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Automated Conflict-Free Distributed
Implementation of Component-Based Models

Borzoo Bonakdarpour Marius Bozga Mohamad Jaber
Jean Quilbeuf Joseph Sifakis

VERIMAG, CentreÉquation, 2 avenue de Vignate, 38610, Gières, France

Abstract—We propose a method for generating distributed
implementations from high-level models expressed in terms of
a set of components glued by rendezvous interactions. The
method is a 2-phase transformation preserving all functional
properties. The first phase is a source-to-source transformation
from global state to a partial state model (to relax atomicity).
This transformation replaces multi-party rendezvous interactions
by send/receive primitives managed by a set of automatically
generated distributed schedulers. These schedulers are conflict-
free by construction in the sense that they do not require
communication in order to safely execute interactions of the high-
level model. In the second phase, from the transformed model
in phase one, we generate C++ distributed code using either
TCP sockets or MPI to implement send/receive primitives. Our
method is fully implemented in a tool for automatic generation of
distributed applications. We present experimental results using
different case studies.

Keywords. Component-based modeling, Automated transfor-
mation, Distributed systems, BIP, Correct-by-construction.

I. I NTRODUCTION

As computing systems become more complex, the need
for their decentralization is becoming increasingly apparent
in many domains. Examples include super-computers for
increasing computing power, the world-wide-web for shar-
ing information, distributed fault-tolerant systems for gaining
robustness and reliability, and complex networks of sensors
and actuators for coping with hostile physical environments
in deeply embedded systems or the so-called cyber-physical
systems. Although many languages and techniques have been
proposed in distributed computing (e.g., [4], [12], [14], [15],
[18]), constructing correct distributed applications is still time-
consuming, error-prone, and hardly predictive. Thus, it is
highly desirable to develop new methodologies that enable
us to automatically construct correct distributed applications
by starting from high-level models without getting involved
in low-level code development.

In this paper, we focus on the BIP formalism as our high-
level modeling language. BIP (Behavior, Interaction, Priority)
is a component-based framework with formal semantics rely-
ing on multi-party interactions for synchronizing components
and dynamic priorities for scheduling between interactions.
Figure 1(a) shows a simple BIP model, wherecomponents
C1, . . . , C5 interact via rendezvousinteractionsI1, . . . , I4. An
interaction is formed by a set ofports graphically denoted by
bullets. In BIP, the behavior of each component is describedby

C1 C2 C3 C4 C5

I1 I2 I3

I4

(a) A simple high-level model

C1 C2 C3 C4 C5

I1, I2, I3 I4

(b) Distributed version of Figure
1(a)

Fig. 1. Abstract overview of the transformation

a Petri net or automaton extended by data, whose transitions
are labeled by ports. Whenever a transition is possible, we say
that the associated port isenabled. A rendezvous interaction
is enabled when all its participating ports are enabled. A
sequential implementation for BIP models is obtained by using
a centralized Scheduler that has consistent view of the global
state of the system. The Scheduler orchestrates the behavior
of components by repeating the following straightforward
operations:

1) It computes the set of enabled interactions at the current
global state.

2) It selects one interaction among this set and executes the
associated computation.

3) It calls sequentially each component involved in the
selected interaction to execute the corresponding tran-
sitions and waits for their completion.

Unlike the sequential setting, deriving a distributed imple-
mentation from a high-level model such as the one in Figure
1(a) is not a trivial task. For instance, the system must respect
the global state semantics although it works in a distributed
setting where components do not have a global view of the sys-
tem. Moreover, suppose that interactionsI1 andI2 are enabled
simultaneously. Since these interactions share componentC3,
they cannot be executed concurrently. We call such interactions
conflicting. Obviously, a distributed scheduler must ensure that
conflicting interactions are mutually exclusive.

The problem of distributed conflict resolution is known
as thecommittee coordination problem[11], where a set of
professors organize themselves in different committees and
two committees that have a professor in common cannot meet
simultaneously. Several solutions to this problem have been
proposed. Some use a particular set of manager processes
to schedule interactions (e.g., [11]). Bagrodia [2] presents a
solution based on message counting to detect enabledness of
interactions in managers and a circulating token to ensure
mutual exclusion. In a later paper [3], he replaces the token-



based solution by a reduction to the dining (or drinking)
philosophers problem [10]. In [19], Perez et al present another
solution using a lock-based mechanism instead of counters.
Contributions. Although the related work provides us with
solutions to conflict resolution, dealing with real distributed
implementations, requires better understanding of the problem
beyond abstract algorithms and simulations. In this paper,we
propose a novel method to transform high-level BIP mod-
els into distributed implementations that allows parallelism
between components as well as parallel execution of non-
conflicting interactions. Our method utilizes the following
sequence of transformations:

1) First, we transform the given BIP model into another
BIP model that (1) operates in partial state semantics
(to relax atomicity), and (2) expresses multi-party in-
teractions in terms of asynchronous message passing
(send/receive primitives). This is obtained by replacing
transitions in atomic components by a request/response
mechanism.

2) We insert a set of distributed Schedulers, each handling a
subset of conflicting interactions, such that each conflict
is local to a Scheduler. In Figure 1(a), we suppose that
I4 does not conflict with any other interaction because
of components inner structure. Thus, the transformed
model (see Figure 1(b)) contains two Schedulers. Since
the interactions of the first Scheduler do not conflict with
those of the second one, they are conflict-free. Thus,
the two Schedulers can resolve conflicts independently;
i.e., no communication between them is required. In this
context, maximum parallelism is achieved when each
Scheduler contains only one interaction. However, the
number of Schedulers depends on the structure of the
model. In the worst case, there is only one Scheduler
handling all interactions.

3) We transform the intermediate BIP model into actual
C++ code that employs either TCP sockets or the Mes-
sage Passing Interface (MPI) [14] for communication.

We conduct a set of experiments to analyze the behavior and
performance of the generated code. Our experiments show that
depending upon the structure of the model, the distributed code
generated using our method exhibits little overhead. We also
illustrate that in some cases, the performance of the generated
code is competitive with the performance of hand-written code
developed using MPI.

We also present two types of optimizations. First, we
consider a transformation from BIP models directly to MPI
code for cases where there is no conflict between interactions.
Our experiments show that the performance of automatically
generated MPI code is almost identical to the hand-written op-
timized code. Since most popular MPI applications fall in this
category, we argue that this transformation assists developers
of parallel and multi-core applications to start development
from high-level BIP models and avoid getting involved in
low-level synchronization details. The second optimization is
for cases where distributed conflicts are more complex and

adding distributed schedulers on top of MPI libraries adds
considerable overhead. Our solution to this case involves a
merging mechanism of computing and scheduling processes.

We emphasize that all our transformations preserveob-
servational equivalence; i.e., the semantics of the high-level
model are not modified during our transformations. In fact, our
findings are opposite of the work in [13], where the author
argues remote rendezvous should not be supported by Ada
because of tremendous complexity and difficulties in seman-
tics. Observational equivalence shows that the our derived
distributed implementations are correct-by-construction, which
makes our approach different from solutions such as in [8],
where distribution is studied only from a practical point of
view. In addition to the issue of semantics, our experiments
also show insignificant overhead at runtime.

We also note that the problem studied in this paper is of
different nature from the related work in distributed versions
of Ada. Most of the work in this area focuses on task
distribution in heterogeneous multi-processor platforms[17]
and client-server implementation of remote rendezvous [8],
where the issue of distributed conflicts are unimportant.

Organization. In Section II, we present the global state
sequential operational semantics of BIP. Then, in Section
III, we present our BIP to BIP transformation. Section IV
describes transformation of the intermediate send/receive BIP
model into C++ distributed code. Section V presents the results
of our experiments. Our optimizations are discussed in Section
VI. Finally, in Section VII, we make concluding remarks and
discuss future work.

II. BASIC SEMANTIC MODELS OFBIP

In this section, we present operationalglobal statesemantics
of BIP. BIP is a component framework for constructing
systems by superposing three layers of modeling: Behavior,
Interaction, and Priority. Since the issue of priorities isirrel-
evant to this paper, we omit it.
Atomic ComponentsWe defineatomic componentsas transi-
tion systems with a set of ports labeling individual transitions.
These ports are used for communication between different
components.

Definition 1 (Atomic Component). Anatomic componentB is
a labeled transition system represented by a triple(Q,P,→)
whereQ is a set ofstates, P is a set ofcommunication ports,
→⊆ Q× P ×Q is a set ofpossible transitions, each labeled
by some port.

For any pair of statesq, q′ ∈ Q and a portp ∈ P , we write
q

p
→ q′, iff (q, p, q′) ∈→. When the communication port is

irrelevant, we simply writeq → q′. Similarly, q
p
→ means that

there existsq′ ∈ Q such thatq
p
→ q′. In this case, we say that

p is enabledin stateq.
In practice, atomic components are extended with variables.

Each variable may be bound to a port and modified through
interactions involving this port. We also associate a guardand
an update function to each transition. A guard is a predicate
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Fig. 2. BIP composite component

on variables that must be true to allow the execution of the
transition. An update function is a local computation triggered
by the transition that modifies the variables. Figure 2-a shows
an atomic componentB, whereQ = {s, t}, P = {p, q, r},
and→= {(s, p, t), (t, q, s), (t, r, t)}.
Interaction For a given system built from a set ofn atomic
components{Bi = (Qi, Pi,→i)}

n
i=1

, we assume that their
respective sets of ports are pairwise disjoint, i.e., for any two
i 6= j from {1..n}, we havePi ∩ Pj = ∅. We can therefore
define the setP =

⋃n

i=1
Pi of all ports in the system. An

interaction is a seta ⊆ P of ports. When we writea =
{pi}i∈I , we suppose that fori ∈ I, pi ∈ Pi, whereI ⊆ {1..n}.

As for atomic components, real BIP extends interactions by
associating a guard and a transfer function to each of them.
Both the guard and the function are defined over the variables
that are bound to the ports of the interaction. The guard must
be true to allow the interaction. When the interaction takes
place, the associated transfer function is called and modifies
the variables.

Definition 2 (Composite Component). A composite com-
ponent (or simply component) is defined by a composition
operator parameterized by a set of interactionsγ ⊆ 2P .

B
def
= γ(B1, . . . , Bn), is a transition system(Q, γ,→), where

Q =
⊗n

i=1
Qi and→ is the least set of transitions satisfying

the rule

a = {pi}i∈I ∈ γ ∀i ∈ I. qi
pi
→i q′i ∀i 6∈ I. qi = q′i

(q1, . . . , qn)
a
→ (q′

1
, . . . , q′n)

The inference rule says that a composite componentB =
γ(B1, . . . , Bn) can execute an interactiona ∈ γ, iff for each
port pi ∈ a, the corresponding atomic componentBi can
execute a transition labeled withpi; the states of components
that do not participate in the interaction stay unchanged. Figure
2-b illustrates a composite componentγ(B0, B1), where each
Bi is identical to componentB in Figure 2-a andγ =
{{p0, p1}, {r0, r1}, {q0}, {q1}}.

III. T RANSFORMATION FROMHIGH-LEVEL BIP TO

SEND/RECEIVE BIP

As mentioned in the introduction, the first step of our solu-
tion is an intermediate transformation from a high-level BIP
model into a message passing BIP model. More specifically,
we transform a composite componentB = γ(B1, . . . , Bn)
in global state semantics with multi-party interactions into an-
other BIP composite componentBSR in partial state semantics

that only involves binary “Send/Receive” interactions. To this
end, we transform each atomic componentBi into an atomic
Send/Receive componentBSR

i (described in Subsection III-A).
We also add a set of atomic componentsSSR

1
, . . . , SSR

m

that act as schedulers. First, we describe how we build a
centralized scheduler in Subsection III-B. We construct the
interactions between Send/Receive components in Subsection
III-C. Finally, we replace the centralized scheduler by a set of
distributed schedulers in Subsection III-E.

Definition 3. We say thatBSR = γSR(BSR
1

, . . . , BSR
n ) is a

Send/ReceiveBIP composite component iff we can partition
the set of ports inBSR into three setsPs, Pr, Pu that are
respectively the set ofsend-ports, receive-portsand unary
interaction ports, such that:

• Each interactiona ∈ γSR, is either a Send/Receive
interaction a = (s, r) with s ∈ Ps and r ∈ Pr, or a
unary interactiona = {p} with p ∈ Pu.

• If s is a port in Ps, then there exists one and only one
receive-portr, such that(s, r) ∈ γSR. We say thatr is
the receive-port associated tos.

• If (s, r) is a send/receive interaction inγSR and s is
enabled at some global state ofBSR, then r is also
enabled at that state.

Notice that the second condition requires that only one com-
ponent can receive a “message” sent by another component.
The last condition ensures that every Send/Receive interaction
can take place as soon as the sender is enabled,i.e. the sender
can send the message immediately.

A. Transformation of Atomic Components

Let Bi be an atomic component. We now present how we
transformBi into a Send/Receive atomic componentBSR

i that
is capable of communicating with the scheduler. There are two
types of Send/Receive interactions:requestandresponse. A re-
quest interaction from componentBSR

i informs the scheduler
that BSR

i is ready to interact through a set of enabled ports.
When the scheduler selects an interaction involvingBSR

i for
execution, it notifies the component by a response interaction
that includes the port chosen.

Definition 4. Let Bi = (Qi, Pi,→i) be an atomic component
and s be a state inQi. Therequestassociated tos is the set
of ports reqs = {p ∈ Pi|s

p
−→i}. We denote the set of all

requests fromBi by REQ i = {reqs|s ∈ Qi}.

Since each response triggers an internal computation, fol-
lowing [5], we split each states into two states, namely,s
itself and abusy state⊥s. Intuitively, reaching⊥s marks the
beginning of an unobservable internal computation. We are
now ready to define the transformation fromBi into BSR

i .

Definition 5. Let Bi = (Qi, Pi,→i) be an atomic component.
The corresponding Send/Receive atomic component isBSR

i =
(QSR

i , P SR
i ,→SR

i ), where

• QSR
i = Qi ∪ Q⊥

i , whereQ⊥
i = {⊥s |s ∈ Qi}.
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• P SR
i = Pi ∪ REQ i where, as we will see later,Pi are

receive-ports andREQ i are send-ports.
• For each transition(s, p, t) ∈→i, we include the follow-

ing two transitions in→SR
i : (s, p,⊥t) and (⊥t, reqt, t).

Figure 3 illustrates transformation of the component in
Figure 2-a into its corresponding Send/Receive component.
Since there are two states inB, we have two request ports in
BSR: one for the requestreqs = {p} and one for the request
reqt = {q, r}.

B. Building the Scheduler Component

In order to implement interactions, we add a new atomic
componentS, called thescheduler component. This com-
ponent receives request messages sent by the Send/Receive
atomic components. Based on the request messages received,
the scheduler calculates the set of enabled interactions and
selects one of them for execution. Then, it sends a response
to each component involved in the selected interaction, so that
they start their internal computations. We define the scheduler
component as a Petri net.

Definition 6. A 1-Safe Petri netis defined by a tripleS =
(L,P, T ) whereL is a set ofplaces, P is a set of ports and
T ⊆ 2L × P × 2L is a set of transitions. A transitionτ is a
triple (•τ, p, τ•), where•τ is the set ofinput placesof τ and
τ• is the set ofoutput placesof τ .

We represent a Petri net as an oriented bipartite graphG =
(L ∪ T,E). Places are represented by circular vertices and
transitions are represented by rectangular vertices. The set of
oriented edgesE is the union of the edges{(l, τ) ∈ L×T |l ∈
•τ} and the edges{(τ, l) ∈ T × L|l ∈ τ•}.

We depict the state of a Petri net bymarking some places
with tokens. We say that a place ismarked if it contains a
token. A transitionτ can be executed if all its input places
•τ contain a token. Upon the execution ofτ , tokens in input
places•τ are removed and output places inτ• are marked.
Formally, let−→S be the set of triples(m, p,m′) such that
∃τ = (•τ, p, τ•) ∈ T , where•τ ⊆ m andm′ = (m\•τ)∪ τ•.
The behavior of a Petri netS can be defined by a labeled
transition system(2L, P,−→S).

Figure 4 shows an example of a Petri net in two successive
markings. This Petri net has five places{p1, . . . , p5} and
three transitions{t1, t2, t3}. The places containing a token
are depicted with gray background. The right figure shows
the resulting state of the left Petri net when transitiont2 is
fired.

p1

p4

p2

p5

p3

t1

t2

t3

p1

p4

p2

p5

p3

t1

t2

t3

Fig. 4. An example of a simple Petri net

Intuitively, the Petri net that defines a scheduler compo-
nent is constructed as follows. We associate a token with
each request. This token circulates through three types of
places:waiting places,receivedplaces, andresponseplaces.
A transition from a waiting place to a received place occurs
when a request is received. The set of marked received places
determines the received requests and, thus, the enabled inter-
actions. Transitions from received places to response places
correspond to interactions. The execution of an interaction
transition collects the required tokens in received placesand
puts them in appropriate response places. A transition from
a response place to a waiting place sends the corresponding
response.

Let a = {pi}i∈I be an interaction. We say that a set of
requests{req i}i∈I enablesa iff ∀i ∈ I, pi ∈ req i, that is, if
for each port ina, there is one request of the set that provides
this port. For each set of requests that enablesa, we add a
transition from the received to response places. Definition7
formalizes the construction of the scheduler.

Definition 7. Let B = γ(B1, . . . , Bn) be a BIP composite
component,REQ =

⋃n

i=1
REQ i be the set of all requests

and RES =
⋃n

i=1
Pi, wherePi is the set of ports ofBi, be

the set of all responses. We define thecentralized schedulerS
as a Petri net(L,P, T ) where:

• The setL of places is the union of the following:

1) The set{wreq |req ∈ REQ} of waiting places.
2) The set{rreq |req ∈ REQ} of received places.
3) The set{sp.req |req ∈ REQ , p ∈ req} of response

places.
• The setP of ports is RES ∪ REQ ∪ γ, which are

respectively send-ports, receive-ports and unary ports.
• The setT of transitions consists of the following:

1) (waiting to received) For each requestreq ∈ REQ ,
T contains the request transition(wreq , req , rreq),

2) (received to response) For each interaction
a ∈ γ and each set of requests{reqj}j∈J

that enables a, T contains the transitions
({rreqj

}j∈J , a, {spj .reqj
}j∈J ), where

∀j ∈ J, {pj} = reqj ∩ a.
3) (response to waiting) For each requestreq ∈

REQ , T contains the set of response transitions
{(sp.req , p, wreq)|p ∈ req}.

Figure 5 depicts the scheduler constructed for the composite
component presented in Figure 2. The dotted places are
the waiting places redrawn here for the sake of readability.
Initially, all waiting places contain a token. In the depicted
state, we assume that both requestreqs

0
and reqs

1
have been

received. Then, the execution of transitionp0p1 is possible and
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.
brings the tokensto response places. Then, these tokens return
to their initial places by sending the responsesp0 andp1.

C. Interactions between Send/Receive Atomic Components
and the Scheduler

The next step of our transformation is to construct the set
γSR of interactions between Send/Receive atomic components
and the scheduler. To avoid confusion between ports of the
scheduler and atomic components, we prefix the ports that
appear in the scheduler by “S :” and we leave the ports of
atomic components as they are.

Definition 8. Let B = γ(B1, . . . , Bn) be a composite com-
ponent, BSR

1
, . . . , BSR

n be the corresponding Send/Receive
atomic components, andS be the scheduler constructed for
B. The set of interactionsγSR is the union of the following:

• The set of all request interactions from components to
scheduler{(req , S :req)|req ∈ REQ},

• The set of all response interactions from scheduler to
components{(S :p, p)|p ∈ RES}, and

• The set of all unary interactions{{S : a}|a ∈ γ}
corresponding to interaction transitions in the scheduler.

Observe that by construction ofγSR, request ports are send-
ports in atomic components and receive-ports in the scheduler
S. Likewise, response ports are send-ports in the scheduler
and receive-ports in atomic components. Unary ports of the
scheduler (that are labeled by original interactions fromγ)
remain unary interactions.

Figure 6 shows the Send/Receive composite component by
transforming the composite component in Figure 2-b. We use
arrows to denote the direction of communications. For the sake
of clarity, we have omitted the prefixes for naming the sched-
uler ports. Non-connected ports of the scheduler are unary
interactions, that is interactions not subject to synchronization
constraints.

D. Correctness

In order to prove correctness, we first show that the compos-
ite componentBSR that we have built thus far is a well-formed
Send/Receive component. In particular, we have to verify that
for each Send/Receive interaction, a receive-port is enabled
when its corresponding send-port becomes enabled. Then, we

BSR
0

reqs
0 reqt

0
p0 q0 r0

BSR
1

reqs
1 reqt

1
p1 q1 r1

S
p0p1 r0r1q0 q1

reqs
0 reqt

0 p0 q0 r0 reqs
1 reqt

1 p1 q1 r1

Fig. 6. A composite Send/Receive component

show that the composite componentBSR is observationally
equivalent to the composite componentB.

A state of the composite componentB is given by the
n-tuple s = (s1, s2, . . . , sn) where si is the state of the
componentBi. A state of the composite componentBSR

also takes into account the state of the Scheduler which is
described by its marking, denotedm. Thus, we will denote
the state ofBSR by s⊥ = (s⊥

1
, s⊥

2
, . . . , s⊥n ,m) . We also

denote byQ the set of all possible states of the composite
componentB and byQSR the set of all possible states ofBSR.

Lemma 1. Let BSR be the Send/Receive transformation of
B. Then, for each Send/Receive interaction(s, r) ∈ γSR,
whenever a send-ports becomes enabled, the associated
receive-portr is already enabled.

Proof: Intuitively, this property holds since each component
starts listening to any response by the time it sends a request.
Dually, the scheduler starts listening again to any requestas
soon as it sends the corresponding response.

Let BSR
i be a Send/Receive atomic component. We show

that all Send/Receive interactions involvingBSR
i meets the

statement of the lemma. We abstract the state ofS by
considering only the information related toBi and S. We
distinguish the following cases, according to the state(s⊥i ,m):

i) s⊥i =⊥s0
,m ⊇ {wreqs |s ∈ Qi}, where⊥s0

is a state
of BSR

i , and m contains all placeswreqs associated to
requests fromBSR

i . The send-portreqs0 is enabled as
well as the receive-portS : reqs0 . Thus, the property
holds for the initial configuration, and in general for
configurations of this form. Moreover, by executing this
request interaction, we fall into the second situation.

ii) s⊥i = s0,m ⊇ {rreqs0 } ∪ {wreqs |s ∈ Qi, s 6= s0}. From
this configuration, no send-port is enabled.

iii) s⊥i = s0,m ⊇ {sp.reqs}∪{wreqs |s ∈ Qi, s 6= s0}. Such a
configuration is reached whenever the scheduler executes
an interaction involvingBSR

i . In this state, since send-
port p is enabled inS and receive-portp is enabled in
BSR

i , the corresponding response interaction is enabled.
Moreover, by executing this response interaction, this
case is reduced to the first case. �

We now defineobservational equivalenceof two transition
systemsA = (QA, P∪{β},→A) andB = (QB , P∪{β},→B

). It is based on the usual definition of weak bisimilarity [16],
where β-transitions are considered unobservable. The same



definition for atomic and composite BIP components trivially
follows.

Definition 9 (Weak Simulation). A weak simulationover A

andB is a relationR ⊆ QA×QB such that we have∀(q, r) ∈

R, a ∈ P : q
a
→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r

β∗aβ∗

→ B r′

and∀(q, r) ∈ R : q
β
→A q′ =⇒ ∃r′ : (q′, r′) ∈ R∧r

β∗

→B r′

A weak bisimulation overA and B is a relation R

such thatR and R−1 are weak simulations. We say that
A and B are observationally equivalentand we write
A ∼ B if for each state ofA there is a weakly bisimilar
state of B and conversely. In the context of our problem,
observable events are interactions of the high-level BIP
model, that is, unary interactions in the Send/Receive model,
and, unobservable events are Send/Receive interactions,
that is, binary interaction. Let us fix some notations. Let
s⊥, t⊥ ∈ QSR be two states ofBSR and a ∈ γSR be an
interaction such thats⊥

a
−→SR t⊥. We rewrites⊥

β
−→SR t⊥

if a is a Send/Receive interaction, otherwisea is a unary
interaction and is observable inBSR. It can be shown that
the relation

β
−→SR is terminating and confluent. Formally, for

any states⊥, there is a unique state[s⊥] that can be reached
by executing all the possible Send/Receive interactions, after

a finite number of steps, that is,s⊥
β∗

−→SR [s⊥] and[s⊥]
β

6→SR.

Lemma 2. Let B be a composite component andBSR be
its Send/Receive version.B and BSR are observationally
equivalent when hiding all Send/Receive interactions inBSR.

Proof : We define the relationR = {(s, s⊥) ∈ Q ×
QSR|∀1 ≤ i ≤ n : [s⊥]i = si}. It can be shown thatR
is an observational equivalence as follows. Lets, t ∈ Q be
some states ofB, s⊥, t⊥ ∈ QSR be some states ofBSR, and
a ∈ γ an interaction. It follows that:

i) If (s, s⊥) ∈ R ands⊥
β

−→SR t⊥, then(s, t⊥) ∈ R.
ii) If (s, s⊥) ∈ R and s⊥

a
−→SR t⊥,f then ∃t ∈ Q such

that s
a

−→ t and (t, t⊥) ∈ R

iii) If (s, s⊥) ∈ R and s
a

−→ t then∃t⊥ ∈ QSR, such that

s⊥
β∗a
−→ t⊥ and (t, t⊥) ∈ R

All these conditions can be checked depending on the
structure of the state in a similar way to [5]. �

E. Decentralized Scheduler

The idea behind decentralization is to decompose the cen-
tralized scheduler component into a set of “disjoint” scheduler
components. LetS = (L,P, T ) be a centralized scheduler. A
decomposition ofS =

⋃m

j=1
Si, is a set of 1-safe Petri nets

Si = (Li, Pi, Ti) such thatL =
⋃m

j=1
Lj , P =

⋃m

j=1
Pj and

T =
⋃m

j=1
Tj . We say that a decomposition isdisjoint if both

L =
⋃m

j=1
Lj andT =

⋃m
j=1

Tj are disjoint unions.
Reconsider the Petri net depicted in Figure 5. As shown in

Figure 7, it can be decomposed into two disjoint Petri nets, the
gray one and the black one. Thus, we build one scheduler for
each of these Petri nets. Observe that such decomposition can
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Fig. 7. Splitting the scheduler

be automatically achieved through a simple syntactic checkby
computing the transitive closure of each connected component
in the scheduler developed in Subsection III-B.

Note that any decomposition of the transitions or places is
not valid. Some places and transitions cannot be disconnected.
For instance, in Figure 7, transitionsr0r1 and q1 are in the
same Scheduler (the black one) because they have a common
input place. Any decomposition separatingr0r1 andq1 cannot
be disjoint, since the common input place would be duplicated,
and then, the global state semantics will be violated.

Since the overall structure of the system changes, we need
to redefine the Send/Receive interactions. Let first consider
the situation of request portsreq ∈ REQ . Since there is
only one req labeled transition in the centralized scheduler
S, there is only one decentralized schedulerSi that contains
this transition and the associated portreq . We denote this port
by Sjreq

: req . The situation of response portsp ∈ RES is
different. The same response portp ∈ RES can label multiple
transitions inS, thus there might be more than one scheduler
Sj that triggers the portp. If the response portp is contained
in the decentralized schedulerSj , we denote itSj : p. The
formal definition is provided below.

Definition 10. Let γSR(BSR
1

, . . . , BSR
n , S) be a Send/Receive

composite component andS1, . . . , Sm be a disjoint decompo-
sition of S. The set of interactionsγSR

2
is the union of the

following :

• The set of all requests from components to schedulers
{(req , Sjreq

:req)|req ∈ REQ}
• The set of all responses from schedulers to components

{(Sj :p, p)|p ∈ Pj}
• The set of all unary interactions{{S :a}|a ∈ γ}

Then we define the decentralized Send/Receive version of
B, denotedBSR

2
= γSR

2
(BSR

1
, . . . , BSR

n , S1, . . . , Sm). Figure
8 presents the decentralized version of the composite compo-
nent originally presented in Figure 2. The gray Petri net from
Figure 7 isS1 and the black one isS2.

Theorem 1. BSR
2

is observationally equivalent toBSR.

Proof : The centralized schedulerS in BSR is the union
of the decentralized schedulersS1, . . . , Sm. Thus, we can say
that a state ofBSR and a state ofBSR

2
are equivalent if the

marked places are the same. This relation is an observational
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Fig. 8. A Send/Receive composite component with Decentralized Scheduler

equivalence since the marked places enable the same interac-
tions in both models. �

IV. T RANSFORMINGSEND/RECEIVE BIP INTO C++

In this section, we describe how we generate pseudo C++
code for a scheduler and a Send/Receive BIP atomic compo-
nent. Notice that since the behavior of these components are
formalized as Petri nets, we only present generation of C++
code for a Petri net whose transitions are labeled by send-ports,
receive-ports, or unary port (see C++ Pseudo Code 1).

Initially, each component creates a TCP socket and es-
tablishes reliable connections with all components that it
needs to interact (Lines 1-2). These interactions and their
corresponding physical connections are determined according
to the complete Send/Receive BIP model and aconfiguration
file. This file specifies the IP address and TCP port number of
all components for final deployment. We assign one Boolean
variable to each place of the given Petri net, which shows
whether or not the place contains the token. Thus, the initial
state of the Petri net is determined by an initial assignmentof
these variables (Line 3).

After initializations, the code enters an infinite loop that
executes the transitions of the Petri net as follows. For each
step, the code scans the list of all possible transitions andgives
priority to transitions that are labeled by a send-port (Lines 6-
10) or unary ports of the given Petri net (Lines 11-15). Actual
emission of data is performed by an invocation of the TCP
sockets system callsend() in Line 7. Once data transmission
or an internal computation is completed, tokens are removed
from input places and put in output places of the corresponding
transitions (Lines 8 and 13).

Finally, if no send-port is enabled and all internal compu-
tations are completed, execution stops and waits for messages
from other components (Line 17). Once one of the sockets
contains a new message, the component resumes its execution
and receives the message (Line 18). Note that based on the
structure of Send/Receive components and schedulers devel-
oped in Section III, it is straightforward to observe that our
code avoids creating deadlocks by giving priority to send-ports
and unary-port. Moreover, sending messages before doing
internal computation triggers receiver components waiting for
a response and increases parallelism.

V. EXPERIMENTAL RESULTS

We have implemented and integrated the transformations
described in Sections III and IV in the BIP toolset. The tool

C++ Pseudo Code 1Petri net
Input: A Petri net of a Send/Receive BIP component and a config-

uration file.
Output: C++ code that implements the given Send/Receive Petri net

// Initializations
1: CreateTCPSocket();
2: EstablishConnections();
3: PrepareInitialState();

4: while true do
5: // Handling send-ports and internal computations
6: if there exists an enabled transition labeled by a send-port

then
7: send(...);
8: PrepareNextState();
9: continue;

10: end if
11: if there exists an enabled transition labeled by a unary port

then
12: DoInternalComputation();
13: PrepareNextState();
14: continue;
15: end if

16: // Handling receiving messages
17: select(...);
18: recv(...);
19: PrepareNextState();
20: end while

takes a composite BIP model in the global state semantics
and a network configuration file as input and generates the
corresponding C++ executable for each atomic component and
scheduler. Each executable can be run independently on a
different machine or a processor core.

We now present the results of our experiments for two
sorting algorithms often used as parallel computing bench-
marks. The structure and behavior of the two benchmarks
are considerably different in terms of conflicting interactions,
number of schedulers, and the required computation and
communication times. All experiments in this section are run
on (single or dual-core)2.2 GHz Intel machines running under
Debian Linux connected through a dedicated 100 Mb/s Eth-
ernet network. We consider five different configurations:1c,
2c, 2c′, 4c and4c′, which denote respectively, one single-core
machine, one dual-core machine, two single-core machines,
two dual-core machines, and four single-core machines.

Moreover, for each experiment we compare the performance
of the BIP generated code against a handwritten MPI program,
implementing the same sorting algorithm and deployed on the
same configuration.

A. Network Sorting Algorithm

We consider2n atomic components, each of them contain-
ing an array ofN items. The goal is to sort all the items, so
that the items in the first component are smaller than those
of the second component and so on. Figure 9-a shows the
high-level model of the Network Sorting Algorithm [1] for
n = 2 using incremental and hierarchical composition of
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Fig. 9. Network Sorting Algorithm.

components1. The atomic componentsB1 . . . B4 are identical.
Each atomic component computes independently the minimum
and the maximum values of its array. Once this computation
completes, interactionγ1 compares the maximum value ofB1

with the minimum value ofB2 and swaps them if the max-
imum of B1 is greater than the minimum ofB2. Otherwise,
the corresponding arrays are correctly sorted and interaction
γ2 gets enabled. This interaction exports the minimum ofB1

and the maximum ofB2 to interactionγ5. The same principle
is applied in componentsB3 andB4 and interactionsγ3 and
γ4. Finally, interactionγ5 works in the same way as interaction
γ1 and swaps the minimum and the maximum values, if they
are not correctly sorted. Notice that all interactions in Figure
9-a are in conflict and, hence, our transformation constructs a
single scheduler that encompasses all these interactions (see
Figure 9-b), and which cannot be decomposed. Moreover, let
us remark that the handwritten MPI program has an identical
structure, that is several components and one scheduler to
deal with communications. We run two sets of experiments
for n = 1 (2 atomic components) andn = 2 (4 atomic
components).
Casen = 1. We consider three different configurations:1c, 2c

and2c′. For 1c, we use a single-core machine, which runs the
two atomic components and the scheduler. For2c, we use one
dual-core machine, where each core runs an atomic component
and one of the cores runs also the scheduler. The component
distribution is similar for2c′, except that the cores now are in
different machines.

The results are reported in Table I for arrays of size
k × 104 elements, fork = 20, 40, 80, 160. In general, the
generated BIP code outperforms the equivalent MPI program.
For instance, the execution time for sorting an array of size
80 × 104, for the configuration2c is: 669 seconds for MPI,
and 600 seconds for BIP. Moreover, the difference is more
important for an array of size160×104, for the configuration
2c′: 3090 seconds for MPI and only2601 seconds for BIP.
As expected, in the configuration2c′, we gain less speedup
compared to2c, both for MPI and BIP, because of the network
communication overhead (for this example the number of
messages sent by each component is equal to the size of
the array ×2). Furthermore, for the configuration1c, we
notice an important overhead due to context switching between
processes which appears to be more significant in the case of

1We note that a composite component obtained by composition of a set
of atomic components (as described in Section II) can be composed with
other components in a hierarchical and incremental fashion using the same
operational semantics. It is also possible to flatten a composite component
and obtain a non-hierarchical one [9].

k MPI (handwritten) C++/Socket (generated)
1c 2c 2c′ 1c 2c 2c′

20 118 40 60 105 34 100
40 497 157 198 409 133 256
80 1936 669 764 1526 600 758
160 8259 2833 3090 5819 2343 2601

TABLE I
PERFORMANCE OFNSA (n = 1).

MPI.
Casen = 2. Again, we consider three configurations:1c, 4c,
and 4c′. For 1c, we use one single-core machine, where the
four atomic components run along with the scheduler. For4c,
we use two dual-core machines and place each atomic com-
ponent on a different core. The scheduler is placed arbitrarily
on one of the cores. For4c′, the distribution of components
and scheduler is similar to4c.

The results are reported in Table II for arrays of size
k × 104 elements, fork = 20, 40, 80, 160. We remark that
the MPI program outperforms the corresponding BIP program.
As can be seen in Table II the execution time for sorting an
array of size160 × 104, for the configuration4c is: 2775
seconds for handwritten MPI, and4621 seconds for BIP. This
overhead is essentially due to communication. The number of
messages exchanged is now four times bigger than for the case
n = 1 and MPI provides a more efficient implementation for
communication.

B. Bitonic Sorting

Bitonic sorting [7] is one of the fastest sorting algorithms
suitable for distributed implementation in hardware or in
parallel processor arrays. A sequence is calledbitonic if it is
initially nondecreasing then it is nonincreasing. The firststep
of the algorithm consists in constructing a bitonic sequence.
Then, by applying a logarithmic number of bitonic merges, the
bitonic sequence is transformed into totally ordered sequence.
We provide an implementation of the bitonic sorting algorithm
in BIP using four atomic components, each one handling one
part of the array. These components are connected as shown in
the Figure 10. The six connectors are non conflicting. Hence,
we use six schedulers for the distributed implementation. In
this example each component sends only three messages, each
one containing its own array.

We run experiments for three configurations:1c, 4c, and
4c′. For 1c, we use one single-core machine, where the four
atomic components along with the schedulers run. For4c, we
use two dual-core machines and place each atomic component

k MPI (handwritten) C++/Socket (generated)
1c 4c 4c′ 1c 4c 4c′

20 224 70 107 217 168 217
40 808 176 240 795 392 502
80 3239 655 789 3071 1792 1264
160 12448 2775 3217 11358 4621 3726

TABLE II
PERFORMANCE OFNSA (n = 2).



k MPI (handwritten) C++/Socket (generated) MPI (direct transformation)
1c 4c 4c′ 1c 4c 4c′ 1c 4c 4c′

20 80 14 14 96 23 24 57 16 15
40 327 59 60 375 96 100 222 58 57
80 1368 240 240 1504 390 397 880 227 225
160 5605 1007 958 6024 1539 1583 3540 952 909

TABLE III
PERFORMANCE OF BITONIC SORTING ALGORITHM.

on a different core. We also distribute the schedulers over
the four cores, such as to reduce the network communication
overhead. For4c′, we use the same distribution for components
and schedulers. The results are reported in Table III for arrays
of size k × 104 elements, andk = 20, 40, 80, 160. As can
be seen in Table III the overall performance of MPI and BIP
implementations are quite similar. For example, the execution
time for sorting an array of size80×104, for the configuration
4c is: 240 seconds for MPI, and390 seconds for BIP. The
overhead induced by the schedulers appears in the differences
of performance between handwritten MPI and generated BIP
code.

VI. OPTIMIZATIONS

In this section, we present two techniques that aim at
reducing the overhead introduced by schedulers and amplified
by high-level communication libraries such as MPI. These
techniques reduce the number of components generated by
the transformation presented in Section III. The first concerns
cases, where no interactions are conflicting. This is the case
for most parallel computing algorithms and in particular MPI
applications such as bitonic sorting, matrix multiplication, tree
adder, and the Linpack algorithm for solving linear systems
(cf. Subsection VI-A). The second technique can be applied
when all interactions that are handled by a scheduler share a
common component (cf. Subsection VI-B).

A. Direct Transformation to MPI

Consider again the gray part of Figure 7. It corresponds to
the schedulerS1 in Figure 8 managing only one interaction,
namely p0p1. This scheduler is only active (i.e., executing
interaction code) when bothBSR

0
andBSR

1
have sent a request

to S1 and are waiting for a response. Otherwise, this scheduler
is waiting. Thus, we do not have parallel computation between
S1 and the participants in the interaction. This scenario demon-
strates a scheduler that is acting only as proxy between two
components and does not run in parallel with other schedulers
and components.
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Fig. 10. Bitonic Sorting Algorithm.

In general, letS be a scheduler that handles only interaction
I. In this case, we can augment one of the participating
components inI with S. We call such a component themaster
component. When the master component is ready to take part
in I, instead of sending a request toS, it starts listening
to requests from other components. When all requests from
other participants inI have been sent, the master component
executes the interaction code forI. Then, it sends responses
to all other participants inI and continues its own execution.
Using this technique, we reduce the number of components
without losing any parallelism. Moreover, we remove the
communication overhead between the master component and
the scheduler. We have implemented this method within a BIP
to MPI transformer. We use MPI collective communication
primitives (Gather andScatter) instead of Send/Receive
to transfer data. The performance of this transformation for
the bitonic sorting is shown in Table III. Observe that the
automatically generated code outperforms the hand-written
code slightly. This is due the fact that we used collective com-
munications in generated MPI code, whereas the handwritten
code used only send/receive primitives.

B. Merging

This technique is applied to the intermediate Send/Receive
model developed in Section III. We generalize our observation
in Subsection VI-A as follows: letS be a scheduler and
BSR be a Send/Receive component, such that each interaction
handled byS involves BSR. Hence,BSR and S cannot run
in parallel. If BSR is running, thenS has to wait for a
request fromBSR and cannot execute any interaction. IfS

is computing, thenBSR has committed to an interaction inS
and is waiting for the response fromS and, hence, not running.

Since BSR and S cannot run in parallel, we can merge
them into one component without losing any parallelism. We
obtain this result by using composition techniques as in [9].
More precisely, given two components and their interactions,
we build their composition as a component whose behavior is
expressed as a Petri net. We apply this technique to the bitonic
sorting example, where each scheduler is responsible for one
interaction involving two components (as shown in Figure 10).
We merge each scheduler with one of these components. We
obtain a BIP Send/Receive model containing four components.

Using this technique, we generated (1) C++/Socket code
as described in Sections III and IV, and (2) MPI code by
starting from Send/Receive BIP. The latter is implemented by
simply replacing TCP socketssend andreceive primitives
by corresponding MPI primitives. The performance of case
4c (2 dual-core machines) configuration is shown in Table



k S/R BIP Merged S/R BIP
Socket MPI Socket MPI

20 23 63 24 24
40 96 271 96 96
80 390 964 391 394
160 1539 4158 1548 1554

TABLE IV
THE IMPACT OF MERGING ONSEND/RECEIVE MODELS

IV. Observe that the performance of the C++/Socket code is
approximately identical in both cases. This is because socket
operations are interrupt-driven. Thus, if a component is waiting
for a message, it does not consume CPU time. On the other
hand, MPI uses active waiting, which results in CPU time
consumption when the scheduler is waiting. Since we have
two cores for five processes, the MPI code generated from the
original Send/Receive model is much slower than the socket
code. Nevertheless, as it appears in the table, reducing the
number of components to one per core by merging allows
the MPI code to reach the same speed as in the C++/socket
implementation.

VII. C ONCLUSION

In this paper, we proposed a novel method for transforming
high-level models in BIP [6] into distributed implementations.
The BIP (Behavior, Interaction, Priority) language is based on
a semantic model encompassing composition of heterogeneous
components. Our transformation consists of three steps: (1) we
transform the given BIP model into another BIP model that
operates in partial state semantics and expresses multi-party
interactions in terms of asynchronous message passing using
send/receive primitives, (2) we construct a set of Schedulers
each executing a subset of conflicting interactions, and (3)we
transform the intermediate BIP model into actual C++ dis-
tributed code that employs TCP sockets or MPI primitives for
communication. We showed that our transformation preserves
thecorrectnessof the high-level model. We also provided two
ways of optimizing the generated code. The first one generates
directly efficient MPI code when there are no conflicts between
interactions. The second one consists in merging components
that could not run in parallel, thus reducing the number of
components but not the parallelism.

We presented a set of experiments that validate the effec-
tiveness of our approach in achieving parallelism regardless of
the platform and architecture. Our experiments illustrated that
depending upon the structure of the model, the distributed code
generated using our methods exhibits little communication
overhead. We also showed that in some cases, the performance
of the generated code is competitive with the performance
of hand-written code developed using the Message Passing
Interface (MPI).

For future work, we plan to pursue several directions.
One direction is introducing the notion of time in distributed
semantics of BIP. Providing timing guarantees in a distributed
setting has always been a challenge and BIP is not an
exception. Another avenue to explore is to build a library
of transformations based on different solutions to the conflict

resolution problem. For instance, one can reduce our problem
to distributed graph matching, distributed independent set, and
distributed clique. These approaches would construct a wide
range of designs for the distributed Scheduler, each appropriate
for a particular application domain and platform. Thus, another
future task is to identify a mapping from each transformation
to an application domain and platform. Of course, a central
issue that needs to be rigorously studied for each type of
transformation and target language or platform is performance
analysis and communication overhead. We are also working
on a generic formal framework where different transformations
can be applied in a plug-and-play manner.
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