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GIRSANOV THEORY UNDER A FINITE ENTROPY CONDITION
CHRISTIAN LEONARD

ABSTRACT. This paper is about Girsanov’s theory. It (almost) doesn’t contain new
results but it is based on a simplified new approach which takes advantage of the (weak)
extra requirement that some relative entropy is finite. Under this assumption, we present
and prove all the standard results pertaining to the absolute continuity of two continuous-
time processes on R? with or without jumps. We have tried to give as much as possible
a self-contained presentation.

The main advantage of the finite entropy strategy is that it allows us to replace
martingale representation results by the simpler Riesz representations of the dual of a
Hilbert space (in the continuous case) or of an Orlicz function space (in the jump case).
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1. INTRODUCTION

This paper is about Girsanov’s theory. It (almost) doesn’t contain new results but it is
based on a simplified new approach which takes advantage of the (weak) extra requirement
that some relative entropy is finite. Under this assumption, we present and prove all the
standard results pertaining to the absolute continuity of two continuous-time processes
on R? with or without jumps.

This article intends to look like lecture notes and we have tried to give as much as
possible a self-contained presentation of Girsanov’s theory. The author hopes that it could
be useful for students and also to readers already acquainted with stochastic calculus.

The main advantage of the finite entropy strategy is that it allows us to replace mar-
tingale representation results by the simpler Riesz representations of the dual of a Hilbert
space (in the continuous case) or of an Orlicz function space (in the jump case). The
gain is especially interesting in the jump case where martingale representation results are
not easy, see [Jac7d. Another feature of this simplified approach is that very few about
exponential martingales is needed.

2000 Mathematics Subject Classification. 60G07, 60J60, 60J75, 60G44.
Key words and phrases. Stochastic processes, relative entropy, Girsanov’s theory, diffusion processes,
processes with jumps.
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2 CHRISTIAN LEONARD

Girsanov’s theory studies the relation between a reference process R and another process
P which is assumed to be absolutely continuous with respect to R. In particular, it is
known that if R is the law of an R?valued semimartingale, then P is also the law of a
semimartingale. In its wide meaning, this theory also provides us with a formula for the
Radon-Nikodym density %.

In this article, we assume that the probability measure P has its relative entropy with
respect to R:

ap .
H(P|R) 12{ fgiog(dpz) €[0,00] if PR

otherwise,
which is finite, i.e.
dP dP
H(P|R)=FER |—1 — : 1
(i) = x| Gtos ()] < o0 0
In comparison, requiring P < R only amounts to assume that
dP
Er | — 2
R<d3)<i“> @)

since P has a finite mass. We are going to take advantage of the only difference between
(M) and () which is the stronger integrability property carried by the extra term log g—;.

A key argument of this approach is the variational representation of the relative entropy
which is stated at Proposition B.J]. Some versions of this result are well-known and
widely used. We decided to give a (usually unknown) complete picture of this very useful
variational representation together with a complete elementary proof. We think that this
complete picture is interesting in its own right.

A clear exposition of the general Girsanov’s theorems, with no explicit expression of %
in terms of the characteristics of the processes, is given in P. Protter’s textbook [Pro07].
The most complete results about Girsanov’s theory for R?valued processes, including
explicit formulas for %, are available in J. Jacod’s textbook [Jac79]. An alternate presen-
tation of this realm of results is also given in the later book by J. Jacod and A. Shiryaev
[PS8%]. A good standard reference in the continuous case is D. Revuz and M. Yor’s
textbook [RY99] about continuous martingales.

Next Section 2 is devoted to the statement of the main results. At Section 3, we state
and prove the above mentioned variational representation of the relative entropy. At
Sections 4 and 5, we present the proofs of Theorems P.1] and P.3 which correspond to
the continuous case. At Section 6, we give the proofs of Theorems P.G and R.9 which
correspond to the jump case.

2. STATEMENT OF THE RESULTS

We distinguish the cases where the sample paths are continuous and where they exhibit
jumps.

Continuous processes in R?. The paths which we consider are built on the time interval
[0,1]. An Révalued continuous stochastic process is a random variable taking its values
in the set
Q= C([0,1],R%)
of all continuous paths from [0, 1] to R%. The canonical process (X;)ep,) is defined by
Xi(w) =w, te€0,1],w=(ws)sepo, €

In other words, X = (X})icp,1] is the identity on 2 and X, : Q@ — R? is the t-th projection.
The set €2 is endowed with the o-field o(X;;t € [0, 1]) which is generated by the canonical
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projections. We also consider the canonical filtration <cr(X 04);t €0, 1]) where for each
t, X = (Xs)sefo,g-

Let us give ourself a reference probability measure R on {2 such that X admits the
R-semimartingale decomposition

X =X,+ B+ M®,  R-as. (3)

This means that B is an adapted process with bounded variation sample paths R-a.s.
and M* is a local R-martingale, i.e. there exists an increasing sequence of stopping times
(Tk)k>1 which converges to infinity R-a.s. and such that for each k& > 1, the stopped
process t > Mtlim is a uniformly integrable R-martingale.

As a typical example, one may think of the solution to the SDE (if it exists)

X =X +/ bS(X[QS}) ds +/ Us(X[O,s]) dW,, 0<t<1 (4)
[0,t] [0,¢]

where W is a Wiener process on R and b : [0,1] x © — R% and o : [0, 1] x Q — Myyq are

locally bounded. In this situation, a natural localizing sequence (7 )r>1 is the sequence

of exit times from the Euclidean balls of radius k, B = fo (X70,5)) ds has absolutely

continuous sample paths R-a.s. and M = fo 05(X[,s])) AW, has the quadratic variation
[ME MF), :/ asds R-a.s. (5)
0

where a; := 0,07 (X[y) takes its values in the set S, of all positive semi-definite d x d
matrices.

More generally, we assume that the quadratic variation of M% is a process which is
R-a.s. equal to a random element of the set Mg ([0, 1]) of all bounded measures on [0, 1]
with no atoms and taking their values in S, :

(M7, MF)(dt) = A(dt) € ME ([0,1]), R-as. (6)
and also that
t €[0,1] = [M7 M"), .= A([0,t]) = A(t, Xp.q;0,2]) € S4, R-as.

is an adapted process. The quadratic variation given at (fJ) might have an atomless
singular part in addition to its absolutely continuous component a;dt. This notation
is concise: A(dt) is random and for any R%valued processes a, 3, oy - A(dt); is the
infinitesimal element of a measure on [0,1]. In particular, ¢ f[O,t] A(ds)Bs € R4, t —

- A(ds)Bs € R and the process t — Bs - A(ds)Bs € R is increasing.
0. < [0,¢]

Summmg up, R is a solution to the martmgale problem MP(B%, A). This means that
the canonical process X is the sum (f]) of a bounded variation adapted process B® and a
local R-martingale M whose quadratic variation is specified by A and (f]). We write

R € MP(B%, A)
for short.

Theorem 2.1 (Girsanov’s theorem). Let R and P be as above, satisfying in particular
the finite entropy condition ([l). Then, P is the law of a semimartingale. More precisely,
there exists an R%-valued adapted process B satisfying

Ep | B A(dt)B, < (7)
[0,1]
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and such that, defining
B, ::/ A(ds)B,, 0<t<1, (8)
[0,¢]

one obtains
X=X, +BR+ B+ MP, P-as.

where MY is a local P- martingale such that [MP, MFY) = [ME, M%], P-a.s.
In other words, P € MP(B* + B, A).

Remarks 2.2.

(a) The process 8 only needs to be defined P-a.s. (and not R-a.s.) for the statement of
Theorem P.] to be meaningful. In fact, its proof only gives the “construction” of a
process 3, P- almost everywhere.

(b) The process B is well defined. Indeed, by Cauchy-Schwarz inequality, for any R9-
valued process &,

1/2 1/2
/ |@~A<dt)/3t|g( @A(dt)@) ( @-A(dt)ft) c[0.0], P-as
[0,1] [0,1] [0,1]

Looking at A(w) with w fixed as a matrix of measures, we see that sup{f[o’” & -
A(dt)és € - |&| = 1,Vt} is bounded above by the sum of the total variations of the
entries of A. Consequently, this supremum is finite P-a.s. On the other hand, as
Ep fo . By - A(dt) By < 0o, we see that a fortiori fo 1 B+ A(dt) By < 0o, P-a.s. It follows
that f \A dt)B,| < oo, P-a.s. which means that B is well defined.

(c) When the quadratic variation is given by ([), one retrieves the standard representation

Et:/ asfs ds.
[0,¢]

It is then known that under the minimal assumption (B]), Theorem P.1] still holds true
with

B - arfBrdt < oo, P-a.s.
[0,1]
instead of Ep f[o 1) Be - aiffydt < 0o under the assumption (M), see for instance [JS87,
Chp. 111].

For any probability @ on €2, let us denote Qo = X4 the law of the initial position
Xp under Q.

Definition (Condition (U)). One says that R € MP(BE, A) satisfies the uniqueness
condition (U) if for any probability measure R’ on §2 such that the initial laws R = Ry
are equal, R’ < R and R’ € MP(B%, A), we have R = R/

It is known [Jac7d] that if the SDE (M) admits a unique solution, for instance if the
coefficients b and o are locally Lipschitz, then its law R satisfies (U).

Theorem 2.3 (The density dP/dR). Let R and P be as above, satisfying in particular
the finite entropy condition (). Keeping the notation of Theorem 2.1, we have

1
H(Po|Ro) + 5Ep | B~ AdD) < H(P|R).
[0,1]



If in addition it is assumed that R satisfies the uniqueness condition (U), then

H(PRy) + 5 B B Ald) 3, = H(PIR)

[0,1
and
% - h%m}%(){o)exp( ol 6t'thR_% o Bt'A(dt)Bt)
1 ap ﬁ(X)eX ( ﬁ-(dX—dBR)—l ﬁ-A(dt)ﬁ).
{ﬁw}dRO 0 p o t t t 5 o t t

Recall that ([]) implies that f[o B A(dt) By < 0o, P-a.s. It follows that, although the

process [ is defined only P-a.s., the stochastic integral f[o I B¢ - dMP is meaningful on

aF > 0} |

dR :
Processes with jumps in R?. The law of a process with jumps is a probability measure
P on the canonical space

Q = D([0, 1], RY)

of all left limited and right continuous (cadlag) paths, endowed with its canonical filtration.
We denote X = (X;)¢cjo,1) the canonical process,

AXt - Xt - th

the jump at time ¢t and R? := R?\ {0} the set of all effective jumps.
A Lévy kernel is a random o-finite positive measure

L.(dtdq) = p(d)Lu(t,dg), w €

on [0, 1] x R? where p is assumed to be a o-finite positive atomless measure on [0, 1]. As a
definition, any Lévy kernel is assumed to be predictable, i.e. L, (t,dq) = L(Xps(w);t, dq)
for all ¢ € [0, 1].

Let B be a bounded variation continuous adapted process.

Definition 2.4 (Lévy kernel and martingale pg)blem). We say that a probability measure
P on § solves the martingale problem MP(B, L) if the integrability assumption

Ep / (Iql? A1) T(dtdq) < oo (9)
[0,1] xRd

holds and for any function f in CZ(R?), the process
J(Xe) = f(Xo) — /(0 ) Rd[f(ffs— +q) — f(Xo) = VF(Xe) - g 1g<1yL(dsdg)

_ /(O pond [f(Xe- +q) — F(X-)] Lyg>1y L(dsdg)

15 a local P-martingale, where X := X — B. We write this
P € MP(B, L)

for short. In this case, we also say that P admits the Lévy kernel L and we denote this
property

P e LK(L)
for short.
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If P € MP(B, L), the canonical process is decomposed as

X =Xo+ B+ (L{g130) © p” + (Ljgzpq) © i, P-as. (10)
where
pr = Z O(t.ax,)
1€[0,1; AX 0

is the canonical jump measure, p(q) ® p* = f[o,l]ngf odpX = >0 1:ax, 20 P(AX¢) and
©(q) ® " is the P-stochastic integral with respect to the compensated sum of jumps

fi(dtdg) = i (dtdq) — L, (dtdg).
Definition 2.5 (Class H, (P, L)). Let P be a probability measure on Q and L a Lévy

kernel such that P € LK(L). We say that a predictable integrand h,(t,q) is in the class

H,.(P,L)if Ep f[OJ]XR‘i Lijg<13he(q)P L(dtdq) < oo and Ep f[OJ]XRf Lijg>13 e (q)|" L(dtdgq) <
00.
We denote H,,(P, L) = H,(P,L).

We take our reference law R such that
R € MP(B%®, L)

for some adapted continuous bounded variation process B®. The integrability assumption
(f) means that the integrand |q| is in Hso(R, L). This will be always assumed in the
future. We introduce the function

0(a) =logEe®™V —¢® — g -1, acR.
where N is a Poisson(1) random variable. Its convex conjugate is

(b+1)logb+1)—1 ifb>—1
o) =4 1 ifb=-1, beR

00 otherwise
Note that 6 and 6* are respectively equivalent to a?/2 and b?/2 near zero.

Theorem 2.6 (Girsanov’s theorem. The jump case). Let R and P be as above: R €
MP(B® L) and H(P|R) < co. Then, there exists a unique predictable nonnegative process
0:0x1[0,1] x RT — [0, 00) satisfying

EP/ 6*(1¢ — 1)) T, < oo, (11)
[0,1] xR
such that P € MP(B® + B\Z,EZ) where

B! =/ Lqg<13(¢s(q) — 1)g L(dsdg), t € [0,1]
[0,1] xRd

*

is well-defined P-a.s.

It will appear that, in several respects, log ¢ is analogous to 5 in Theorem P.]. Again,
¢ only needs to be defined P-a.s. and not R-a.s. for the statement of Theorem P.§ to be
meaningful. And indeed, its proof will only provide a P-a.s.-construction of £.

Corollary 2.7. Suppose that in addition to the assumptions of Theorem .8, there exist
some g, b,, c, > 0 such that

Bresp (a0 [ Loag I Tty ) < o0 (12
[0,1]xRY
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It follows immediately that 1ygsc.3|q| is R ® L-integrable so that the stochastic integral
q ® p* is well-defined R-a.s. and we are allowed to rewrite ([0) as

X=Xy+B+qon* R-as.,

for some adapted continuous bounded variation process B.
Then, there exists a unique predictable nonnegative process £ : Q x [0,1] x R¢ — [0, 00)
satisfying ([]) such that

X=Xo+B+B +qoi*, P-as,

where

_Z J—
Bi— [ (G- DeTisda), te o]
[0,6] xRY

is well-defined P-a.s. and the P-stochastic integral ¢ © 0t with respect to the Lévy kernel
(L is a local P-martingale.

Remarks 2.8.

(a) The energy estimate ([L1) is equivalent to: 1go<e<a} (¢ — 1)? and 1g>9)¢log ¢ are inte-
grable with respect to P ® L.

(b) Together with ([L), (IJ) implies that the integral for B' is well-defined since

Ep / (t(g) — 1)|g| T(dtdg) < oo. (13)
[0,1]xRY

In the present context of processes with jumps, the uniqueness condition (U) becomes:

Definition (Condition (U)). One says that R € MP (B, L) satisfies the uniqueness con-
dition (U) if for any probability measure R’ on €2 such that the initial laws Ry = Ry are
equal, R < R and R' € MP(B" L), we have R = R/

Theorem 2.9 (The density dP/dR). Suppose that R and P verify R € MP(B, L) and
H(P|R) < co. With { given at Theorem [2.6, we have

H(Py|Ry) +EP/ (tlog{ — (+1)dL < H(P|R)

[0,1] xRd
with the convention 0log0 — 0+ 1 = 1.
If in addition it is assumed that R satisfies the uniqueness condition (U), then

H(Py|Ro) +Ep/ (¢logl — ¢ +1)dL = H(P|R)
[0,1] xR

and
iR 1{%>o}d—&](Xo) exp (logm fiy — /M 0(log ¢) dL) - (14)

In formula ([[4), exp indicates a shorthand for the rigorous following expression

d
xRa

( dP dF,
— = ——(X\)Z"Z" ith
aE ~ dR,"\ w
7+ = 1{%>0} exp ([1{@21/2} lOgE] O) [7% - / (E — logf — ].)dZ)
{>1/2}
Z7 = Lgar g o) €XD <—/ [0 — 1]df) H 0(t, AXy)
{0<e<1/2} 0<t<1;0<b(t,AX¢)<1/2

(15)
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where
7~ :=supinf {t € [0,1];0(t,AX;) < 1/n} € [0,1] U {0},

n>1

with the convention that inf () = oco.

Note that although ¢ is only defined P-a.s., Z*, Z~ and 7~ are meaningful thanks to
the prefactors 1 (4250}

Remarks 2.10.

(a) Because of (), the integral f{zzl/2} (¢ —log ¢ — 1)dL inside Z* is finite P-a.s.

(b) Similarly, the product []o<,<1.0<st,ax,)<1/2 £(t, AX;) doesn’t vanish P-a.s. because it
is proved at Lemma p.3 that P(7~ = 00) = 1.

(c) Note that this product is well-defined in [0, 1] since it contains P-a.s. at most countably
many terms in (0,1/2]. But, if it contains infinitely many such terms, it vanishes.
Therefore, it contains P-a.s. finitely many terms.

(d) Since inf {t € [0,1]; £(t,AX;) =0} > 7, if £(t,AX;) = 0 for some ¢t € [0,1], then

4P — (). Therefore, ¢ > 0, P-a.s.

dR _
(e) If 1yp>1/9ylogl is R ® L-integrable, an alternate expression of g—; is

dP dPy —
ﬁ = 1{%>0777:00}d—}%0(X0) exXp <— /[(')71}XR(1(£ - ].) dL) H E(t, AXt)

0<t<1

(f) If 1{o<r<1/2y log € is not R @ L-integrable, then log ¢ ® fl is undefined and ([[4) with
exp instead of exp is meaningless and must be replaced by (7).

(g) On the other hand, if £ > 0, R-a.s. and Ej f[o 1xra 0(10g £) dL < oo, then ([[d) gives

ar

the rigorous expression for 97

with exp instead of exp.

For more details about the relationship between ([4) and ([[5), see the discussion below
Proposition [A.] at the Appendix.

3. VARIATIONAL REPRESENTATIONS OF THE RELATIVE ENTROPY

Theorems .1 and B.§’s proofs rely on some variational representation of the relative
entropy which is stated and proved below.

Proposition 3.1 (Variational representations of the relative entropy). Let R be a prob-
ability measure on some space ).

(1) For any signed bounded measure P on €, we have

sup {/udP — log/e“ dR;u bounded measumble}

= sup{/udP—log/e“dR;uELOO(P)}

H(P|R) € [0,00], if P is a probability measure and P < R
0, otherwise.

(2) For any probability measure P on ) such that P < R,

H(P|R):sup{/udP—log/e“dR;u:/e“dR<oo,/u_dP<oo} € [0, o0

where u is measurable, u_ = (—u) V 0 and [uwdP € (—o0,00] is well-defined for
all w such that [u_dP < cc.
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(3) If in addition it is known that the probability measure P satisfies H(P|R) < oo,
then any measurable function u such that [ e€*dR < oo verifies u € L*(P) and we
have

H(P|R) :sup{/udP—log/e“dR;u:/e“dR< oo}. (16)

In this formula the supremum is taken over all measurable functions u : 1 —
[—00, 00), possibly taking the value —oo with the convention e~ = 0. On the other
hand, the supremum is attained at u* = lgp/arsoy10g(dP/dR) — 1{ap/ar=0}00,
corresponding to ¢ = dP/dR. If R is not a Dirac measure, this supremum is
uniquely attained.

Proof. Let us first prove (1). Denote

K := sup {/ udP — log / e" dR;u bounded measurable}

K = sup{/udP—log/e“dR;uGLOO(P)}.

Let us show that when P in not positive, i.e. P_ # 0, then kK = k' = oco. Let A be a
measurable subset such that P, (A) =0 and P_(A) > 0. Then, choosing u, = —al4 with
a > 0, we see that £ > lim, o0 ([ uy dP —log [ e dR) = lim, o0 (aP-(A) —log[1+ (e —
1)R(A)]) = +oo. Similarly for «'.
Now, suppose that P is a positive measure such that P(€2) # 1. Let us show that x =
K’ = 0o. Considering the constant functions u = a € R, we see that [ adP —log [ e*dR =
a(P(2) — 1). Letting |a| tend to infinity, we obtain x > sup, {a(P(2) — 1)} = co. And
similarly for &’.
Let us show that, if the probability measure P is not absolutely continuous with respect
to R, then k = k' = co. For such a P, there is a measurable set A such that P(A) > 0 and
R(A) = 0. Considering the functions u = al,, we see that © > sup,{aP(A) — 0} = oo,
and similarly for x’.

From now on, P is a probability measure such that P < R.
Let us have a look at the first equality of assertion (1). Since the bounded functions are
in L>®(P), it is clear that £ < k’. On the other hand, we also have x’ < k. Indeed, one
can write any u in L®(P) as u = 14p/ar>01v + 1{ap/dr—0yw Where v is bounded and w is
unspecified. But,

/udP—log/e“dR
= /Udp — log (/ 1{dp/dR>0}€U dR-'- / 1{dp/dR:0}€w dR)

S /UdP—lOg/l{dp/dR>0}6v dR

= lim </undP—log/e“" dR)
n—o0

with u, = 1p/ar>0yv — nliap/ar=0}. As the functions u, are bounded, we see that
K < K.
To prove (1), it remains to show that

k = H(P|R). (17)

and
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We begin proving (2). The identity ([7) will appear as a step. The remainder of
the proof relies on Fenchel’s inequality for the convex 6(a) := aloga — a + 1 and on its
equality case. This inequality is

ab < (aloga —a+1)+ (" — 1) =0(a) + (e’ — 1) (18)

for all a € [0,00), b € [—00, 00), with the conventions 0log0 = 0, e = 0 and —ocox (0 =0
which are legitimated by limiting procedures. The equality is realized if and only if a = €.
We denote Z := 9E for a simpler notation. Taking a = Z(w), b = u(w) and integrating
with respect to R leads us to

/udPg/H(Z)dR+/(e“—1)dR:H(P|R)+/(e“—1)dR,

whose terms are meaningful provided that they are understood in (—oo, 0], as soon as
Ju_dP < oo. Formally, the equality case corresponds to Z = e“. By the monotone
convergence theorem, it can be approximated by the sequence u, = log(Z V e "), as n
tends to infinity. This gives us

H(P|R) = sup{/udP— /(e“ —1)dR;u: /e“dR < 0o, infu > —oo}, (19)
which in turn implies that
H(P|R):sup{/udp—/(e”— 1)dR;u:/e“dR< oo,/udP< oo}, (20)

since the integral [log ZdP = [6(Z)dR € [0, 00] is well-defined.

Now, let us take advantage of the unit mass of P :
/(u+b)dP—/(e(“+b) —1)dR = /udP—eb/e“dR+b+1, Vb € R.

Thanks to the elementary identity loga = infyer{ae® — b — 1}, we obtain

sup{/(u+b)dP—/(e<u+b> — l)dR} = /udP—log/e“dR.
beR
Hence,

sup{/udp—/(e”—1)dR;u:/e“dR<oo,/udP<oo}
= sup{/(u+b)dP—/(e(“+b)—l)dR;bGR,u:/e“dR<oo,/u_dP<oo}
= sup{/udP—log/e“dR;u:/e“dR<oo,/u_dP<oo},

With (BQ), this proves assertion (2).
But a similar reasoning, starting from ([9) instead of (R(), leads us to the similar following
conclusion

H(P|R):sup{/udP—log/e“dR;u:/e“dR<oo,infu> —oo}.

Considering the functions u A n with inf u > —oo and letting n tend to infinity, this leads
us to ([[7) and proves assertion (1).
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Let us prove (3). Suppose that H(P|R) < oco. With the inequality ([§), we obtain
\u|Z = |uZ| < 0(Z) + e*. Therefore, if [e*dR < oo, then

This means that u is P-integrable and shows ([[G).

We check directly the equality case. The uniqueness of its realization comes from the
strict concavity of the function u + [ udP —log [ €*dR. One shows the strict convexity
of u — log [ e*dR by means of Holder’s inequality. But it is also possible to come back
to the representation (RJ) which, with the same reasoning as above, leads us to

H(P|R):sup{/udP—/(e“—l)dR;u:/e“dR<oo}.

Then, one directly reads the strict convexity of u +— [(e* — 1) dR. O

4. PROOF OF THEOREM P.]]

For the proof of Theorem P.1] we need to exhibit a large enough family of exponential
supermartingales.

Lemma 4.1 (Exponential supermartingales). Let M be a local martingale, then
1
ZM = exp (Mt - §[M,M]t) , 0<t<1,

is also a local martingale and a supermartingale. In particular, 0 < ErZM < 1.

Proof. Recall 1to’s formula
1
df (Vo) = ['(Y) dYs + S f"(Y) Y, Y],

which is valid for any C? function f and any continuous semimartingale Y. Applying it
to Y; = M, — $[M, M]; and f(y) = e¥, we obtain

1 1
dzM = zM <th = dM, M, + Sd[M, M]t) =z} dM,

which proves that ZM is a local martingale. Since Z™ > 0, Fatou’s lemma applied to the
localized sequence Z%Tk as k tends to infinity tells us that Z is a R-supermartingale,
with (7;)k>1 an increasing sequence of stopping times which tends almost surely to infinity
and localizes the local martingale M. In particular, F(ZM) < E(Z}M) = 1. O

The standard notation for the supermartingale of Lemma [L.1] is
1
E(M) :=exp (M — §[M, M]) :
We are now ready for the proof of Theorem P.1].
Proof of Theorem [2.1. We start with some useful notation. Let ) be a probability mea-

sure on 2; later we shall take Q = R or () = P. For any measurable function g on
[0,1] x ©Q, let us denote

(9.0 = [ o) Adwrdia(e) € 0.9
0,1
and introduce the function space

G(Q) == {g:[0,1] x @ = R?% g measurable, Eg(g,g)4 < oo}
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endowed with the seminorm | g||g(0) := (Eq(g, g)a)"/?. Identifying the functions with their

equivalence classes when factorizing by the kernel of this seminorm, turns G(@) into a
Hilbert space. These equivalence classes are called G(Q)-classes and with some abuse, we
say that two elements of the same class are equal G(Q)-almost everywhere. The relevant
space of integrands for the stochastic integral is

HO = {h € G(Q); h adapted}.

Identity (J) says that M® = X — X, — B® is a local R-martingale. For all h € H, let us
denote the stochastic integral

t
h- ML ::/ hydME, te]0,1].
0

By Lemma [£1], 0 < EzZM" < 1 for all h € HF and because of ([[@), for any probability
measure P such that H(P|R) < oo, we have

1
Ep (h - ME— §[h -MPE h- MR]l) < H(P|R), Yh € H". (21)
Note that, as P < R, h- M and [h- M® h- M%]; which are defined R-a.s., are a fortiori
defined P-a.s. With () and (R1), we see that

Ep(h- M%) < H(P|R) + %Ep(h, h)a, VheG(P)nHE (22)

The notation G(P) N H™ is a little bit improper. Indeed, G(P) is a set of equivalence
classes with respect to the equality G(P)-a.e., while H is a set of G(R)-classes. But since
P < R, keeping in mind that any G(P)-class is the union of some G(R)-classes, one can
interpret G(P)NG(R) as a set of G(P)-classes. It is also clear that G(P)NHT = HENHE
which is a set of G(P)-classes. Considering —h in (B3), we obtain for all A > 0,

h
Ep (X : MR)

k
S = {h :[0,1] x Q — R% h = Z hil]}Si,Ti}]}

i=1

1
< H(P|R) + pr(h, h)a, VheHTNHE

Let

denote the set of all simple adapted processes h where k is finite and for all i, h; € R? and
S; < T; are stopping times. As S C H” N HE, taking A = ||h||g(p) in previous inequality,
we obtain the keystone of the proof:

[Ep(h- M™)| < [H(P|R) + 1/2] |hllgr),  Vh e S.

This estimate still holds when ||h[/3py = 0. Indeed, for all real o, by (B9) we see that
aEp(h - M®) < H(P|R) + o?/2 Ep(h,h)4 = H(P|R). Letting || tend to infinity, it
follows that Ep(h- M%) = 0.

Under the assumption that H(P|R) is finite, this means that h — h- M is continuous
on S with respect to the Hilbert topology of H¥. As S is dense in H’, this linear form
extends uniquely as a continuous linear form on H. It also appears that this extension
is again a stochastic integral with respect to P. We still denote this extension by h - MF.
As h — h - M is a continuous linear form on H?, we know by the Riesz representation
theorem that there exists a unique 8 € HF such that

Ep(h- M%) = Ep(B,h)a, VheH'.



13

In other words,
Ep/ hedM}P =0, VheH"
[0,1]

where
M} = ME — / A(ds)B, = X, — Xo — Bf — By,
[0,1]
which means that M7 is a local P-martingale. O

5. PROOF OF THEOREM P.J

It relies on a transfer result which is stated below at Lemma p.1. But we first need to
introduce its framework and some additional notation. Let P be a probability measure
on 2 such that [X, X] = A, P-a.s. and

X =X,+ B+ M, P-as.,

where B is a bounded variation process and M* is a local P-martingale. Let v be an
adapted process such that f[o e A(dt)y; < oo, P-a.s. We define

1
thexp(/ %dMSP——/ %-A(dsm), 0<t<1
0,4 2 Jpoy

and for all k£ > 1,
Uk = inf {t € [07 ]-]7/ Vs - A(ds)% Z k} € [07 1] U {00}7
[0,¢]

with the convention inf () = oo.

We use the standard notation Y;” = Y, ,; for the process Y stopped at a stopping time 7.
For all k, P* := X 4P is the push-forward of P with respect to the stopping procedure
X7, Note that P* and P match on the o-field which is generated by X [0,0%]

Lemma 5.1. Let P and vy as above. Then, for all k > 1, Z° is a genuine P-martingale
and the measure

Q"= Z7-P*
is a probability measure on Q which satisfies Q% € MP(B%, A°) where B™* = f[o . A(ds)ys
and MF is a local Q*-martingale.
Proof. Let us first show that Z% is a P*-martingale]] The local martingale Z%* is of
the form Z7% = E(N) := exp(N — 3[N,N]) with N a local P*-martingale such that
[N,N] < k, P*-as. For all p > 0, since E(N)? = exp(pN — E[N,N]) and E(pN) =
exp(pN — ”;[N, N]) > e?Ne /2 we obtain
E(N) < PN < 128 (pN).
As a nonnegative local martingale, £(pN) is a supermartingale. We deduce from this that
Ep€(pN) <1 and
EpE(NY < ' PERE(pN) < /2 < 0.

Choosing p > 1, it follows that £(V) is uniformly integrable. In particular, this implies
that
Epk8<N)1 == EPkS(N)O - 1

Tt is a direct consequence of Novikov’s criterion, but we prefer presenting an elementary proof which
will be a guideline for a similar result with jump processes.
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and proves that Q" is a probability measure.

Suppose now that the supermartingale £(N) is not a martingale. This implies that there
exists 0 < ¢ < 1 such that on a subset with positive measure, Epi(E(N); | Xjog) <
E(N);. Integrating, we get 1 = EprE(N)y < EprE(N);, which contradicts EprE(N)s <
Ept&(N)p = 1,Vs: a consequence of the supermartingale property of £(INV). Therefore,
E(N) is a genuine P*-martingale.

Let us fix £ > 1 and show that Q¥ is a solution to MP(E"‘“, A%%). First of all, as it is
assumed that [X, X] = A, P-a.s., we obtain [X, X] = A%, P*a.s. With Q% < P*, this
implies that [X, X] = A%, Q*-a.s.

Now, we check

X = Xo + B% + B% + M* (23)
where M* is a Q*-martingale. Let 7 be a stopping time and denote Fy = ¢- X7 with £ € R?.
The martingale Z* is the stochastic exponential £(N) of N, = f[07t] Ljo,0,)(8)7s - dMY.

Hence, denoting Z = Z°%, we have dZ; = Zi1(g ,,1(t)ye-dM, dF, = 19 ()& (dBy+d M)
and d[Z, F; = Zy1{g rp0,) (t)€ - A(dt)y;, P*-a.s. Consequently,

Egil6 - (X, = Xo)| 2 Eps|Z,F. — ZoFy

= Epk / (Ft dZt + thFt + d[Z, F]t):|
LJ [0,7]

= Epk/ FtdZt+/ Ztg-(dBterMtP)Jr/
L/ [0,7] [0,7] [0,7]

Z,€ - A(dt)%}

L/ [0,7] [0,7]

L [0,7]

In order that all the above terms are meaningful, we choose 7 such that it localizes F)
B, M* and & - Avy. This is possible, taking for any n > 1, 7 < 7,, = min(7!, 78 M 77)
where 71" = inf{t € [0,1];|X;| > n}, 7.2 = inf{t € [0, 1];f[07t] |dBs| > n}, 7 = inf{t €
[0, 1]; f[O,t] vs - A(ds)ys > n}, and 7 is a localizing sequence of the local martingale M7 .
We have

lim 7, = 0o, P-as. (24)
n—o0

We used the definition of Q* and the martingale property of Z at (a) and (d), (b) is
[td’s formula and (c) relies on the martingale property of Z and (MF)". Finally, taking
T =¢ A T,, we see that for any stopping time ¢, any n > 1 and any ¢ € R?

Fgulé - (X2 = X3) = P [5 - /[ (@B Al

Taking (B4) into account, this means that X — Xo — B — B is a local Q*-martingale. We
conclude remarking that for any process Y, we have Y = Yo, Q"-a.s. This leads us to

(B3). O
Let us denote P™ = X7 4P the law under P of the process X™ which is stopped at the
stopping time 7.

Lemma 5.2. If R fulfills the condition (U), then for any stopping time 7, R™ also fulfills
1t.
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Proof. Let us fix the stopping time 7. Our assumption on R implies that
X=Xo+B+M, R -as.

where M = M?% is a local R-martingale and we denote B = BF. Let Q < R” be given
such that ()9 = R and

X =Xo+B+M® Q-as.

where M@ is a local Q-martingale. We wish to show that Q = R”.
The disintegration

R = R[O,r] & R(- | X[OJ])

means that for any bounded measurable function F' on €, denoting F' = F(X) =
F( X, X(r1),

Er(F) = | EalF (1. Xeuw) | Xios) = 1] Rior ()
Similarly, we introduce the probability measure
R = Qon @ R(- | Xjp7)-
To complete the proof, it is enough to show that R’ satisfies
X=Xo+B+ M, R-as. (25)

with M’ a local R'-martingale. Indeed, the condition (U) tells us that R’ = R, which
implies that R'™ = R”. But R"™ = (), hence Q = R".

Let us show (BF). Let £ € R? and a stopping time o be given. We denote (7,,),>1 a
localizing sequence of M = M*? and B = Bf. Then,

Bl (X7 = Xg")]
= Erlp<a- (X7 = X+ Eql€ - (X7 — X¢")]

- /QER[l{Tgo}é“ H(XZ = XT) | Xpor = ] QUdn) + Eql€ - (X5 — X¢7)]

= /QER[l{Tga}f - (BF" = BI") | X0 = 1] QUdn) + Eql¢ - (By" — Bg")]
= Ewr[¢- (B — B")]

This means that (BF) is satisfied (with the localizing sequence (7,,),>1) and completes the
proof of the lemma. O

For all £ > 1, we consider the stopping time

Tk:inf {te [0,1], }ﬁSA(dS)ﬁsZk’} S [O, 1]U{OO}

[ )
where [ is the process which is associated with P in Theorem B.1 and as a convention
inf ) = co. We are going to use this stopping time R-a.s. Since 3 is only defined P-a.s.,
we assume for the moment that P and R are equivalent measures: P ~ R.

Lemma 5.3. Assume that P ~ R and suppose that R satisfies the condition (U). Then,

for all k > 1, on the stochastic interval [0, 1 A 1] we have, R-almost everywhere

dP dP, 1
1[[0,TkA1]]_ = 1[[0,TkA1]]—0(X0) €Xp (/ By - thR - _/ By - A(dt)ﬁt) . (26)
dR dRy 0,7, 1] 0,7 A1]
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Proof. By conditionning with respect to Xy, we see that we can assume without loss of
generality, that Ry = (Xo)xR = (Xo)xP =: Py, i.e. %(XO) = 1. Let £ > 1. Denote
RF = R™ P* = P™_ Applying Lemma [.1] with v = — 3 and remarking that E—B = —ég,
we see that
Q" = E(=B-M"); 1 P* € MP (110,71 [(B"+Bs)+B ], 1jo7,)A4)) = MP(1fo.5,1B", 17,1 A).
But, it is known with Lemma that R* satisfies the condition (U). Therefore,
Q" = R*. (27)

Applying twice Lemma p.1], we observe on the one hand that

PF = E(B- M®), \ R" € MP(11.1,1(BE + Bg), 1j0.1,A4), (28)
and on the other hand that
Q" = E(=B-M")r 1 P* € MP (1,1 [(B"+Bj) = Bg], 1jo.5,1A) = MP (10,71 B", 110 7,1 A).

As for the proof of (£7), the condition (U) which is satisfied by R* leads us to Q% = RF.
Therefore, we see with (B7) that Q¥ = Q*, i.e. (=8 MP), P* = E(=B - MP),, A1 PE.
And since E(—B - M), r1 > 0, we obtain P* = P* which is (P0). O

We are ready to complete the proof of Theorem P.3.

Proof of Theorem .3. Derivation of Z—;. Provided that R satisfies the condition (U), when
P ~ R we obtain the announced formula

ar_ @Q(o) exp ( By - dM — ! B - A(dt)ﬁt) ’ (29)

dR ~ dRq [0,1] 2 Jio]
letting k tend to infinity in (Bf]), remarking that 7 := limy_.o, 7 = inf{¢ € [0, 1]; f[o qBs
A(ds)Bs = oo} and that ([d) implies

T =00, P-as. (30)

and, since P ~ R, we also have 7 = oo, R-a.s. Indeed, since 7(w) = oo, there is
some k, > 1 such that 7, (w) = oo and applying Lemma with k = k, : 9 (w) =

2 (o) exp (o B AME = fiy) B+ AL () > 0.

Now, we consider the general case when P might not be equivalent to R. The main
idea is to approximate P by a sequence (P,),>1 such that P, ~ R for all n > 1, and to
rely on our previous intermediate results. We consider

1 1
P, = (1——)P+—R, n>1.
n n

Clearly, P, ~ R and by convexity H(P,|R) < (1-2)H(P|R)+2H(R|R) < H(P|R) < oc.
More precisely, the function = € [0,1] — H(zP+ (1 —2)R|R) € [0, 0] is a finitely valued
convex continuous and increasing. It follows that lim, . H(P,|R) = H(P|R).

It is clear that lim,_,. P, = P in total variation norm. Let us prove that the stronger
convergence

lim H(P|P,) =0 (31)

n—o0

also holds. It is easy to check that 1 (ar Zl}dP/dPn and 1 (ar Sl}dP/dPn are respectively
decreasing and increasing sequences of functions. It follows by monotone convergence
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that

n—oo

lim H(P|P,) = lim /log(dP/dPn) dP
n—oo

= lim log(dP/dP,)dP + lim / log(dP/dP,)dP = 0.
4B 13

By Theorem P.1], there exist two vector fields 5" and 3 which are respectively defined
R-a.s. and P-a.s. such that Ep, f[o B A(dt)pfr < oo, Ep f[o B A(dt)B; < oo and

dX, = dBE + A(dt)f" + dM[", R-as;  dX,=dBE+ A(dt)B, +dMF, P-as.

where M and MT are respectively a local P,-martingale and a local P-martingale.
Therefore,

dM" = dMFP + A(dt)(B, — B'), P-as. (32)
Extending [ arbitrarily by f = 0 on the P-null set where it is unspecified, we know that
1
o ([ G-y 3 [ g awie. - )
0. 2 Jo

is a P™-supermartingale. It follows with Proposition B.1], (B2) and a standard monotone
convergence argument that

H(PR) = Bp ([ (=) antl =3 [ (5 a5 - )
1
- = - YA - ny
3 [ (5= A5~ )
With (BT)), this shows the key estimate
im B [ (8, B2) - Ads)(B. - 57) =0 (33)

Since H(P,|R) < oo and P, ~ R, under the condition (U) we can invoke (BY) to write

dP,  dP. < s 1
= — 2 (X,) exp Br-dMF — = ﬁn-AdtB").
dR dRo( 0) 0.1] t t 2 0.1) t ( ) t

As lim,,_,, P, = P in total variation norm, up to the extraction of a R-a.s.-convergent
subsequence we have lim, ., dP,/dR = dP/dR and lim,,_,., dP, o/ dR = dPF, /dRO On
the other hand, (B3) implies that P-a.s., lim,, o 3 f[o,l] Br - A(dt) By = 5 f[o B - A(dt)By.
It follows that
dP dPy
dR ~ H#E0 R,

1
(XO) exp ( B - thR ~3
[0,1] [0,1]

B Ald)5,)
where (BJ) also implies that the limit of the stochastic integrals

lim Bt - dMFE = By - dM}E, P-as.

n=2 Jo,1] [0,1]

exists P-a.s. O

It remains to compute H(P|R).
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End of the proof of Theorem B.3. Computation of H(P|R). Let us first compute H(P|R)
when R satisfies (U). Remark that in the proof of Lemma [3, for all k > 1 the local P*-
martingale N¥ = M R_ B which is behind (BY) is a genuine martingale. It is a consequence
of the first statement of Lemma [.1. As Pk = P* N is a genuine P*-martingale. This
still holds when P ~ R fails. Indeed, this hypothesis has only been invoked to insure that
7 is well-defined R-a.s. But in the present situation, 73 only needs to be defined P-a.s.

With (Pg), we have

dP*

dP, 1
B g, (log —0(X0)> + Ep ( B-dME—= [ B, A(dt)ﬁt>
dRy [0,1] 2 ]

0,1

H(ni) + B ([ g @vE+aBo - [ g awns,)
] ]

[0,1 [0,1

] H(P0|R0)+%Epk< Bt-A(dt)Bt) +Epk< @-de)

[0,1]

HPaRg + 380 ([ ot

[0.1]

where the last equality comes from the P*-martingale property of N*. It remains to let
k tend to infinity to see that

H(PIR) = H(PRy) + 3 Er ( b A(dt)ﬂt) .

[0.1]

Indeed, because of (B0) and since the sequence (73 )x>1 is increasing, we obtain by mono-
tone convergence that

- _1 .
klg{)lo Ep (/[O,Tk/\l] By - A(dt)ﬁt) = 2EP ( o By A(dt)ﬁt> .

As regards the left hand side of the equality, with Proposition B.I}-(1) and (B0), we see
that
H(P|R) = sup{Epu(X) —log Ege"™);u € L>(P)}
= supsup{Epu(X"") — log Ere"X™):y € L=(P)}
k

— lim H(P*R").

k—o0

It remains to check that, without the condition (U), we have

H(PIR) > H(R|R) + L Er ( s A(dt)ﬁt) | (34)

0,1
Let us extend 3 by 8 = 0 on the P-null set where it is unspecified and define

. dF, 1
A0 = log {0 (o) + [ geadfi- 5 [ gl
0 [0,7%A1] [0,7kA1]
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)
Choosing @(X) at inequality > below, thanks to an already used supermartingale argu-

(i)
ment, we obtain the inequality > below and

H(P*|R") @) sup{/ude—log/e“de;u:/e“de <oo}

) _
> /ﬁde—log/e“de
(ii)

> / @ dP*

iii ~ 1
D H(R|Ry) + Ep (/ B,-dB, — 5/ B, - A(dt)ﬁt)
[0,78A1] [0,78A1]

—~
~

Y nmirg 4580 [ g A,

[0,7F A1)
Equality (iii) is a consequence of
a(X) = log 220 () + / B, (dMF +dB,) — * / B, A(dt)B, Ph-as.
dRy [0,75A1] 2 [0,7FA1]
which comes from Theorem R.J]. It remains to let & tend to infinity, to obtain as above
with (B0) that (B4) holds true. This completes the proof of the theorem. O

6. PROOFS OF THEOREMS AND
We begin recalling 1t0’s formula. Let P be the law of a semimartingale

with M" a local P-martingale such that M” = ¢ © p*, P-a.s. That is P € LK(K) for
some Lévy kernel K. For any f in C?(R?) which satisfies:

(x)  When localizing with an increasing sequence (Ty)r>1 of stopping times tending P-
almost surely to infinity, for each k > 1 the truncated process 1{g>13ji<ry [f(Xi- +q) —
f(X-)] is a Hi(P, K) integrand,

[t6’s formula is
are) = [ [ 106 +0) = £ = V(X ) - Kildo)] ol
+*Vf(th) by p(dt) +dM;, P-as. (35)

where M is a local P-martingale. This identity would fail if p was not assumed to be
atomless.

Proof of Theorem R.6. Based on Itd’s formula, we start computing a large family of
exponential local martingales. Recall that we denote

a— 0(a) :ze“—a—lzZa”/n!, acR.

n>2

Lemma 6.1 (Exponential martingale). Let h : Q x [0,1] x R? — R be a real valued
predictable process which satisfies

Ex / 0lhe(q)] L(dtdq) < co. (36)
[0,1] xR«
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Then, h and e" — 1 belong to Hy (R, L). In particular, h ® p* is a R-martingale.
Moreover,

zhimew(hoft - [ o) Tsdg), te 0.
(0,t] xR
15 a local R-martingale and a positive R-supermartingale which satisfies
dzl = 7" [(e"9 — 1) © dul).

Proof. The function 6 is nonnegative, quadratic near zero, linear near —oo and it grows
exponentially fast near +oo. Therefore, (BQ) implies that i and e"—1 belong to Hi (R, L).
In particular, M" := h ® i* is a R-martingale.

Let us denote Y; = M} — [, Bs p(ds) where B, = [g, 0[hi(q)] Li(dg). Remark that (B@)
implies that these integrals are almost everywhere well-defined. Applying (B) with f(y) =
ev and dY; = —B; p(dt) + dM]*, we obtain

4 = [~ ¢ / Olh(a)] Lu(da)| () + A, = M,

where M is a local martingale. We are allowed to do this because (x) is satisfied. Indeed,
with f(y) = ¢, f(YVi + (@) — F(Vi) = (Y Yhul) = €% 0[hy(q)] and if Y7 i= Vi is
stopped at o :=inf{t € [0,1];Y; & C} € [0,1] U {oc} for some compact subset C' with the
convention inf () = oo, we see with (Bf)) and the fact that any path in € is bounded, that
exp(Y,2)0[h(q)] is in H1(R, L). Now, choosing the compact set C' to be the ball of radius
k and letting k tend to infinity, we obtain an increasing sequence of stopping times (o )x>1
which tends almost surely to mﬁnlty. This proves that Z" := e is a local martingale.
We see that dM, = e¥i- d[(e"D~1) ® [il], keeping track of the martingale terms in the
above differential formula:

de¥t = [ (AY;) + dY;]
= e [9 ) © d/it </d 0[h(q)] Lt(dQ))P<dt) — Bep(dt) + h(g) © dﬁtL]
R¢
= " [0[h(g)] © diiy + hu(q) © dif ]
= e [( ht(‘]) _ 1)@dﬂt}-
By Fatou’s lemma, any nonnegative local martingale is also a supermartingale. O

Proof of Theorem P.4. Tt follows the same line as the proof of Theorem P.]. By Lemma
B, 0 < EgZ <1 for all h satisfying the assumption (B6). By ([[@), for any probability
measure P such that H(P|R) < oo, we have

Ep (h oY= / 0(h) df) < H(P|R).
[0,1]xRd
As in the proof of Theorem .1, see that
|Ep(h @ if) < (H(P|R)+ 1) || kllo, Vh
where
|7||o := inf {a > 0; Ep/ O(h/a)dL < 1} € [0, <] (37)
[0,1] xRd
is the Luxemburg norm of the Orlicz space

Ly := {h . 0, 1]xRxQ — R; measurable s.t. Ep/

[0,1]xR¢

0(bo|h|) dL < oo, for some b, > O}.
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It differs from the corresponding small Orlicz space

Sp 1= {h 1 0,1] x R? x Q — R; measurable s.t. Ep/ 9(b|h|) dL < oo, Vb > 0}
[0,1]xRZ
because the function 6(|a|) grows exponentially fast.

We introduce the space B of all the bounded processes such that Ep f[o,ung |n|dL < oo,
and its subspace H C B which consists of the processes in B which are predictable. We
have B C Sy and any h in H satisfies (Bf]), which is the hypothesis of Lemma [.]]. Hence,
(B7) holds for all h € H and, as H(P|R) < oo, it tells us that the linear mapping
h — Ep(h ® fi¥) is continuous on H equipped with the norm || - ||¢. Since the convex
conjugate of the Young function 6(|al|) is 0*(||), the dual space of (Sp, || ||¢)f (see [RRIT]),
is isomorphic to

Lo := {k: :0,1] x R? x Q — R; measurable s.t. Ep/

[0,1] x R4

6*(|k|) dT < oo}.
Therefore, there exists some k € Ly« such that

Eph® it = Ep / khdL, Yh <€ H. (38)
[0,1]xRd

Let us introduce the predictable projection kP* of k which is defined by k" := Ep(k |
Xjo), t € [0,1]. As the space B is dense in Syfl, H is dense in the subspace of all
predictable processes in Sy and it follows that any ¢ and k in Ly which both satisfy
(BY), share the same predictable projection: g = kP'. Consequently, there is a unique
predictable process k in the space

K(P):= {k . [0,1] x R? x Q — R; predictable s.t. Ep/ 0*(|k|) dL < oo}

[0,1] xRZ
which verifies (BY). B B B B
As H is included in H, (P, L), we have for all h € H, hOop*—hOkL = ho(uX —L—hOkL =
h® (u* — (L) with £ := k + 1. Consequently, (B§) is equivalent to

Ep[h® (WX —(L)]=0, VheH, (39)

which is the content of the theorem. It remains however to note that, being an expectation
of the positive measure p*, (L is also a positive measure. Therefore, ¢ is nonnegative.
This completes the proof of the theorem. O

Proof of Corollary 2.7. It is mainly a remark based on Hoélder’s inequality in Orlicz
spaces.

Proof of Corollary 2.7 We are under the exponential integrability assumption ([J) and
we denote Z = Z—Z. The finite entropy assumption ([[) is equivalent to Z belongs to the
Orlicz space Lg<(R), i.e. ||Z]|g- r < oo. Holder’s inequality in Orlicz spaced] expressed
with the Luxemburg norms (see (B7)) gives us for any nonnnegative random variable U:
Ep(U) = Er(ZU) < 2||Z]lp» r||U|lo.r- This quantity is finite if |Uljp.rg < oo, and this
is equivalent to Fgr(e®V) < oo for some a, > 0. As a consequence, ([[J) implies that
Ep f[OJ]XR‘i Lyg>1e!d L(dtdg) < oo for some b,. But this is equivalent to: 14>13lq]

2This doesn’t hold with Ly instead of Sp.
3In general, it is not dense in Lg.
41t is an easy consequence of Fenchel’s inequality: |ab| < 6(|a|) + 6*(|b|), for all a,b € R.
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belongs to the Orlicz space Ly(P ® L). With ([]) we see that (¢ — 1) is in Lg(P ® L) and
by Hélder’s inequality again, we obtain

EP/ Lig>13lalle(t, q) — 1| L(dtdg) < oo.
[0,1] xRd

The small jump part: Ep f[o 1| xRd Lg<uylal|€(t, @) — 1| L(dtdq) < oo, is a direct conse-
quence of Holder’s inequality in Lo. This proves ([[J).
We write symbolically

pr=p—L=p—lL+({—-1)L=0+—-1)L.

Hence, ¢opul = ¢+ [(¢—1)qdL provided that all these terms are well defined. But, we
have assumed that ¢© i’ is well-defined and we have just proved that [(¢—1)g dL is well-
defined. Therefore, the remaining term is also well-defined and the proof is complete. [J

Proof of Theorem R.9. It is similar to the proof of Theorem R.J. We begin with a
tranfer result in the spirit of Lemma p.1 Let P be a probability measure on €2 such that
P € MP(B,K)

where B is a continuous bounded variation adapted process and K is some Lévy kernel
K(dtdq) == p(dt)K (t;dq).
Let A be a [—00, 00)-valued predictable process on [0, 1] x R? such that f{/\>71} O(\) dK <

o0 and K(—oo < A < —1) < oo, P-a.s. We define for all ¢t € [0, 1],

Z, = &P <>\ Ok — / o(\) df) — 77
[0,t] xR¢

with
Z5 = exp <)\+ o —/ 9()\+)d?>
(0,t] xR
Zy = lpyemyexp ( Z A (s, AX) —/ (er — 1)df>
0<s<t (0,t] xR
where

AT = 1{)\2704})‘7 AT = 1{foo§)\<fa})\

with @ > 0, e7® = 0 and 7 = inf{t € [0,1], \(t, AX;) = —occ}. Remark that, although
Z* and Z~ both depend on the choice of «, their product Z = Z*Z~ doesn’t depend on
a > 0. For all j,k > 1, we define

af = inf {t € [0, 1];/ OAT)dK >k or A(t,AX,) & [—7, k]} € [0,1] U {oo}
[0,] xR

and PF = X ,P.

Lemma 6.2. Let P and X be as above. Then, for all j,k > 1, 7% is a genuine P-
martingale and the measure

ok
Qk =27 P*

1s a probability measure on 2 which satisfies

Q% € MP( B + B 15y e’ K
J [0,051
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where

[0,t] xR

Note that Et might not be well defined in the general case. Only the stopped processes

~

B are asserted to be meaningful.

Proof. Let us fix j,k > 1. We have 2% = exp(\¢ © i — [} 1 ¢, O(NF) dK) with A =

1po,#7A which is predictable since A is predictable and 1, .« is left continuous. We drop
g ]

the subscripts and superscripts 7, k and write A\ = )\?, AT = ()\;?)Jr, AT = ()\;?)_, 7% =7

for the remainder of the proof. By the definition of 0';?, we obtain with this simplified

notation

/[01] Rd@(ﬁ)d? <k, —j <A<k, Plas. (41)
) X *

Let us first prove that Z is a Pf—martingale. Since it is a local martingale, it is enough
to show that

EprZ7 < 00,  for some p > 1.
J

Choosing o = j in the definition of (Z%)* and (Z% )", we see that Z% = (Z%)+ =
Zt =E&((e* —1) k). For all p > 0,

(ZF)P =exp (pA* o —p / o(A\h) d?) < exp(pAt © if)
[0,1] xRd
and
E((e™ —1) @ ") = exp (pv o - / O(pA™) d?) > PO /O (k, p)
[0,1] xRd

for some finite deterministic constant C'(k, p) > 0. To derive C(k, p), we must take account
of (E]) and rely upon the inequality 6(pa) < ¢(k,p)6(a) which holds for all a € (—oo, k]
and some 0 < ¢(k,p) < oo. With this in hand, we obtain

(Z4) < MO < Ok, p)E((e™ — 1) @ i1F).

We know with Lemma that £((e”*" — 1) ® i") is a nonnegative local martingale.

Therefore, it is a supermartingale. We deduce from this that EpsE((e?* —1) 0 5%) < 1
J

and

Ep(Z*) < C(k,p) EppE (e —1) © i) < C(k, p) < co.

Choosing p > 1, it follows that £((e*" — 1) ® %) is uniformly integrable. We conclude
as in Lemma p.J's proof that £((e* — 1) ® i) is a genuine Pf-martingale.
Now, let us show that

Q‘I; c LK<1H0701§H€AF).

Let 7 be a finitely valued stopping time and f a measurable function on [0, 1] x R¢
which will be specified later. We denote Iy = » .4, f(s,AX,) with the conven-
tion that f(¢,0) = 0 for all ¢ € [0,1]. By Lemma [.1|, the martingale Z satisfies dZ; =



24 CHRISTIAN LEONARD

1[[070;;]](15)th [(e* — 1) ® u%]. We have also dF, = 1po-q(t)f(t,AX,) and d[Z, F|; =
1[[07U?AT]](t)Zt—(6)‘(AXt) —1)f(t,AX;), PF-a.s. Consequently,

Ege Y f(t,AX)

0<t<r
- Epk<ZTF7— - Z(]Fo)

J

= Epk/ (Ft dZt+thFt+d[Z, F]t)
[0,7]

= Ep

J

/ FodZ+ Y Z- f(LAX) + Y Zi- (0% — 1) f(t AX)
0.7]

0<t<r 0<t<r

= Ep > Z, AN f(t AX)

o<t<r

= EP?“/ Zy f(t,q)e*) K (dtdg)
[0,7] xR¢

J
= L / f(t, q)eX K (dtdg).
[0,7] xRd

We are going to choose 7 such that the above terms are meaningful. For each n > 1,
consider 7, := inf{t € [0,1]; Y oo csn, [f(5,AX,)] > n} and take f in Ly (P} ® K) to
obtain lim,, ., 7, = 00, P]k—a.s. and a fortiori Q?-a.s. It remains to take 7 = o A 7,, with
any stopping time o to see that the Lévy kernel of Qf is 2K = N K.

It remains to compute the drift term. Let us denote X7 := > _, 1fjax,>13AX; the
cumulated sum of large jumps of X, and X2 := X — X* its complement. Let 7 be a
finitely valued stopping time and take G; = f-Xt%T with £ € R%. We have dG; = 1o 7(t)¢-
(dBi+(1{g<1yq)@dpt ) and d[Z, G, = 1[[0,05?AT]] (t)Z:- (eA(AXt)_1)1{\Axt\§1}f~AXt, Pf—a.s.
Therefore,

Egilé - (X2 = X0)]

J

= EP[c [/ (Gt dZt + thGt + d[Z, G]t):|
[0,7]

- EPJ[c |: Gt dZt —|— / Zt—g ‘ (dBt —|— (1{|q|§1}Q> @ d/jf()
[0,7] [0,7]

+ Y Ze gaxysn (@AY — 1)5'AX4

0<t<r

— Epkr

J

/ Zi-&-dBi+ Y Zi-1ax<y (@3 —1)¢- AX,
[0,7]

0<t<r

= Epk l/ Zt_§~dBt+/ Zt_{/ 1{|q|§1}(eA(t,q) _ 1)£.th(dq)}p(dt)]
’ [0,7] [0,7] R

= Lo A],T]f' (dBﬁ{/Rg Lyjg<ny (X9 — 1)th(dQ)}P(dt))
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where we take 7 = 7, := inf{t € [0, 1]; | X;| > n} which tends to co as n tends to infinity.
This shows that the drift term of X under Q¥ is (B + B)°* where B is given at (FQ) and

the stopped process B is well-defined. O

As a first step, it is assumed that P ~ R for the stopping times Tf

defined (below) R-a.s. and not only P-a.s.
Following the proofs of Lemmas .2 and p.3, except for minor changes (but we skip the
details), we arrive at analogous results:

, 7j and 77 to be

(i) If R fulfills the uniqueness condition (U), then for any stopping time 7, R™ also fulfills
(U).
(ii) If P ~ R, then for any j, k > 1, we have

apP dPy ~ —
1[[0,rfA1}] dR = 1p, TMUUR, ®(Xo) exp <(1(0,TJ’.€/\1] log () © it - /(0 SAL]XRE f(log €) dL)

where
Tf = inf {t e [0, 1];/[ ns Lo>1/230(log €) dL > k or log €(t, AX;) & [—7, k]} € [0, 1]Ju{oo}.
0,t]xR¢

For the proof of (ii), we use Lemma [.1l where A\ = log ¢ plays the same role as § in Lemma
F.3, and we go backward with —\ which corresponds to £71.
We fix j, and let k tend to infinity to obtain with ([[1]) that
kh_)rgoT]k =7 :=inf {t € [0,1];((t, AX;) < e} €[0,1]]U{oc}, P-as.
and therefore R-a.s. also. More precisely, this increasing sequence is stationary after some

time: there exists /'(w) < oo such that 7F(w) = 7;(w), for all k > K(w). It follows that
for all j > 1,

dpP dP, (

1[[o,rjA1]]ﬁ = 1HOT]A1]dR (Xo) exp | (L0,7,a1 log ¢) @ﬁL—/ 0(log () dL

(O,Tj/\l} XRf

(42)

Lemma 6.3. We do not assume that P ~ R and we extend ¢ by { =1 on the P-negligible
subset where it is unspecified. Defining 7~ 1= sup,>, 7, we have P(7~ = 00) = 1.

Proof. For all j > 1, we have 77 < 1 = Ztg Lgt,ax,)<e-iy = 1. Therefore,

P(r—<1)<P (Z Lio,ax,y<e—iy = 1) < Ep Z Lo, ax1)<e4)

t<1 t<1

L Ep / Lyce-n ldL < e 7EpL({ < e ) < e EpL({ < 1/2)
[0,1] xRZ

where we used (BY) at the marked equality. The result will follow letting j tend to infinity,
provided that we show that EpL({ < 1/2) < 0. B B
But, we know with ([) that Ep f[o x4 0*(|¢ — 1|)dL < oo. Hence, EpL(¢ < 1/2) <

Ep fo 1| xRd 0*(|¢ — 1]) dL/6*(1/2) < oo and the proof is complete. O
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Lemma 6.4. Assume P ~ R. Let R; and P; be the laws of the stopped process X"
under R and P respectively. Then, under the condition (U) we have for all j > 1

H<Pj|Rj):H(P0\Ro)+EP/ (Clogl — ¢ —1)dL.

(O,Tj/\l} XR‘E

Proof. We denote R? and P]k the laws of the stopped process X TN under R and P
respectively. With the expression of % on [0, Tf A 1] we see that

H(P}|RY)

= H(Po|Ro) + Ept ((hoﬁm} log ¢) © fi* —/ 0(log () df)
©

,T]].“/\I]XR‘,Z
= H(Py|Ro) + Epr ((1(0,71,@@ log ¢) © i +/ [(¢ —1) = 6(log )] df)
’ ’ (0,7F A1) xRY

= H(P0|R0)+Epj/ (Llogl — ¢ —1)dL

(0,7F A1 xRY

where we invoke Lemma [.9 at the last equality. We complete the proof letting & tend to
infinity. U

Conclusion of the proof of Theorem [2.9. When P ~ R, by Lemma [.3, P-almost surely
there exists j, large enough such that for all j > j,, 7; = oo and ([2)) tells us that

dP  dF, I _

iR~ dR (Xo) exp ((logﬂ) o /[0,1]ng O(log £) dL)

and also that the product appearing in Z~ contains P-almost surely a finite number of
terms which are all positive. Note that we do not use any limit result for stochastic or
standard integrals; it is an immediate w-by-w result with a stationary sequence. This is
the desired expression for % when P ~ R.

Let us extend this result to the case when P might not be equivalent to R. We proceed
exactly as in Theorem B.3’s proof and start from (BI)): lim, ., H(P|FP,) = 0 where
P, == (1—-1/n)P+ R/n, n > 1. Let us write A\ = log/ and \" = log (" which are
well-defined P-a.s. Thanks to Theorem P.G, we see that

H(P|P,) > Ep (()\ -\ et - / oA — ™) E”df)
[0,1] xR
= Ep (()\" —\) o pt+ / [0/ log(£/07) — €)™ 4 1] MZ)
[0,1] xR
~ B / 10" /0 —og(£"/0) — 1] (T
[0,1] xRZ

~ B / 0N — ) d(T
[0,1]xRd
which leads to the entropic estimate analogous to (B3):

lim Ep / O(A" — \) d(L = 0. (43)
[0,1] xRZ

n—oo
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Taking the difference between log(dP, /dR) = \"Opu — f[OJ]XR‘i O(\") dL and the logarithm
of the announced formula ([[4) for dP/dR on the set {4£ > 0}, we obtain

(A" =\ ot — / O(\" — \)dlL, P-as.
[0,1]xRd
and the desired convergence follows from (). Note that 6(a) = a?/2 + 0,0(a?). This
completes the proof of ([I9).
As in the proof of Theorem P.3, we obtain the announced formula for H(P|R) under
the condition (U) with Lemmas .3 and [6.4, and the corresponding general inequality
follows from choosing

dF, ~
i(X) = log —==(Xo) + (1(grerylog £) © " — / 6" (log ¢) dL
dRy / (0,7E A1) xRY

in the variational representation formula ([[d), and then letting & and j tend to infinity. O

APPENDIX A. AN EXPONENTIAL MARTINGALE WITH JUMPS

Next proposition is about exponential martingale with jumps. We didn’t use it during
the proofs of this paper. But we give it here for having a more complete picture of the
Girsanov theory.

In this result, integrands h are considered which may attain the value —oo. This is
because with h = log /¢, h = —oo corresponds to ¢ = 0.

Proposition A.1 (Exponential martingale). Let h :  x [0,1] x R? — [—00,00) be an
extended real valued predictable process which may take the value —oo and satisfies

Br [ Lo blhu(o) Tidedg) < o (44)
[0,1] xR

ER/ 1{ht(q)<*1} Z(dtdq) < Q. (45)
[0,1] xR«

Let us introduce the stopping time
"= inf{t € [0,1]; A(AX,) = —oc} € [0,1] U {oc}

and the convention e~ :9.
Then, e" — 1 is in Hi2(R, L) and

2t = tpemen(hot -

(0,¢] x R4

0lhs(q)] Lldsda)), ¢ € [0,1] (46)

15 a local R-martingale and a nonnegative R-supermartingale which satisfies
dZ} = 1y ZI [(e"? — 1) @ dif ). (47)

The standard notation is Z" := £([e"—1]@u"), the stochastic exponential of [e"—1]Ouk.
Some details are necessary to make precise the sense of the inner stochastic integral h® -
in the expression of Z". We denote

h+ = 1{h271}h € R

h™ = 1{h<—1}h' € [—O0,0]
Under the assumption ([4), h* ® i’ is well defined as a stochastic integral. On the
other hand, (f5) implies that A~ (¢, AX,) has R-a.s. finitely many jumps. It follows that

> ocs<t (5, AX,) is meaningful for all t < 7". But the integral f( h; (q) L(dsdq)

0,t]xR% ""s
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might not be defined under (f) and h~ Oy = > ., b~ (s, AXS)—f(O xR h; (¢) L(dsdq)
is meaningless in this case. Nevertheless, the full expression in the exponential ((h) := h®

fi" — [ 6(h) dL is defined as follows. We put ¢(h™) := 3 ., b~ (s, AX5) = [ xrale™ (@)

1] L(dsdq) which is well defined under (f5) and is obtained by cancelling the terms

f(o,t]xR;{ h; (q) L(dsdq). As 6(0) = 0, we have ((h) = ((hT +h™) = (h") 4+ ((h™) and for
all t € [0, 1],

Zh = ZMZM with
2" = exp (m@ﬁtL_ f(at]ngG[hj(q)]f(dsdq)), (48)
ZI = e exp (Eogsgth*(s,AXs)— Jiogale™ <q>—1]f(dsdq)).

This is what is meant by the concise expression ([().

Proof. Now, we consider the general case where h may attain the value —oo and (B)
is weakened by () and ([). We use the decomposition () and write Z+ = Z""

and Z= = Z" for short. Clearly, Z* and Z~ do not jump at the same times and
dlZ*,Z7) = AZTAZ~ = 0. Hence,

dZy = Z}dzZ; + Z_dZ;. (49)
The h*-part enters the framework of Lemma and we have
Az = 7+ ([eh+ 1o ZZL). (50)

Let us look at the h™-part. We need to compute dZ, . For all t < 7", put

Y, = Z h™(s,AX,) — / [e"s @ — 1] L(dsdyq).

0<s<t (0,t] xR

Then, with the convention that A~ (¢,0) = 0, dY,” = h™(t,AX;) — v p(dt) with v, =
Jgale™ @ — 1] Ly(dg), AY;” = h™(t, AX;) and with It6’s formula, we arrive at

de¥i — ¥ ([eAYf — 1] +ay; — AY;—) — eV ([e"‘“’“” — 1= p(dt))

= eVi- <[eh7 -1]1© dﬁf)

It follows that

dz; =7 ([eh_ —1]e dﬁf), t<h (51)
At t = 7", by the definition (E§) of Z~, we have
AZ_n = —Zny- = Zny- X e —1]

which is (1)) at ¢ = 7" with the convention e=>° = 0. This provides us with
dZt_ = 1{t§7h}Z1; ([€h7 - 1] @ ,EL)

Together with ([9) and (B0), this proves (f7) which implies that Z" is a local R-martingale.
By Fatou’s lemma, any nonnegative local martingale is also a supermartingale. O
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