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Abstract. We provide a verification technique for a class of programs working

on integer arrays of finite, but not a priori bounded length. We use the logic

of integer arrays SIL [13] to specify pre- and post-conditions of programs and

their parts. Effects of non-looping parts of code are computed syntactically on

the level of SIL. Loop pre-conditions derived during the computation in SIL

are converted into counter automata (CA). Loops are automatically translated—

purely on the syntactical level—to transducers. Pre-condition CA and transducers

are composed, and the composition over-approximated by flat automata with dif-

ference bound constraints, which are next converted back into SIL formulae, thus

inferring post-conditions of the loops. Finally, validity of post-conditions speci-

fied by the user in SIL may be checked as entailment is decidable for SIL.

1 Introduction

Arrays are an important data structure in all common programming languages. Auto-

matic verification of programs using arrays is a difficult task since they are of a finite,

but often not a priori fixed length, and, moreover, their contents may be unbounded too.
Nevertheless, various approaches for automatic verification of programs with arrays

have recently been proposed.

In this paper, we consider programs over integer arrays with assignments, condi-
tional statements, and non-nested while loops. Our verification technique is based on

a combination of the logic of integer arrays SIL [13], used for expressing pre-/post-

conditions of programs and their parts, and counter automata (CA) and transducers,
into which we translate both SIL formulae and program loops in order to be able to

compute the effect of loops and to be able to check entailment.
SIL (Single Index Logic) allows one to describe properties over arrays of inte-

gers and scalar variables. SIL uses difference bound constraints to compare array el-

ements situated within a window of a constant size. For instance, the formula (∀i.0 ≤
i ≤ n1 − 1 → b[i] ≥ 0) ∧ (∀i.0 ≤ i ≤ n2 − 1 → c[i] < 0) describes a post-condition of

a program partitioning an array a into an array b containing its positive elements and

an array c containing its negative elements. SIL formulae are interpreted over program
states assigning integers to scalar variables and finite sequences of integers to array

variables. As already proved in [13], the set of models of an ∃∗∀∗-SIL formula corre-

sponds naturally to the set of traces of a flat CA with loops labelled by difference bound
constraints. This entails decidability of the satisfiability problem for ∃∗∀∗-SIL.

In this paper we take a novel perspective on the connection between ∃∗∀∗-SIL and

CA, allowing to benefit from the advantages of both formalisms. Indeed, the logic is
useful to express human-readable pre-/post-conditions of programs and their parts, and
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to compute the post-image of (non-looping) program statements symbolically. On the

other hand, automata are suitable for expressing the effects of program loops.

In particular, given an ∃∗∀∗-SIL formula, we can easily compute the strongest post-

condition of an assignment or a conditional statement in the same fragment of the logic.
Upon reaching a program loop, we then translate the ∃∗∀∗-SIL formula ϕ describing

the set of states at the beginning of the loop into a CA Aϕ encoding its set of models.
Next, to characterise the effect of a loop L, we translate it—purely syntactically—into

a transducer TL, i.e., a CA describing the input/output relation on scalars and array el-

ements implemented by L. The post-condition of L is then obtained by composing TL

with Aϕ. The result of the composition is a CA Bϕ,L representing the exact set of states

after any number of iterations of L. Finally, we translate Bϕ,L back into ∃∗∀∗-SIL, ob-

taining a post-condition of L w.r.t. ϕ. However, due to the fact that counter automata
are more expressive than ∃∗∀∗-SIL, this final step involves a (refinable) abstraction.

We first generate a flat CA that over-approximates the set of traces of Bϕ,L, and then

translate the flat CA back into ∃∗∀∗-SIL.

Our approach thus generates automatically a human-readable post-condition for

each program loop, giving the end-user some insight of what the program is doing.

Moreover, as these post-conditions are expressed in a decidable logic, they can be used
to check entailment of user-specified post-conditions given in the same logic.

We validate our approach by successfully and fully algorithmically verifying several

array-manipulating programs, like splitting of an array into positive and negative ele-

ments, rotating an array, inserting into a sorted array, etc. Some of the steps were done
manually as we have not yet implemented all of the techniques—a full implementation

that will allow us to do more examples is underway.

Due to space reasons, we skip below some details of the techniques and their proofs,
which are deferred to [4].

Related Work. The area of automated verification of programs with arrays and/or syn-
thesising loop invariants for such programs has recently received a lot of attention. For

instance, [8, 18, 1, 2, 16, 12] build on templates of universally quantified loop invariants

and/or atomic predicates provided by the user. The form of the sought invariants is then
based on these templates. Inferring the invariants is tackled by various approaches, such

as predicate abstraction using predicates with Skolem constants [8], constraint-based
invariant synthesis [1, 2], or predicate abstraction combined with interpolation-based

refinement [16].

In [20], an interpolating saturation prover is used for deriving invariants from finite

unfoldings of loops. In the very recent work of [17], loop invariants are synthesised by
first deriving scalar invariants, combining them with various predefined first-order array

axioms, and finally using a saturation prover for generating the loop invariants on arrays.

This approach can generate invariants containing quantifier alternation. A disadvantage
is that, unlike our approach, the method does not take into account loop preconditions,

which are sometimes necessary to find reasonable invariants. Also, the method does not

generate invariants in a decidable logical fragment, in general.

Another approach, based on abstract interpretation, was used in [11]. Here, arrays

are suitably partitioned, and summary properties of the array segments are tracked.

The partitioning is based on heuristics related to tracking the position of index vari-
ables. These heuristics, however, sometimes fail, and human guidance is needed. The
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approach was recently improved in [15] by using better partitioning heuristics and rela-

tional abstract domains to keep track of the relations of the particular array slices.

Recently, several works have proposed decidable logics capable of expressing com-

plex properties of arrays [6, 21, 9, 3, 10]. In general, these logics lack the capability of
universally relating two successive elements of arrays, which is allowed in our previ-

ous work [14, 13]. Moreover, the logics of [6, 21, 9, 3, 10] do not give direct means of
automatically dealing with program loops, and hence, verifying programs with arrays.

In this work, we provide a fully algorithmic verification technique that uses the decid-

able logic of [13]. Unlike many other works, we do not synthesise loop invariants, but
directly post-conditions of loops with respect to given preconditions, using a two-way

automata-logic connection that we establish.

2 Preliminaries

For a set A, we denote by A∗ the set of finite sequences of elements from A. For such

a sequence σ ∈ A∗, we denote by |σ| its length, and by σi the element at position i, for
0 ≤ i < |σ|. We denote by N the set of natural numbers, and by Z the set of integers. For

a function f : A → B and a set S ⊆ A, we denote by f ↓S the restriction of f to S. This
notation is naturally lifted to sets, pairs or sequences of functions.

Given a formula ϕ, we denote by FV (ϕ) the set of its free variables. If we denote

a formula as ϕ(x1, ...,xn), we assume FV (ϕ) ⊆ {x1, ...,xn}. For ϕ(x1, . . . ,xn), we de-

note by ϕ[t1/x1, . . . ,tn/xn] the formula which is obtained from ϕ by replacing each free
occurrence of x1, . . . ,xn by the terms t1, . . . ,tn, respectively. Moreover, we denote by

ϕ[t/x1, . . . ,xn] the formula that arises from ϕ when all free occurrences of all the vari-

ables x1, . . . ,xn are replaced by the same term t. Given a formula ϕ and a valuation ν of
its free variables, we write ν |= ϕ if by replacing each free variable x of ϕ with ν(x) we

obtain a valid formula. By |= ϕ we denote the fact that ϕ is valid.

A difference bound constraint (DBC) is a conjunction of inequalities of the forms
(1) x− y ≤ c, (2) x ≤ c, or (3) x ≥ c, where c ∈ Z is a constant. We denote by ⊤ (true)

the empty DBC.

A counter automaton (CA) is a tuple A = 〈X ,Q, I,−→,F〉, where: X is a finite set of

counters ranging over Z, Q is a finite set of control states, I ⊆ Q is a set of initial states,

−→ is a transition relation given by a set of rules q
ϕ(X ,X ′)
−−−−→ q′ where ϕ is an arithmetic

formula relating current values of counters X to their future values X ′ = {x′ | x ∈ X},

and F ⊆ Q is a set of final states.

A configuration of a CA A is a pair 〈q,ν〉 where q ∈ Q is a control state, and ν :

X → Z is a valuation of the counters in X . For a configuration c = 〈q,ν〉, we designate

by val(c) = ν the valuation of the counters in c. A configuration 〈q′,ν′〉 is an immediate

successor of 〈q,ν〉 if and only if A has a transition rule q
ϕ(X ,X ′)
−−−−→ q′ such that ν∪ν′ |=

ϕ. Given two control states q,q′ ∈ Q, a run of A from q to q′ is a finite sequence of
configurations c1c2 . . .cn with c1 = 〈q,ν〉, cn = 〈q′,ν′〉 for some valuations ν,ν′ : X →Z,

and ci+1 is an immediate successor of ci, for all 1 ≤ i < n. Let R (A) denote the set

of runs of A from some initial state q0 ∈ I to some final state q f ∈ F , and Tr(A) =
{val(c1)val(c2) . . .val(cn) | c1c2 . . .cn ∈ R (A)} be its set of traces.
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For two counter automata Ai = 〈Xi,Qi, Ii,→i,Fi〉, i = 1,2 we define the product

automaton as A1⊗A2 = 〈X1∪X2,Q1×Q2, I1×I2,→,F1×F2〉, where 〈q1,q2〉
ϕ
→〈q′1,q

′
2〉

if and only if q1
ϕ1→1 q′1, q2

ϕ2→2 q′2 and |= ϕ ↔ ϕ1 ∧ϕ2. We have that, for all sequences

σ ∈ Tr(A1 ⊗A2), σ↓X1
∈ Tr(A1) and σ↓X2

∈ Tr(A2), and vice versa.

3 Counter Automata as Recognisers of States and Transitions

In the rest of this section, let a = {a1,a2, . . . ,ak} be a set of array variables, and b =
{b1,b2, . . . ,bm} be a set of scalar variables. A state 〈α, ι〉 is a pair of valuations α : a →
Z
∗, and ι : b →Z. For simplicity, we assume that |α(a1)|= |α(a2)|= . . . = |α(ak)|> 0,

and denote by |α| the size of the arrays in the state.

In the following, let X be a set of counters that is partitioned into value counters

x = {x1,x2, . . . ,xk}, index counters i = {i1, i2, . . . , ik}, parameters p = {p1, p2, . . . , pm},

and working counters w. Notice that a is in a 1:1 correspondence with both x and i, and

that b is in a 1:1 correspondence with p.

Definition 1. Let 〈α, ι〉 be a state. A sequence σ ∈ (X → Z)∗ is said to be consistent
with 〈α, ι〉, denoted σ ⊢ 〈α, ι〉 if and only if, for all 1 ≤ p ≤ k, and all 1 ≤ r ≤ m:

1. for all q ∈ N with 0 ≤ q < |σ|, we have 0 ≤ σq(ip) ≤ |α|,
2. for all q,r ∈ N with 0 ≤ q < r < |σ|, we have σq(ip) ≤ σr(ip),
3. for all s ∈ N with 0 ≤ s ≤ |α|, there exists 0 ≤ q < |σ| such that σq(ip) = s,

4. for all q ∈ N with 0 ≤ q < |σ|, if σq(ip) = s < |α|, then σq(xp) = α(ap)s,

5. for all q ∈ N with 0 ≤ q < |σ|, we have σq(pr) = ι(br).

Intuitively, a run of a CA represents the contents of a single array by traversing all

of its entries in one move from the left to the right. The contents of multiple arrays is
represented by arbitrarily interleaving the traversals of the different arrays. From this

point of view, for a run to correspond to some state (i.e., to be consistent with it), it

must be the case that each index counter either keeps its value or grows at each step
of the run (point 2 of Def. 1) while visiting each entry within the array (points 1 and

3 of Def. 1).4 The value of a certain entry of an array ap is coded by the value that

the array counter xp has when the index counter ip contains the position of the given
entry (point 4 of Def. 1). Finally, values of scalar variables are encoded by values of the

appropriate parameter counters which stay constant within a run (point 5 of Def. 1).

A CA is said to be state consistent if and only if for every trace σ ∈ Tr(A), there

exists a (unique) state 〈α, ι〉 such that σ ⊢ 〈α, ι〉. We denote Σ(A) = {〈α, ι〉 | ∃ σ ∈
Tr(A) . σ ⊢ 〈α, ι〉} the set of states recognised by a CA.

A consequence of Definition 1 is that, in between two adjacent positions of a trace,

in a state-consistent CA, the index counters never increase by more than one. Conse-
quently, each transition whose relation is non-deterministic w.r.t. an index counter can

be split into two transitions: an idle (no change) and a tick (increment by one). In the

4 In fact, each index counter reaches the value |α| which is by one more than what is needed to

traverse an array with entries 0, . . . , |α| − 1. The reason is technical, related to the composi-

tion with transducers representing program loops (which produce array entries with a delay of

one step and hence need the extra index value to produce the last array entry) as will become

clear later. Note that the entry at position |α| is left unconstrained.
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following, we will silently assume that each transition of a state-consistent CA is either

idle or tick w.r.t. a given index counter.

For any set U = {u1, ...,un}, let us denote U i = {ui
1, ...,u

i
n} and Uo = {uo

1, ...,u
o
n}. If

s = 〈α, ι〉 and t = 〈β,κ〉 are two states such that |α| = |β|, the pair 〈s,t〉 is referred to as

a transition. A CA T = 〈X ,Q, I,−→,F〉 is said to be a transducer iff its set of counters X

is partitioned into: input counters xi and output counters xo, where x = {x1,x2, . . . ,xk},
index counters i = {i1, i2, . . . , ik}, input parameters pi and output parameters po, where

p = {p1, p2, . . . , pm}, and working counters w.

Definition 2. A sequence σ ∈ (X → Z)∗ is said to be consistent with a transition 〈s,t〉,
where s = 〈α, ι〉 and t = 〈β,κ〉, denoted σ ⊢ 〈s,t〉 if and only if, for all 1 ≤ p ≤ k and

all 1 ≤ r ≤ m:

1. for all q ∈ N with 0 ≤ q < |σ|, we have 0 ≤ σq(ip) ≤ |α|,
2. for all q,r ∈ N with 0 ≤ q < r < |σ|, we have σq(ip) ≤ σr(ip),
3. for all s ∈ N with 0 ≤ s ≤ |α|, there exists 0 ≤ q < |σ| such that σq(ip) = s,

4. for all q ∈ N with 0 ≤ q < |σ|, if σq(ip) = s < |α|, then σq(x
i
p) = α(ap)s,

5. for all q ∈ N with 0 ≤ q < |σ|, if σq(ip) = s > 0, then σq(x
o
p) = β(ap)s−1,

6. for all q ∈ N with 0 ≤ q < |σ|, we have σq(pi
r) = ι(br) and σ(po

r ) = κ(br).

The intuition behind the way the transducers represent transitions of programs with

arrays is very similar to the way we use counter automata to represent states of such
programs—the transducers just have input as well as output counters whose values

in runs describe the corresponding input and output states. Note that the definition of

transducers is such that the output values occur with a delay of exactly one step w.r.t.
the corresponding input (cf. point 5 in Def. 2).5

A transducer T is said to be transition consistent iff for every trace σ ∈ Tr(T ) there

exists a transition 〈s,t〉 such that σ ⊢ 〈s,t〉. We denote Θ(T ) = {〈s,t〉 | ∃ σ∈ Tr(T ) . σ⊢
〈s,t〉} the set of transitions recognised by a transducer.

Dependencies between Index Counters. Counter automata and transducers can rep-
resent one array in more than one way, which poses problems when composing them.

For instance, the array a = {0 7→ 4,1 7→ 3,2 7→ 2} may be encoded, e.g., by the runs

(0,4),(0,4),(1,3),(2,2),(2,2) and (0,4),(1,3),(1,3),(2,2), where the first elements
of the pairs are the values taken by the index counters, and the second elements are the

values taken by the value counters corresponding to a. To obtain a sufficient criterion

that guarantees that a CA and a transducer can be composed, meaning that they share
a common representation of arrays, we introduce a notion of dependence. Intuitively,

we call two or more index counters dependent if they increase at the same moments in
all possible runs of a CA or transducer.

For the rest of this section, let X ⊂ i be a fixed set of index counters. A depen-

dency δ is a conjunction of equalities between elements belonging X . For a sequence of

valuations σ ∈ (X → Z)∗, we denote σ |= δ if and only if σl |= δ, for all 0 ≤ l < |σ|.
For a dependency δ, we denote [[δ]] = {σ∈ (X →Z)∗ | there exists a state s such that

σ ⊢ s and σ |= δ}, i.e., the set of all sequences that correspond to an array and that

5 The intuition is that it takes the transducer one step to compute the output value, once it reads

the input. It is possible to define a completely synchronous transducer, we, however, prefer this

definition for technical reasons related to the translation of program loops into transducers.
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satisfy δ. A dependency δ1 is said to be stronger than another dependency δ2, denoted

δ1 → δ2, if and only if the first order logic entailment between δ1 and δ2 is valid. Note

that δ1 → δ2 if and only if [[δ1]] ⊆ [[δ2]]. If δ1 → δ2 and δ2 → δ1, we write δ1 ↔ δ2. For
a state consistent counter automaton (transition consistent transducer) A, we denote by

∆(A) the strongest dependency δ such that Tr(A) ⊆ [[δ]].

Definition 3. A CA A = 〈x,Q, I,−→,F〉, where x ⊆ X, is said to be state-complete if and

only if for all states s ∈ Σ(A), and each sequence σ ∈ (X → Z)∗, such that σ ⊢ s and

σ |= ∆(A), we have σ ∈ Tr(A).

Intuitively, an automaton A is state-complete if it represents any state s ∈ Σ(A) in all

possible ways w.r.t. the strongest dependency relation on its index counters.

Composing Counter Automata with Transducers. For a counter automaton A and
a transducer T , Σ(A) represents a set of states, whereas Θ(T ) is a transition relation.

A natural question is whether the post-image of Σ(A) via the relation Θ(T ) can be

represented by a CA, and whether this automaton can be effectively built from A and T .

Theorem 1. If A is a state-consistent and state-complete counter automaton with value

counters x = {x1, ..., xk}, index counters i = {i1, ..., ik}, and parameters p = {p1, ..., pm},

and T is a transducer with input (output) counters xi (xo), index counters i, and input

(output) parameters pi (po) such that ∆(T )[x/xi] → ∆(A), then one can build a state-

consistent counter automaton B, such that Σ(B) = {t | ∃ s ∈ Σ(A) . 〈s,t〉 ∈ Θ(T )}, and,

moreover ∆(B) → ∆(T )[x/xi].

4 Singly Indexed Logic

We consider three types of variables. The scalar variables b,b1,b2, ... ∈ BVar appear

in the bounds that define the intervals in which some array property is required to hold
and within constraints on non-array data variables. The index variables i, i1, i2, ...∈ IVar

and array variables a,a1,a2, ...∈AVar are used in array terms. The sets BVar, IVar, and

AVar are assumed to be pairwise disjoint.

n,m, p . . . ∈ Z integer constants

b,b1,b2, . . . ∈ BVar scalar variables

φ Presburger constraints

i, j, i1, i2, . . . ∈ IVar index variables

a,a1,a2, . . . ∈ AVar array variables

∼ ∈ {≤,≥}

B := n | b+n array-bound terms

G := ⊤ | B ≤ i ≤ B | G∧G | G∨G guard expressions

V := a[i+n] ∼ B | a1[i+n]−a2[i+m] ∼ p | i−a[i+n] ∼ m | V ∧V value expressions

F := ∀i . G →V | φ(B1,B2, . . . ,Bn) | ¬F | F ∧ F formulae

Fig. 1. Syntax of the Single Index Logic

Fig. 1 shows the syntax of the Single Index Logic SIL. We use the symbol ⊤ to
denote the boolean value true. In the following, we will write i < f instead of i ≤ f −1,

i = f instead of f ≤ i ≤ f , ϕ1 ∨ ϕ2 instead of ¬(¬ϕ1 ∧¬ϕ2), and ∀i . υ(i) instead

of ∀i . ⊤ → υ(i). If B1(b1), ...,Bn(bn) are bound terms with free variables b1, ...,bn ∈
BVar, respectively, we write any Presburger formula ϕ on terms a1[B1], ...,an[Bn] as

6



a shorthand for (
Vn

k=1∀ j . j = Bk → ak[ j] = b′k)∧ϕ[b′1/a1[B1], ...,b
′
n/an[Bn]], where

b′1, ...,b
′
n are fresh scalar variables.

The semantics of a formula ϕ is defined in terms of the forcing relation 〈α, ι〉 |= ϕ
between states and formulae. In particular, 〈α, ι〉 |= ∀i . γ(i,b) → υ(i,a,b) if and only

if, for all values n in the set
T

{[−m, |α|−m− 1] | a[i+ m] occurs in υ}, if ι |= γ[n/i],
then also ι∪α |= υ[n/i]. Intuitively, the value expression γ should hold only for those
indices that do not generate out of bounds array references.

We denote [[ϕ]] = {〈α, ι〉 | 〈α, ι〉 |= ϕ}. The satisfiability problem asks, for a given

formula ϕ, whether [[ϕ]]
?
= /0. We say that an automaton A and a SIL formula ϕ corre-

spond if and only if Σ(A) = [[ϕ]].
The ∃∗∀∗ fragment of SIL is the set of SIL formulae which, when written in prenex

normal form, have the quantifier prefix of the form ∃i1 . . .∃in∀ j1 . . .∀ jm. As shown

in [13] (for a slightly more complex syntax), the ∃∗∀∗ fragment of SIL is equivalent

to the set of existentially quantified boolean combinations of (1) Presburger constraints
on scalar variables b, and (2) array properties of the form ∀i . γ(i,b) → υ(i,b,a).

Theorem 2 ([13]). The satisfiability problem is decidable for the ∃∗∀∗ fragment of SIL.

Below, we establish a two-way connection between ∃∗∀∗-SIL and counter automata.

Namely, we show how loop pre-conditions written in ∃∗∀∗-SIL can be translated to CA
in a way suitable for their further composition with transducers representing program

loops (for this reason the translation differs from [13]). Then, we show how ∃∗∀∗-SIL

formulae can be derived from the CA that we obtain as the product of loop transducers
and pre-condition CA.

4.1 From ∃∗∀∗-SIL to Counter Automata

Given a pre-condition ϕ expressed in ∃∗∀∗-SIL, we build a corresponding counter au-

tomaton A, i.e., Σ(A) = [[ϕ]]. Without loosing generality, we will assume that the pre-

condition is satisfiable (which can be effectively checked due to Theorem 2).
For the rest of this section, let us fix a set of array variables a = {a1,a2, . . . ,ak} and

a set of scalar variables b = {b1,b2, . . . ,bm}. As shown in [13], each ∃∗∀∗-SIL formula

can be equivalently written as a boolean combination of two kinds of formulae:

(i) array properties of the form ∀i . f ≤ i ≤ g → υ, where f and g are bound terms,

and υ is either: (1) ap[i] ∼ B, (2) i− ap[i] ∼ n, or (3) ap[i]− aq[i + 1] ∼ n, where

∼∈ {≤,≥}, 1 ≤ p,q ≤ k, n ∈ Z, and B is a bound term.
(ii) Presburger constraints on scalar variables b.

Let us now fix a (normalised) pre-condition formula ϕ(a,b) of ∃∗∀∗-SIL. By push-

ing negation inwards (using DeMorgan’s laws) and eliminating it from Presburger con-
straints on scalar variables, we obtain a boolean combination of formulae of the forms

(i) or (ii) above, where only array properties may occur negated.
W.l.o.g., we consider only pre-condition formulae without disjunctions.6 For such

formulae ϕ, we build CA Aϕ with index counters i = {i1, i2, ..., ik}, value counters x =
{x1,x2, ...,xk}, and parameters p = {p1, p2, ..., pm}, corresponding to the scalars b.

For a term or formula f , we denote by f the term or formula obtained from f by

replacing each bq by pq, 1 ≤ q ≤ m, respectively. The construction of Aϕ is defined

recursively on the structure of ϕ:

6 Given a formula containing disjunctions, we put it in DNF and check each disjunct separately.
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– If ϕ = ψ1 ∧ψ2, then Aϕ = Aψ1
⊗Aψ2

.
– If ϕ is a Presburger constraint on b, then Aϕ = 〈X ,Q,{qi},−→,{q f}〉 where:

• X = {pq | bq ∈ FV (ϕ)∩BVar, 1 ≤ q ≤ m},
• Q = {qi,q f },

• qi
ϕ ∧

V

x∈X x′=x
−−−−−−−−→ q f and q f

V

x∈X x′=x
−−−−−−→ q f .

– For ϕ being ∀i . f ≤ i ≤ g→ υ, Aϕ and A¬ϕ have states Q = {qi,q1,q2,q3,q f }, with
qi and q f being the initial and final states, respectively. Intuitively, the automaton

waits in q1 increasing its index counters until the lower bound f is reached, then

moves to q2 and checks the value constraint υ until the upper bound g is reached.
Finally, the control moves to q3 and the automaton scans the rest of the array until

the end. In each state, the automaton can also non-deterministically choose to idle,

which is needed to ensure state-completeness when making a product of such CA.
For υ of type (1) and (2), the automaton has one index (ip) and value (xp) counters,

while for υ of type (3), there are two dependent index (ip, iq) and value (xp,xq)

counters. The full definitions of Aϕ and A¬ϕ are given in [4], for space reasons.

We aim now at computing the strongest dependency ∆(Aϕ) between the index coun-

ters of Aϕ, and, moreover, at showing that Aϕ is state-complete (cf. Definition 3). Since
Aϕ is defined inductively, on the structure of ϕ, ∆(Aϕ) can also be computed inductively.

Let δ(ϕ) be the formula defined as follows:
– δ(ϕ) = ⊤ if ϕ is a Presburger constraint on b,

– for ϕ≡∀i . f ≤ i≤ g→υ, δ(ϕ)
∆
= δ(¬ϕ)

∆
=

{

⊤ if υ is ap[i] ∼ B or i−ap[i] ∼ n,
ip = iq if υ is ap[i]−aq[i+ 1]∼ n,

– δ(ϕ1 ∧ϕ2) = δ(ϕ1)∧δ(ϕ2).

Theorem 3. Given a satisfiable ∃∗∀∗-SIL formula ϕ, the following hold for the CA

Aϕ defined above: (1) Aϕ is state consistent, (2) Aϕ is state complete, (3) Aϕ and ϕ
correspond, and (4) δ(Aϕ) ↔ ∆(Aϕ).

4.2 From Counter Automata to ∃∗∀∗-SIL

The purpose of this section is to establish a dual connection, from counter automata to

the ∃∗∀∗ fragment of SIL. Since obviously, counter automata are much more expressive
than ∃∗∀∗-SIL, our first concern is to abstract a given state-consistent CA A by a set of

restricted CA AK
1 ,AK

2 , . . . ,AK
n , such that Σ(A) ⊆

Tn
i=1 Σ(AK

i ), and for each AK
i , 1 ≤

i ≤ n, to generate an ∃∗∀∗-SIL formula ϕi that corresponds to it. As a result, we obtain
a formula ϕA =

Vn
i=1 ϕi such that Σ(A) ⊆ [[ϕA]].

Let ρ(X ,X ′) be a relation on a given set of integer variables X , and I(X) be a predi-

cate defining a subset of Z
k. We denote by ρ(I) = {X ′ | ∃X ∈ I . 〈X ,X ′〉 ∈ R} the image

of I via R, and we let ρ∧ I = {〈X ,X ′〉 ∈ ρ | X ∈ I}. By ρn, we denote the n-times re-

lational composition ρ ◦ρ ◦ . . .◦ρ, ρ∗ =
W

n≥0 ρn is the reflexive and transitive closure

of ρ, and ⊤ is the entire domain Z
k. If ρ is a difference bound constraint, then ρn is

also a difference bound constraint, for a fixed constant n > 0, and ρ∗ is a Presburger

definable relation [7, 5] (but not necessarily a difference bound constraint).
Let D(ρ) denote the strongest (in the logical sense) difference bound relation D s.t.

ρ ⊆ D. If ρ is Presburger definable, D(ρ) can be effectively computed7, and, moreover,

7 D(ρ) can be computed by finding the unique minimal assignment ν : {zi j | 1 ≤ i, j ≤ k} → Z

that satisfies the Presburger formula φ(z) : ∀X∀X ′ . ρ(X ,X ′) →
V

xi,x j∈X∪X ′ xi −x j ≤ zi j.
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ρ ρ ρ
...

K times

q2 q3

...

ρ(x,x′)

q1 qK

D(ρK(⊤)∧ρ)

Fig. 2. K-abstraction of a relation

if ρ is a finite union of n difference bound relations, this takes O(n×4k2) time8, where

k is the number of free variables in ρ.

We now define the restricted class of CA, called flat counter automata with differ-

ence bound constraints (FCADBC) into which we abstract the given CA. A control

path in a CA A is a finite sequence q1q2...qn of control states such that, for all 1 ≤ i < n,

there exists a transition rule qi
ϕi
−→ qi+1. A cycle is a control path starting and ending in

the same control state. An elementary cycle is a cycle in which each state appears only
once, except for the first one, which appears both at the beginning and at the end. A CA

is said to be flat (FCA) iff each control state belongs to at most one elementary cycle.

An FCA such that every relation labelling a transition occurring in an elementary cycle
is a DBC, and the other relations are Presburger constraints, is called an FCADBC.

With these notations, we define the K-unfolding of a one-state self-loop CA Aρ =

〈X ,{q},{q},q
ρ
−→ q,{q}〉 as the FCADBC AK

ρ = 〈X ,QK
ρ ,{q1},→

K
ρ ,QK

ρ 〉, where QK
ρ =

{q1,q2, ...,qK} and →K
ρ is defined such that qi

ρ
−→ qi+1, 1 ≤ i < K, and qK

ρK(⊤) ∧ ρ
−−−−−−→ qK .

The K-abstraction of Aρ, denoted AK
ρ (cf. Fig. 2), is obtained from AK

ρ by replacing

the transition rule qK
ρK(⊤) ∧ ρ
−−−−−−→ qK with the difference bound rule qK

D(ρK(⊤) ∧ ρ)
−−−−−−−−→ qK .

Intuitively, the information gathered by unfolding the concrete relation K times prior to

the abstraction on the loop qK −→ qK , allows to tighten the abstraction, according to the

K parameter. Notice that the AK
ρ abstraction of a relation ρ is an FCADBC with exactly

one initial state, one self-loop, and all states final. The following lemma proves that the

abstraction is sound, and that it can be refined, by increasing K.

Lemma 1. Given a relation ρ(X ,X ′) on X = {x1, ...,xk}, the following facts hold:

(1) Tr(Aρ) = Tr(AK
ρ )⊆ Tr(AK

ρ ), for all K > 0, and (2) Tr(AK2
ρ )⊆ Tr(AK1

ρ ) if K1 ≤ K2.

For the rest of this section, assume a set of arrays a = {a1,a2, . . . ,ak} and a set of

scalars b = {b1,b2, . . . ,bm}. At this point, we can describe an abstraction for counter

automata that yields from an arbitrary state-consistent CA A, a set of state-consistent
FCADBC AK

1 ,AK
2 , ...,AK

n , whose intersection of sets of recognised states is a superset

of the original one, i.e., Σ(A) ⊆
Tn

i=1 Σ(AK
i ). Let A be a state-consistent CA with coun-

ters X partitioned into value counters x = {x1, ...,xk}, index counters i = {i1, ..., ik},
parameters p = {p1, ..., pm} and working counters w. We assume that the only actions

on an index counter i ∈ i are tick (i′ = i+ 1) and idle (i′ = i), which is sufficient for the

CA that we generate from SIL or loops.

The main idea behind the abstraction method is to keep the idle relations separate

from ticks. Notice that, by combining (i.e., taking the union of) idle and tick transitions,

8 If ρ = ρ1∨ρ2 ∨ . . .∨ρn, and each ρi is represented by a (2k)2-matrix Mi, D(ρ) is given by the

pointwise maximum among all matrices Mi, 1 ≤ i ≤ n.
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we obtain non-deterministic relations (w.r.t. index counters) that may break the state-

consistency requirement imposed on the abstract counter automata. Hence, the first step

is to eliminate the idle transitions.

Let δ be an over-approximation of the dependency ∆(A), i.e., ∆(A) → δ. In partic-
ular, if A was obtained as in Theorem 1, by composing a pre-condition automaton with

a transducer T , and if we dispose of an over-approximation δ of ∆(T ), i.e., ∆(T ) → δ,
we have that ∆(A) → δ, cf. Theorem 1—any over-approximation of the transducer’s

dependency is an over-approximation of the dependency for the post-image CA.

The dependency δ induces an equivalence relation on index counters: for all i, j ∈ i,

i≃δ j iff δ→ i = j. This relation partitions i into n equivalence classes [is1
], [is2

], ..., [isn ],
where 1 ≤ s1,s2, ...,sn ≤ k. Let us consider n identical copies of A: A1,A2, ...,An. Each

copy A j will be abstracted w.r.t. the corresponding ≃δ-equivalence class [is j
] into AK

j

obtained as in Fig. 2. Thus we obtain Σ(A) ⊆
Tn

j=1 Σ(AK
j ), by Lemma 1.

We describe now the abstraction of the A j copy of A into AK
j . W.l.o.g., we assume

that the control flow graph of A j consists of one strongly connected component (SCC)—

otherwise we separately replace each (non-trivial) SCC by a flat CA obtained as de-

scribed below. Out of the set of relations R A j
that label transitions of A j, let υ

j
1, ...,υ

j
p

be the set of idle relations w.r.t. [is j
], i.e., υ

j
t →

V

i∈[is j
] i
′ = i, 1 ≤ t ≤ p, and θ

j
1, ...,θ

j
q be

the set of tick relations w.r.t. [is j
], i.e., θ

j
t →

V

i∈[is j
] i
′ = i+1, 1 ≤ t ≤ q. Note that since

we consider index counters belonging to the same ≃δ-equivalence class, they either all

idle or all tick, hence {υ
j
1, . . . ,υ

j
p} and {θ

j
1, . . . ,θ

j
q} form a partition of R A j

.

Let ϒj = D(
Wp

t=1 υ
j
t ) be the best difference bound relation that approximates the idle

part of A j, and ϒ∗
j be its reflexive and transitive closure9. Let Θ j =

Wq
t=1 D(ϒ∗

j )◦θ
j
t , and

let AΘ j
be the one-state self-loop automaton whose transition is labelled by Θ j, and AK

j

be the K-abstraction of AΘ j
(cf. Fig. 2). It is to be noticed that the abstraction replaces

a state-consistent FCA with a single SCC by a set of state-consistent FCADBC with

one self-loop. The soundness of the abstraction is proved in the following:

Lemma 2. Given a state-consistent CA A with index counters i and a dependency δ s.t.

∆(A) → δ, let [is1
], [is2

], . . . , [isn ] be the partition of i into ≃δ-equivalence classes. Then

each AK
i , 1 ≤ i ≤ n is state-consistent, and Σ(A) ⊆

Tn
i=1 Σ(AK

i ), for any K ≥ 0.

The next step is to build, for each FCADBC AK
i , 1 ≤ i ≤ n, an ∃∗∀∗-SIL formula

ϕi such that Σ(AK
i ) = [[ϕi]], for all 1 ≤ i ≤ n, and, finally, let ϕA =

Vn
i=1 ϕi be the needed

formula. The generation of the formulae builds on that we are dealing with CA of the

form depicted in the right of Fig. 2.10

For a relation ϕ(X ,X ′), X = x∪ p, let Ti(ϕ) be the SIL formula obtained by re-

placing (1) each unprimed value counter xs ∈ FV (ϕ)∩x by as[i], (2) each primed value

9 Since ϒj is a difference bound relation, by [7, 5], we have that ϒ∗
j is Presburger definable.

10 In case we start from a CA with more SCCs, we get a CA with a DAG-shaped control flow

interconnecting components of the form depicted in Fig. 2 after the abstraction. Such a CA

may be converted to SIL by describing each component by a formula as above, parameterised

by its beginning and final index values, and then connecting such formulae by conjunctions

within particular control branches and taking a disjunction of the formulae derived for the

particular branches. Due to lack of space, we give this construction in detail in [4] only.
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counter x′s ∈ FV (ϕ)∩x′ by as[i+ 1], and (3) each parameter pr ∈ FV (ϕ)∩p by br, for

1 ≤ s ≤ k, 1 ≤ r ≤ m.

For the rest, fix an automaton AK
j of the form from Fig. 2 for some 1 ≤ j ≤ n,

and let qp
ρ
−→ qp+1, 1 ≤ p < K, be its sequential part, and qK

λ
−→ qK its self-loop.

Let [is j
] = {it1 , it2 , ..., itq} be the set of relevant index counters for AK

j , and let xr =

x \ {xt1 , ...,xtq} be the set of redundant value counters. With these notations, the de-

sired formula is defined as ϕ j = (
WK−1

l=1 τ(l)) ∨ (∃b . b ≥ 0∧ τ(K)∧ ω(b)), where:

τ(l):

l−1̂

s=0

Ts(∃i,xr,x
′
r,w. ρ)

ω(b): (∀i . K ≤ j < K + b → Ti(∃i,xr,x
′
r,w. λ)) ∧

T0(∃i,x,x′,w. λb[K/it1 , ..., itq ][K + b−1/i′t1, ..., i
′
tq
])

Here, b ∈ BVar is a fresh scalar denoting the number of times the self-loop qK
λ
−→ qK is

iterated. λb denotes the formula defining the b-times composition of λ with itself.11

Intuitively, τ(l) describes arrays corresponding to runs of AK
j from q1 to ql , for

some 1 ≤ l ≤ K, without iterating the self-loop qK
λ
−→ qK , while ω(b) describes the

arrays corresponding to runs going through the self-loop b times. The second conjunct
of ω(b) uses the closed form of the b-th iteration of λ, denoted λb, in order to capture the

possible relations between b and the scalar variables b corresponding to the parameters

p in λ, created by iterating the self-loop.

Theorem 4. Given a state-consistent CA A with index counters i and given a depen-

dency δ such that ∆(A) → δ, we have Σ(A) ⊆ [[ϕA]], where:

– ϕA =
Vn

i=1 ϕi, where ϕi is the formula corresponding to AK
i , for all 1 ≤ i ≤ n, and

– AK
1 ,AK

2 , . . . ,AK
n are the K-abstractions corresponding to the equivalence classes

induced by δ on i.

5 Array Manipulating Programs

b ∈ BVar, a ∈ AVar, i ∈ IVar, n ∈ Z, c ∈ N

ASGN ::= LHS = RHS

LHS ::= b | a[i+ c]
T RM ::= LHS | i

RHS ::= T RM | -T RM | TRM+n

CND ::= CND && CND | RHS ≤ RHS

Fig. 3. Assignments and conditions

We consider programs consisting of as-

signments, conditional statements, and
non-nested while loops in the form shown

in Fig. 4, working over arrays AVar and

scalar variables BVar (for a formal syn-
tax, see [4]). In a loop, we assume a 1:1

correspondence between the set of arrays

AVar and the set of indices IVar. In other
words, each array is associated exactly one index variable. Each index i ∈ IVar is ini-

tialised at the beginning of a loop using an expression of the form b+n where b ∈ BVar

and n ∈ Z. The indices are local to the loop. The body Sl
1; ...;Sl

nl
; of each loop branch

consists of zero or more assignments followed by a single index increment statement

incr(I), I ⊆ IVar. The syntax of the assignments and boolean expressions used in

conditional statements is shown in Fig. 3. We consider a simple syntax to make the
presentation of the proposed techniques easier: various more complex features can be

handled by straightforwardly extending the techniques described below.
A state of a program is a pair 〈l,s〉 where l is a line of the program and s is a state

〈α, ι〉 defined as in Section 3. The semantics of program statements is the usual one

11 Since λ is difference bound relation, λb can be defined by a Presburger formula [7, 5].
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(e.g., [19]). For simplicity of the further constructions, we assume that no out-of-bound

array references occur in the programs—such situations are considered in [4].

Considering the program statements given in Fig. 3, we have developed a strongest
post-condition calculus for the ∃∗∀∗-SIL fragment. This calculus captures the semantics

of the assignments and conditionals, and is used to deal with the sequential parts of the

program (the blocks of statements outside the loops). It is also shown that ∃∗∀∗-SIL is
closed for strongest post-conditions. Full details are given in [4].

5.1 From Loops to Counter Automata

Given a loop L starting at control line l, such that l′ is the control line immediately fol-

lowing L, we denote by ΘL = {〈s,t〉 | there is a run of L from 〈l,s〉 to 〈l′,t〉} the transi-

tion relation induced by L.12 We define the loop dependency δL as the conjunction of
equalities ip = iq, ip, iq ∈ IVar, where (1) ep ≡ eq where e1 and e2 are the expressions

initialising ip and iq and (2) for each branch of L finished by an index increment state-
ment incr(I), ip ∈ I ⇐⇒ iq ∈ I. The equivalence relation ≃δL

on index counters is

defined as before: ip ≃δL
iq iff |= δL → ip = iq.

whilea1:i1=e1,...,ak:ik=ek
(C)

i f (C1) S1
1; ...;S1

n1
;

else i f (C2) S2
1; ...;S2

n2
;

...

else i f (Ch−1) Sh−1
1 ; ...;Sh−1

nh−1
;

else Sh
1; ...;Sh

nh
;

Fig. 4. A while loop

Assume that we are given a loop L as in Fig. 4
with AVar = {a1, . . . ,ak}, IVar = {i1, . . . , ik}, and

BVar = {b1, . . . ,bm} being the sets of array, index,

and scalar variables, respectively. Let I1, I2, . . . , In ⊆
IVar be the partition of IVar into equivalence

classes, induced by ≃δL
. For E being a condition,

assignment, index increment, or an entire loop, we
define dE : AVar → N ∪ {⊥} as dE(a) = max{c |
a[i+ c] occurs in E} provided a is used in E , and dE(a) =⊥ otherwise. The transducer

TL = 〈X ,Q,{q0},−→,{q f in}〉, corresponding to the program loop L, is defined below:

– X = {xi
r,x

o
r , ir | 1≤ r ≤ k}∪{wi

r,l | 1 ≤ r ≤ k,1 ≤ l ≤ dL(ar)}∪{wo
r,l | 1 ≤ r ≤ k, 0≤

l ≤ dL(ar)}∪{pi
r, po

r ,wr | 1≤ r ≤m}∪{wN} where x
i/o
r , 1≤ r ≤ k, are input/output

array counters, p
i/o
r , 1 ≤ r ≤ m, are parameters storing input/output scalar values,

and wr, 1 ≤ r ≤ m, are working counters used for the manipulation of arrays and
scalars (wN stores the common length of arrays).

– Q = {q0,qpre,qloop,qsu f ,q f in}∪{ql
r | 1 ≤ l ≤ h,0 ≤ r < nl}.

– The transition rules of TL are the following. We assume an implicit constraint x′ = x

for each counter x ∈ X such that x′ does not appear explicitly:

• q0
ϕ
−→ qpre, ϕ =

V

1≤r≤m(wr = pi
r) ∧ wN > 0 ∧

V

1≤r≤k(ir = 0 ∧ xi
r = wo

r,0) ∧
V

1≤r≤k

1≤l≤dL(ar)
(wi

r,l = wo
r,l) (the counters are initialised).

• For each ≃δL
-equivalence class I j, 1≤ j ≤ n, qpre

ϕ
−→ qpre with ϕ =

V

1≤r≤k(ir <

ξ(er))∧ξ(incr(I)) (TL copies the initial parts of the arrays untouched by L).

• qpre
ϕ
−→ qloop, ϕ =

V

1≤r≤k ir = ξ(er) (TL starts simulating L).

• For each 1 ≤ l ≤ h, qloop
ϕ
−→ ql

0, ϕ = ξ(C)∧
V

1≤r<l(¬ξ(Cr))∧ ξ(Cl) where

Ch = ⊤ (TL chooses the loop branch to be simulated).

12 Note that we ignore non-terminating runs of the loop in case there are some—our concern is

not to check termination of the loop, but correctness of terminating runs of the loop.
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• For each 1≤ l ≤ h, 1≤ r ≤ nl , ql
r−1

ξ(Sl
r)−−−→ q where q = ql

r if r < nl , and q = qloop

otherwise (the automaton simulates one branch of the loop).

• qloop
ϕ
−→ qsu f , ϕ = ¬ξ(C)∧

V

1≤r≤m(wr = po
r ) (TL finished the simulation of the

actual execution of L).

• For each ≃δL
-equivalence class I j, 1 ≤ j ≤ n, and ir ∈ I j, qsu f

ϕ
−→ qsu f , ϕ = ir <

wN ∧ ξ(incr(I j)) (copy the array suffixes untouched by the loop).

• qsu f
ϕ
−→ q f in, ϕ =

V

1≤r≤k ir = wN (all arrays are entirely processed).

The syntactical transformation ξ of assignments and conditions preserves the struc-
ture of these expressions, but replaces each br by the counter wr and each ar[ir + c]
by wo

r,c for br ∈ BVar, ar ∈ AVar, ir ∈ IVar, and c ∈ N. On the left-hand sides of the

assignments, future values of the counters are used (cf. [4]). For increment statements
we define, for all ir ∈ IVar:

– ξ(incr(ir)) : xi
r
′
= wi

r,1 ∧
V

1<l≤dL(ar) wi′
r,l−1 = wi

r,l ∧ xo
r
′ = wo

r,0 ∧
V

0<l≤dL(ar) wo′
r,l−1 = wo

r,l ∧wi′
r,dL(ar) = wo ′

r,dL(ar)∧ i′r = ir + 1, if dL(ar) > 0,

– ξ(incr(ir)) : xi
r
′
= wo ′

r,0 ∧ xo
r
′ = wo

r,0 ∧ i′r = ir + 1, if dL(ar) = 0.

For the increment of a set of indices, we extend this definition pointwise.
The main idea of the construction is the following. TL preserves the exact sequences

of operations done on arrays and scalars in L, but performs them on suitably chosen

counters instead, exploiting the fact that the program always accesses the arrays through
a bounded window only, which is moving from the left to right. The contents of this

window is stored in the working counters. The values stored in these counters are shifted

among the counters at each increment step. In particular, the initial value of an array cell
ar[l] is stored in wo

r,dL(ar)
for dL(ar) > 0 (the case of dL(ar) = 0 is just a bit simpler).

This value can then be accessed and/or modified via wo
r,q where q ∈ {dL(ar), ...,0} in

the iterations l − dL(ar), ..., l, respectively, due to copying wo
r,q into wo

r,q−1 whenever

simulating incr(ir) for q > 0. At the same time, the initial value of ar[l] is stored in

wi
r,dL(ar)

, which is then copied into wi
r,q for q ∈ {dL(ar)− 1, ...,1} and finally into xi

r,

which happens exactly when ir reaches the value l. Within the simulation of the next
incr(ir) statement, the final value of ar[l] appears in xo

r , which is exactly in accordance

with how a transducer expresses a change in a certain cell of an array (cf. Def. 2).

Note also that the value of the index counters ir is correctly initialised via evaluating
the appropriate initialising expressions er, it is increased at the same positions of the

runs in both the loop L and the transducer TL, and it is tested within the same conditions.

Moreover, the construction takes care of appropriately processing the array cells which
are accessed less than the maximum possible number of times (i.e., less than δL(ar)+1-

times) by (1) “copying” from the input xi
r counters to the output xo

r counters the values of
all the array cells skipped at the beginning of the array by the loop, (2) by appropriately

setting the initial values of all the working array counters before simulating the first

iteration of the loop, and (3) by finishing the pass through the entire array even when
the simulated loop does not pass it entirely.

The scalar variables are handled in a correct way too: Their input value is recorded in

the pi
r counters, this value is initially copied into the working counters wr which are mod-

ified throughout the run of the transducer by the same operations as the appropriate pro-
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gram variables, and, at the end, the transducer checks whether the po
r counters contain

the right output value of these variables.

Finally, as for what concerns the dependencies, note that all the arrays whose indices
are dependent in the loop (meaning that these indices are advanced in exactly the same

loop branches and are initialised in the same way) are processed at the same time in

the initial and final steps of the transducers (when the transducer is in the control states
qpre or qsu f ). Within the control paths leading from qloop to qloop, indices of such arrays

are advanced at the same time as these paths directly correspond to the branches of the
loop. Hence, the working counters of these arrays have always the same value, which

is, however, not necessarily the case for the other arrays.

It is thus easy to see that we can formulate the correctness of the translation as
captured by the following Theorem.

Theorem 5. Given a program loop L, the following hold: (1) TL is a transition-consistent

transducer, (2) Θ(L) = Θ(TL), and (3) ∆(TL) → δL.

The last point of Theorem 5 ensures that δL is a safe over-approximation of the
dependency between the index counters of TL. This over-approximation is used in The-

orem 1 to check whether the post-image of a pre-condition automaton A can be effec-

tively computed, by checking δT → ∆(A). In order to meet requirements of Theorem 1,
one can extend TL in a straightforward way to copy from the input to the output all the

arrays and integer variables which appear in the program but not in L.

6 Examples

In order to validate our approach, we have performed proof-of-concept experiments

with several programs handling integer arrays. Table 1 reports the size of the derived
post-image automata (i.e., the CA representing the set of states after the main program

loop) in numbers of control states and counters. The automata were slightly optimised

using simple, lightweight static techniques (eliminating useless counters, compacting
sequences of idling transitions with the first tick transition, eliminating clearly infeasi-

ble transitions). The result sizes give a hint on the simplicity and compactness of the
obtained automata. As our prototype implementation is not completed to date, we have

performed several steps of the translation into counter automata and back manually. The

details of the experiments are given in [4].

Table 1. Examples

program control states counters

init 4 8

partition 4 24

insert 7 19

rotate 4 15

The init example is the classical initialisa-

tion of an array with zeros. The partition ex-

ample copies the positive elements of an array a

into another array b, and the negative ones into

c. The insert example inserts an element on

its corresponding position in a sorted array. The
rotate example takes an array and rotates it by

one position to the left. For all examples from Table 1, a human-readable post-condition

describing the expected effect of the program has been inferred by our method.

7 Conclusion

In this paper, we have developed a new method for the verification of programs with
integer arrays based on a novel combination of logic and counter automata. We use

a logic of integer arrays to express pre- and post-conditions of programs and their parts,
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and counter automata and transducers to represent the effect of loops and to decide en-

tailments. We have successfully validated our method on a set of experiments. A full

implementation of our technique, which will allow us to do more experiments, is cur-
rently under way. In the future, we are, e.g., planning to investigate possibilities of using

more static analyses to further shrink the size of the generated automata, optimisations

to be used when computing transitive closures needed within the translation from CA
to SIL, adjusted for the typical scenarios that happen in our setting, etc.
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