInst ≙≙≙≙

WHEN

 grd1: inst ∈ InvalidInst

 grd2: status ∈ RUNNING

THEN

 act1: status := FAILED

END

(3)

6.3 The ControlFlow Layer

In StateMch, the selection of the instruction is abstracted by the apparent modification of a single

instruction variable inst. ControlFlow refines this abstraction to a mechanism common to most

computing machines: selection of the instruction from a fixed array instArray via a modifiable indexing

variable instPtr, representing the PC. The invariants establishing this refinement are given in Equation

(4).

INVARIANTS

 typedef1: instArray ∈ InstArrayDom → INST

 typedef2: instPtr ∈ InstArrayDom

 gluing: inst = instArray(instPtr)

(4)

ControlFlow uses four more refinement steps to construct the mechanisms by which the PC may be

modified (shown in Figure 3), or its attempted modification to illegal values detected. Two instruction

groups are defined by their action on the PC: IncrInst which increments the PC by a fixed size, and

FlowInst which allows it to be overwritten by a computed value (i.e. a jump or branch). Events guarded

by FlowInst are further refined to introduce conditionality and separate PC-relative or absolute calculation

of the overwriting vector.

Figure 3: ControlFlow Actions

6.4 The RegArrayMch Layer

The RegArrayMch layer introduces a state variable regArray, representing the machine’s register file.

The registers are defined as an indexed array of indeterminate type DATA by the invariant shown in

Equation (5).

Program

counter

+N1

+N2

Vector

Conditional

regArray ∈ RegArrayDom → DATA (5)

Definition of the registers as an array allows the greatest flexibility for the construction of different

register architectures in later refinements. Conventional randomly accessible arrays may be constructed

by defining indexes free to select any value in the domain RegArrayDom. Fixed, specialist registers may

also be constructed by the selection of an element via a fixed index and subsequently refined to a separate

data element if desired. Stack architectures may be constructed by the refinement of the selecting index to

a global stack-pointer variable.

An instruction sub-set allowing the modification of this newly introduced state is initially constructed

by dividing the normal, PC-incrementing instruction using the previously described method, creating

NullInst and RegWriteInst sub-sets. This method of division of NullInst is used throughout the model to

construct instructions capable of modifying newly introduced state variables. Further refinement steps

within RegArrayMch sub-divide RegWriteInst into different operation types, summarized in Figure 4.

FetchInst imports data from outside the register file. MoveInst transfers data between locations in the

register file unchanged. SingleOpInst populates a member of the register file with the result of a function

that takes a single member of the file as input. DualOpInst populates a member of the register file with

the result of a function that takes two members of the file as input.

Figure 4: RegArrayMch Data Movements

FetchInst is further refined to specify three possible external sources of data: the numerical value of the

PC represented as data, an item of immediate data (i.e. data embedded within the instruction itself), and

data from the as yet undefined memory system.

6.5 The MemMch Layer

MemMch introduces another new state variable memArray, representing the machine’s memory system.

The memory is again defined as an indexed array of indeterminate type DATA by the invariant shown in

Equation (6).

memArray ∈ MemArrayDom → DATA (6)

Division of NullInst is again used to construct a modifying instruction MemWriteInst. Unlike the

multiple refinements anticipated for the regArray state, refinement of memArray to only a single

paradigm is expected: a randomly accessible data array, indexed from a selected element of the register

file (see Figure 5).

FetchOk

func
func

MoveOk

DualOpOk SingleOpOk

Figure 5: MemMch location selection

This reflects the universality of this pattern in most computing machines [HP03] and is incrementally

constructed by the first five refinement steps of MemMch.

The final four refinement steps construct a function performed by most computing machines: the

storage of thirty-two and sixteen bit data structures across multiple locations of an eight bit memory

system [HP03]. The details of this refinement are given in Section 7.4.

6.6 The ConFlagMch Layer

ConFlagMch introduces a new boolean state variable conFlag to refine the abstract conditional defined in

the jump instruction constructed in the ControlFlow layer. Use of a separately modified boolean flag is

representative of some ISAs [Hit98] but not all [Pat07]. Therefore, this may be regarded as the point at

which the refinement process begins to specify a particular ISA from the much more general model

constructed in the previous layers.

Division of NullInst is again used to construct an abstract instruction capable of modifying the flag,

which is then split into instructions performing comparisons of two register file elements: equal, integer-

greater-than, integer-less-than, float-greater-than and float -less-than.

6.7 The CalcMch Layer

CalcMch continues the specification of an exact ISA by the splitting of SingleOpInst and DualOpInst

defined in RegArrayMch into the actual functions supported by the ISA. SingleOpInst is refined to

integer-to-floating-point cast and floating-point-to-integer cast. DualOpInst is refined to addition,

subtraction, multiplication and division for both integer and floating point, bit-wise OR, AND, XOR,

bitmap shift-left and shift-right.

6.8 The MidasMch Layer

MidasMch specifies the remaining details particular to the MIDAS ISA, excepting the register file

differences between the stack and register variants. Jump vector sources are specified as register

elements. Instruction sizes are fixed at constants (although still undefined). Instructions not implemented

by MIDAS (i.e. sixteen bit fetch-immediate) are eliminated. Precise numerical values are assigned to each

instruction via a mapping function between the INST SET and a range of the natural numbers, shown in

Equation (7).

PC

memArray regArray instArray

inst
memIndex

data

CONSTANTS

 Int2Inst // Mapping function

AXIOMS

 Int2Inst ∈ 0..255 ⤖ INST

 Inst2Inst(34) ∈ FetchImmByteInst

 Inst2Inst(35) ∈ FetchImmLongInst

THEOREMS

 (x≥34) ∧ (x≤35) ⇒ Inst2Inst(x) ∈ FetchImmInst

(7)

The separate arrays instArray and memArray are merged into a single data array memByte using the

gluing invariants shown in Equation (8).

INVARIANTS

memByte ∈ MemDom → INST

∀x.x∈InstArrayDom ⇒

 instArray(x)=(DataByte2Int;Int2Inst)(memByte(x))

∀x.x∈MemArrayDom ⇒ memArray(x)=memByte(x)

(8)

Thus concrete numerical values may be allocated to the domains of instArray and memArray within the

single domain of memByte, defining the memory map of the machine.

The event associated with the LOADING mode is refined to a state machine capable of sequentially

loading the instruction and read-only regions of the new contiguous memory space. Memory-write events

are refined to define a small region of writable IO within the memory region.

6.9 The MidasStkMch Layer

MidasStkMch introduces all refinements specific to the stack variant of the MIDAS register file. The

register specifier index for direct mode addressing is initially refined to an offset relative to a datum

index, which is subsequently refined to the top value of the stack. A new variable stkSize is introduced

and register access events are refined to access regArray relative to it.

The stkSize variable is type defined by the INVARIANT shown in Equation (9), thus enforcing the

introduction of guards defending against stack overflow and underflow, and the corresponding error

events if these conditions are entered.

stkSize ∈ 0..MaxRegArraySize (9)

6.10 The MidasRegMch Layer

MidasRegMch introduces all refinements specific to the random access variant of the MIDAS register

file. All register indexes are trivially replaced with references to the specifier byte fields within the

MIDAS instruction. As the value-range expressible by a byte field exceeds the register domain, events

detecting out-of-domain accesses are used. This is in contrast to many microprocessor ISAs in which the

instruction field may only express the register domain [Hit98].

A refined event constructing a successful NOP instruction from this layer is subsequently shown in

Figure 7 of Section 8.

6.11 Model Summary

A list of the refinement stages within the general layers described previously is given in Table 1.

Table 1. Refinement summary.

Layer Events POs

Description

StateMch 2 4 Define top-level single event

StateMchR1 5 2 Split event by status value

StateMchR2 6 1 Split RUNNING events into behavior for valid and
invalid insts

StateMchR3 7 5 Split good-inst into exec and halt instructions

StateMchR4 8 2 Split exec-inst into success and failure outcomes

ControlFlow 9 11 Refine inst to instArray/instPtr. Split exec-inst into

OK/fail/bad-PC

ControlFlowR1 12 15 Split exec-inst into increment and control-flow

ControlFlowR2 13 3 Split flow-inst into conditional/vector available/not

-available

ControlFlowR3 15 5 Split flow-inst into conditional true/false

ControlFlowR4 17 31 Split flow-inst-true into relative and absolute

RegArrayMch 20 17 Introduce data array. Split incr-inst into null-inst
and those acting on data array

RegArrayMchR1 21 4 Refine operation-ok in reg-write to src-OK and

destination-OK

RegArrayMchR2 35 70 Refine reg-write into fetch, move, single-op and

dual-op instructions

RegArrayMchR3 35 18 Define reg indexes to be immediate data in inst

RegArrayMchR4 42 47 Refine fetch data into inst-ptr, immediate or

memory

MemMch 45 24 Introduce memory. Split null-inst into null and insts

acting on memory

MemMchR01 46 5 Fetch-mem insts refined to select element from

mem via mem-index, guarded by readable flag

MemMchR02 48 6 Mem-write insts refined to select element from

mem via mem-index, guarded by readable flag

MemMchR03 48 17 Refine mem-index to address stored in reg-array.

MemMchR1 48 20 Refine reg-indexes for mem-indexes as immediate

data in instruction

MemMchR2 48 113 Refine all other reg-indexes as immediate data in

instruction

MemMchR3 52 129 Refine Data-type elements to DataLong-type. Split

fetch-immediate to byte/short/long

MemMchR4 56 57 Split mem-access insts into byte/short/long

MemMchR5 56 89 Refine mem to DataBytes. Define multi-byte data

mappings for short/long accesses

ConFlagMch 59 32 Introduce con- flag. Split null to to null and con-

flag-write. Refine flow conditionals to con-flag

ConFlagMchR1 59 16 Refine con-flag write to 2-input compare

ConFlagMchR2 59 4 Define compare src indexes as immediate data in

instruction

ConFlagMchR3 63 5 Split compares into equals/greater-than/less-than

CalcMch 82 207 Split dual-op insts into add/subtract/multiply etc.

CalcMchR1 83 24 Split single-ops insts into casts

MidasMch 83 29 Define flow vector as reg data.

MidasMchR1 87 61 Eliminate fetch-immediate-short. Split move-inst

into store and fetch.

MidasMchR2 84 0 Merge eliminated events into null-event

MidasMchR3 107 941 Merge instArray and mem into byte-array. Assign

numerical values to insts. Fix inst and data sizes

MidasMchR4 108 8 Construct loader state machine

MidasMchR5 108 13 Split store-byte to io or memory. Eliminate fetch-

bad-ptr condition

MidasMchR6 107 0 Merge fetch-bad-ptr into null-event

MidasStkMch 108 34 Refine direct addressing to datum/offset

MidasStkMchR1 107 433 Introduce stack-size. Refine reg indexes to stack-

size relative.

MidasStkMchB2C 113 719 Refinements for B2C translation

MidasRegMch 109 517 Refine reg indexes to bytes within instructions

MidasRegMchB2C 109 1166 Refinements for B2C translation

Proof Obligations (PO) for all refinement stages are discharged using all of the Rodin proving tools.

The increasing necessity for manual interaction during later refinement stages reflects the large number of

hypotheses visible to the Rodin automatic proving tools at this point, thus requiring selection by the

developer in order to achieve proof. A summary of the proof obligations and the method of discharge is

given in Table 2.

Table 2. Proof Obligation summary.

Layer Automatic

Discharge

Manual

Discharge

Total

StateMch 4 0 4

StateMchR1 2 0 2

StateMchR2 1 0 1

StateMchR3 5 0 5

StateMchR4 2 0 2

ControlFlow 25 6 31

ControlFlowR1 15 0 15

ControlFlowR2 3 0 3

ControlFlowR3 5 0 5

ControlFlowR4 11 0 11

RegArrayMch 17 4 17

RegArrayMchR1 4 0 4

RegArrayMchR2 69 1 70

RegArrayMchR3 18 0 18

RegArrayMchR4 45 2 47

MemMch 21 3 24

MemMchR01 5 0 5

MemMchR02 6 0 6

MemMchR03 17 0 17

MemMchR1 20 0 20

MemMchR2 111 2 113

MemMchR3 33 96 129

MemMchR4 29 28 57

MemMchR5 5 84 89

ConFlagMch 19 13 32

ConFlagMchR1 6 18 16

ConFlagMchR2 0 4 4

ConFlagMchR3 5 0 5

CalcMch 68 139 207

CalcMchR1 6 18 24

MidasMch 8 21 29

MidasMchR1 45 16 61

MidasMchR2 0 0 0

MidasMchR3 295 646 941

MidasMchR4 8 0 8

MidasMchR5 13 0 13

MidasMchR6 0 0 0

MidasStkMch 4 30 34

MidasStkMchR1 81 352 433

MidasStkMchB2C 411 308 719

MidasRegMch 142 375 517

MidasRegMchB2C 588 578 1166

7. Modeling of Data Elements

Modeling of an ISA within a formal environment highlights two common aspects of microprocessor

design that greatly increase specification complexity: multiple interpretations of stored data and the

fragmentation of large data elements across multiple smaller elements. For example the same thirty two

bit long-word may be treated as an integer during an addition operation or a simple bit field during shift

or bit-wise AND operations. This long-word will also be stored in memory as four contiguous 8-bit bytes,

as illustrated by Figure 6.

Figure 6: MemMch DATA/byte mapping

Figure 6 illustrates a significant side effect of this storage method for formal specification:

modification of such a data element implies modification of the data elements mapped at subsequent

locations. Such dualities are exposed to the programmer by the weak typing of the C language [KR88],

and must therefore be captured by a model.

memByteArray memArray

DataLong DataByte
 DataByte
 DataByte
 DataByte

 Data
 Data
 Data

7.1 Modeling of Data Meaning

The possibility of multiple meanings of a stored data element make the basic Event-B types insufficient,

and all data stored within the modeled machine is initially abstracted to a generic SET DATA. This allows

simple data transfers within the machine to be modeled at an abstract level. For example, the event shown

in Equation (10) specifies the transfer of data from memory to the register file during an abstract memory-

fetch operation.

WHEN

 grd1: regIndex ∈ RegArrayDom

 grd2: memIndex ∈ MemArrayDom

THEN

 act1: regArray(regIndex) := memArray(memIndex)

(10)

However, if a stored data element is used to affect the behavior of the machine within the model, type

translation functions must be introduced to explicitly state the relationship between DATA and its local

meaning. In hardware design, and in C applications, this translation is implicit, potentially leading to

ambiguity of behavior. A typical example is the translation between DATA and the integer set during

storage and extraction of the PC, requiring the introduction of the mapping functions shown in Equation

(11).

DataInt ⊆ ℤ

Data2Int ∈ DATA → DataInt

Int2Data ∈ DataInt → DATA

(11)

An example showing storage of the PC to the register file using this method is shown in Equation (12).

act1: regArray(regIndex) := Int2Data(instPtr) (12)

7.2 Modeling of Data Size

Beyond the definition of the abstract DATA type, refinements must be introduced to capture the different

data sizes used within a machine: 8-bits (byte), 16-bits (short) and thirty-two bits (long). Therefore DATA

is recursively refined into three sub-sets, representing the three sizes:

CONSTANTS

 DataLong

 DataShort

 DataByte

AXIOMS

 DataLong ⊆ DATA // Long can be contained by DATA

 DataShort ⊆ DataLong // Short can be contained by Long

 DataByte ⊆ DataShort // Byte can be contained by Short

(13)

Construction of these refinements is accompanied by refinement of the type-translation mappings

discussed in 7.1:

DataByte2Int ∈ DateByte → 0..255

DataLong2Int ∈ DateLong → -2147483647..2147483647
(14)

7.3 Modeling of Data Fragmentation

The construction of a thirty two bit DataLong from four eight bit DataByte elements is initially specified

by the following abstract mapping function:

DataBytes2DataLong ∈

 DataByte × DataByte × DataByte × DataByte →

 DataLong

(15)

Conversely, abstract record accessor mapping functions [EB06] are defined to specify the re-extraction

of these DataByte elements:

DataLong2DataByte0 ∈ DataLong → DataByte

DataLong2DataByte1 ∈ DataLong → DataByte

DataLong2DataByte2 ∈ DataLong → DataByte

DataLong2DataByte3 ∈ DataLong → DataByte

(16)

The location of each DataByte within a DataLong must then be defined. In the AXIOM given in

Equation (17), the DataLong implicitly constructed by DataBytes2DataLong is specified as four

contiguous DataBytes within a generic array:

∀A,m,n,i,l�A∈m‥n+3→DataByte ∧ i∈m‥n ⇒

 l=DataBytes2DataLong(A(i)֏A(i+1)֏A(i+2)֏A(i+3))

(17)

This AXIOM is complemented by that given in Equation (18), defining the DataByte accessed by each

record accessor function:

∀a,b,c,d,l�

 a∈DataByte ∧ b∈DataByte ∧ c∈DataByte ∧ d∈DataByte ∧

 l∈DataLong ∧ l=DataBytes2DataLong(a֏b֏c֏d) ⇒

 a=DataLong2DataByte0(l) ∧

 b=DataLong2DataByte1(l) ∧

 c=DataLong2DataByte2(l) ∧

 d=DataLong2DataByte3(l)

(18)

Collectively these statements define the machine’s byte-order, or endianess [HP03], as little-endian.

The arrangement of DataBytes within a DataLong allows similar statements to be derived as

THEOREMS for the DataByte ordering within a DataShort:

∀a,b,s� a∈DataByte ∧ b∈DataByte ∧ s∈DataShort ∧

 s=DataBytes2DataShort(a֏b) ⇒

 a=DataLong2DataByte0(s) ∧

 b=DataLong2DataByte1(s)

(19)

7.4 Modeling of Memory-Mapped Data

The machine’s memory system is initially modeled as a simple array mapping between an address range

MemDom and the generic DATA set:

memArray ∈ MemDom → DATA (20)

Refinement to a more precise specification of the memory system is performed in two stages. The

memArray is initially refined to a new array of DataLongs:

memDataLongArray ∈ MemDom → DataLong (21)

A gluing invariant establishes equivalence across the entire domain of the abstract array:

∀x • x∈MemDom ⇒ memArray(x) = memDataLongArray(x) (22)

A second refinement step refines the mapping of each address to a DataLong by refining the memory

itself to an array of DataByte in Equation (23), and a gluing INVARIANT in Equation (24) establishing

the DataLong/DataBytes mapping described in 7.3.

memDataByteArray ∈ MemByteDom → DataByte (23)

∀x�x∈MemArrayDom ⇒ memArrayDataLong(x) =

 DataBytes2DataLong(memDataByteArray(x)֏

 memDataByteArray(x+1)֏

 memArrayDataByte(x+2)֏

 memArrayDataByte(x+3))

(24)

Proof Obligations generated to prove the maintenance of this gluing invariant during memory-write

operations are discharged by instantiation of (18) or (19) for all memory locations modified by that write.

8. Implementation Generation

Event-B and the Rodin tool are intended to support automatic generation of executable source code from

sufficiently refined models [But06]. This functionality is not yet part of the current Rodin functionality,

and therefore a plug-in extension [SDF03] was developed to support a sufficient subset of Event-B to

support the VM project, translating to the C language [Wri09/2]. An example showing the final

refinement of the MIDAS NOP instruction, and its translated C implementation is given in Figure 7.

NopOk

REFINES NopOk

ANY

op

opVal

nextInstPtr

WHERE

grd6: op : DataSmall

grd7: op = mem(instPtr)

grd5: opVal : DataSmallNat

grd2: opVal= DataSmall2Nat(op)

grd1: opVal = 16

grd3: instPtr <= 99994

grd4: statusCode = 2

grd8: nextInstPtr : DataLargeNat

grd9: nextInstPtr = instPtr + 1

THEN

act1: instPtr := nextInstPtr

END

/* Event5 [NopOk] */

BOOL NopOk(void)

{

/* Local variable declarations */

DataLargeNat nextInstPtr;
DataSmall op;

DataSmallNat opVal;

/* Guard 1 */

op = mem[instPtr];

DataSmall2Nat(op,&opVal);
if(opVal!=16) return BFALSE;

/* Guard 2 */

if(instPtr>99994) return BFALSE;

/* Guard 3 */

if(statusCode!=2) return BFALSE;

/* Local assignments in actions */

nextInstPtr = (instPtr+1);

/* Actions */
instPtr = nextInstPtr;

/* Report hit */

ReportEventbEvent("NopOk",5);

return BTRUE;

}

Figure 7: Event-B event and derived C

Each event is translated to a separate C function returning a boolean signifying whether the event has

been triggered. A function is generated to call all event functions in turn until an event is triggered, or

signal if no event has been triggered at the end of the machine iteration (i.e. deadlock has occurred).

The calling function implicitly introduces determinism into models containing non-deterministic event

triggering, as events are run in the same order, defined by their position in the Event-B model, Therefore

in the case of multiple events being enabled precedence is always given to earlier events. The translator

requires that precise values are assigned to all ranges and codes, and set membership is reduced to direct

comparison operations. Range checking is performed to ensure that the implementing C type may contain

numerical values and ranges. State variables are disallowed from the right side of actions, in order to

prevent use after modification by preceding action-derived statements.

 Guard statements are automatically evaluated for one of three possible interpretations: type definition

of local parameters, assignments to local parameters, or conditional evaluations. Conditionals are

implemented as negations of the basic comparisons enabling early returns from a function, and local

parameter assignments are only calculated immediately prior to use. Thus execution is optimized and

assignments are only evaluated in a valid context. Comments and instrumentation is inserted to provide

traceability between the model and implementation.

9. MIDAS Demonstration

In order to test the constructed MIDAS VMs, a support environment is provided using conventional

coding techniques. The environment provides a mechanism for download of binary images into MIDAS

executable memory, and text output via a virtual console. These facilities are integrated with the

automatically generated MIDAS implementations using conventional C development tools. Each MIDAS

variant was built into 2 different calling environments: a standard environment used to run an error-free

binary compiled from C, and a test environment used to execute a series of binary images coded in C,

assembler or machine-code to exercise all the events-derived functions of the VM.

C compilers targeted at each MIDAS variant were provided via an appropriate GCC assembler and

compiler back-end [Sta01]. Thus a hand-coded C test-suite could be compiled, loaded and executed,

demonstrating the suitability of the MIDAS VM for supporting C programs. The test-suite, which was not

developed using Formal Methods, is not a complete test of the C language, but includes the most common

constructs and invokes the major executable fragments implemented by the compiler. An assembler-

coded bootstrap performs segment initialization and machine shutdown. String initialization demonstrates

the correct use of the read-only data region, length calculations test integer-based looping, and output to

the virtual console tests character manipulation. Integer-to-string conversions test integer arithmetic and

integer digit display via C switch statements test use of dispatch tables. Passing of function arguments

and results test variable passing via stack pushes. Explicit tests exercise floating point arithmetic and

casting. Integer field extraction functions test bit-wise shift and masking functions. Nested for and if

statements test in-function nesting. Nested calls test deeply stacked function calls and returns.

10. Lessons Learned

Experience gained during the development of the generic VM model and MIDAS demonstrators allow

future improvements to both Event-B and the Rodin tool to be suggested. Model development using

multiple refinement steps requires considerable repetition of event guard and action sections. In larger

models refinement can lead to small changes being difficult to identify amongst previously constructed

functionality, and as the principle of guard strengthening allows additional guards to be legitimately

introduced, erroneous guards may be introduced, potentially leading to unintended deadlock conditions.

Such issues may be prevented and detected by improved tool support: more concise statement of model

refinements (as now provided by the Event-B EXTENDS statement) and enabledness checking tools (as

currently proposed).

Within the Rodin tool, the concept of a stored model database, indirectly editable via specialized tools,

allows for efficient storage and traversing of model logic by tool extensions. Improvements in the

ergonomics of the editing interface are required to achieve productivity similar to that of conventional

text editing interfaces. Search, replace and pasting capabilities within a single view would allow faster,

less error-prone development. Early versions of these tools are now available and should greatly enhance

the development process.

As shown in Section 6.11, current Rodin automatic proving tools are vulnerable to scaling issues. A

particular problem is the inability to select pertinent hypotheses from the large lists generated for large

models, requiring developer intervention to select manageable sub-sets for PO discharge.

In common with other logical proving tools, the Rodin provers are susceptible to incorrect discharge of

proof obligations due to accidental introduction of contradictory predicates. It is suggested that vacuity-

checking techniques be introduced to defend against such conditions, as incorporated in other

commercially available tools [Bee97].

11. Future Work

11.1 Model Checking

The VM model has been developed using incremental refinement techniques, with all generated POs

discharged (as summarized in Table 2) in order to prove consistency between refinement steps. However,

this analysis does not guarantee correctness of the model itself. In the case of the VM, checking against

implicit deadlock states is of particular importance. Tools exist for the checking of model correctness

[LB03], and use of these for checking of the VM model is desirable.

11.2 Architecture Management Tools

The construction of larger models would be enhanced by the development of high-level tools to assist in

the understanding and navigation of deeply refined models containing large numbers of events, such as

MIDAS. For example graphical display of a model’s refinement hierarchy allowing the browsing and

selection of particular events would greatly enhance productivity.

11.3 Prover Scaling Support

Relatively superficial enhancements to existing proving tools could be implemented to overcome the

scaling issues already discussed and enhance automatic proving rates. For example, the ability for a

developer to add programmable tactics, allowing pattern searching of available hypotheses and automatic

addition of new hypotheses would be a powerful enhancement. Such techniques are particularly relevant

to applications such as MIDAS, which contain many similar POs requiring repetitive application of

relatively simple (currently manual) tactics.

11.4 Proof Inspection Tools

Current Rodin proving tools enable the automatic and semi-automatic discharge of the hundreds of POs

generated by a model such as MIDAS: an essential capability if such Formal Methods are to be practical

in this scale. However, only limited ability to review a discharged proof is currently available, although

provided by other tools [BCo06]. This capability would allow the manual checking of proofs if required,

and allow a developer to plan proof tactics during manual proving, by inspection of similar existing

proofs. Tools listing the hypotheses and axioms used by a proving tool to discharge a PO could provide a

useful first step towards a more complete proof description.

11.5 Automatic Test Generation

Formally derived models have been recognized as a possible basis for generation of testing criteria

[UL07]. The VM application allows the opportunity for testing to be performed on a deployed machine,

test inputs being provided by the loading of appropriate binary executables.

11.6 Full C Testing

The MIDAS ISA and compiler have been demonstrated to support a hand-coded example application:

testing of the VM against a complete C test-suite is required to fully demonstrate the VM [She07]. The

MIDAS ISA has been specified to demonstrate the Event-B modeling technique without regard to other

metrics such as performance: expansion of the ISA to include additional performance-enhancing

instructions and features, within the Event-B modeling paradigm discussed here, is possible.

11.7 Deterministic Model

The VM model currently allows for non-determinism under certain conditions. For example, two separate

events are constructed to raise separate exceptions if either the source or destination are unavailable on an

attempted data transfer, but the event triggered in the case of both being unavailable is not defined.

Expansion of the model to deterministically enumerate all such conditions would yield a more precise

specification of VM behavior under such error conditions, albeit at the cost of greatly increased model

size.

12. Conclusions

Event-B allows the generic properties of binary Instruction Set Architectures to be captured in an abstract

model, thus providing a re-usable template for the development of Formally Proved computing machines.

The Event-B refinement process allows an incremental structure in this abstract model, maximizing its re-

usability, and its concretization to a level sufficient for automatic conversion to a usable implementation.

Constructed relationships derived within the model may also be used to guide specification of new ISAs.

 The Rodin tool enables the management of the multiple refinement stages and Formal Proof analysis

required for such a technique, and provides the capability for necessary implementation generation tools

to be developed.

 The technique has been demonstrated by the construction of such a model, and its refinement to

multiple implementations in the form of Virtual Machines capable of running compiled binary images.

13. References

[Abr96] Abrial,J-R: "The B-Book: Assigning Programs to Meanings", 1996

[ABH06] Abrial,J-R Butler,M Hallerstede,S Voisin,L “An Open Extensible Tool Environment for Event-

B”, Formal Methods and Software Engineering, SpringerLink, 2006

[AMD07] AMD Inc “128-Bit SSE5 Instruction Set”, 2007

[BCo06] B-Core “The B-Toolkit User Manual” B-Core (UK) Ltd,, 2006

[Bee97] Beer,I Ben-David,S “RuleBase: Model checking at IBM”, CAV, 1997

[BH91] Brock,B Hunt,W “Report on the Formal Specification and Partial Verification of the VIPER

Microprocessor”, Proceedings of the Sixth Annual Conference on Computer Assurance, Systems
Integrity, Software Safety and Process Security, 1991

[But06] Butler,M “Rodin Deliverable D16 Prototype Plug-in Tools”, http//rodin.cs.ncl.ac.uk, 2006

[Cas02] Caset,L “Formal Development of an Embedded Verifier for Java Card Byte Code”, International

Conference on Dependable Systems and Networks, 2002

[Ecl09] Eclipse. Eclipse platform homepage. http://www.eclipse.org/, 2009

[EB06] Evans,N Butler,M “A Proposal for Records in Event-B” Formal Methods 2006, 2006

[EG07] Evans,N Grant,N "Towards the Formal Verification of a Java Processor in Event-B", Proceedings

of the BAC-FACS Refinement Workshop, 2007

[Fox03] Fox,A "Formal Specification and Verification of ARM6", Theorem Proving in Higher Order

Logics, SpringerLink, 2003

[GB90] Graham,B Birtwistle,G "Formalising the design of an SECD chip", Hardware Specification,
Verification and Synthesis: Mathematical Aspects, SpringerLink, 1990

[HP03] Hennessy,J Patterson,D “Computer Architecture, A Quantitive Approach”, Morgan Kaufmann,

2003

[Hit98] Hitachi Ltd. “SH7707 Hardware Manual”, 1998

[Hun94] Hunt, W “FM8501: A Verified Microprocessor”, Lecture Notes in Artificial Intelligence

Subseries of Lecture Notes in Computer Science, Springer-Verlag, 1994
[KR88] Kernighan,B Ritchie,D “The C Programming Language”, Prentice Hall, 1988

[KN01] Klein,G Nipkow,T "Verified bytecode verifiers", Foundations of Software Science and

Computation Structures, SpringerLink, 2001

[LBSL97] Lapsley,P Bier,J Shoham,A Lee,E “DSP Processor Fundamentals” IEEE Press 1997

[Lee89] Lee,E “Programmable DSP Processors part I and II” IEEE ASSP Mag Oct 1988, Jan 1989

[LB03] Leuschel,M Butler,M “ProB: A Model Checker for B” FME 2003, SpringerLink, 2003
[LY99] Lindholm,T Yellin,F “The Java Virtual Machine Specification, Second Edition”, 1999

[MAV05] Metayer, C Abrial, J-R, Voisin, L “Rodin Deliverable 3.2 Event-B Language”,

http//rodin.cs.ncl.ac.uk, 2005

[Pat07] Patterson,D “Computer Organization and Design: The Hardware/Software Interface”, Morgan

Kaufmann, 2007
[Qia99] Qian,Z "A Formal Specification of Java Virtual Machine Instructions for Objects, Methods and

Subroutines", Formal Syntax and Semantics of Java, SpringerLink, 1999

[Sch01] Schneider,S “The B-Method An Introduction”, Palgrave, 2001

[SDF03] Shavor,S D’Anjou,J Fairbrother,S “The Java Developer’s Guide to Eclipse” Addison-Wesley,

2003

[She07] Sherridan,F “Practical Testing of a C99 Compiler Using Output Comparison”, Software: Practical
and Experience, Volume 37 Issue 14, 2007

[Spi89] Spivey,J.M “The Z Notation: A Reference Manual”, Prentice-Hall, 1989

[SM95] Srivas,M Miller,S “Formal Verification of an Avionics Microprocessor”, Langley Research

Center, 1995

[Sta01] Stallman,R “Using and Porting the GNU Compiler Collection”, Free Software Foundation, 2001

[SSB01] Stark,R Schmid,J Borger,E. “Java and the Java Virtual Machine”, Springer, 2001
[UL07] Utting, M Legeard, B Practical Model-Based Testing – A Tools Approach, Morgan Kaufmann,

2007

[Wri08] Wright,S “Using EventB to Create a Virtual Machine Instruction Set Architecture”, Abstract State

Machines, B and Z, SpringerLink, 2008

[Wri09/1] Wright,S. “MIDAS Machine Specification”, Bristol University

http://www.cs.bris.ac.uk/Publications, 2009
[Wri09/2] Wright,S “Automatic Generation of C from Event-B”, Workshop on Integration of Model-based

Formal Methods and Tools, 2009

