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Automated Conflict-Free Distributed
Implementation of Component-Based Models

Borzoo Bonakdarpour Marius Bozga Mohamad Jaber
Jean Quilbeuf Joseph Sifakis

VERIMAG, CentreEquation, 2 avenue de Vignate, 38610¢@k, France

Iy I2 I3
Abstract—We propose a method for generating distributed
implementations from high-level models expressed in terms of
Iy

a set of components glued by rendezvous interactions. The
method is a 2-phase transformation preserving all functional

properties. The first phase is a source-to-source transformain (@) A simple high-level model (b) Distributed version of Figure
from global state to a partial state model (to relax atomicity). 1(a)

This transformation replaces multi-party rendezvous interactions i ) )

by send/receive primitives managed by a set of automatically Fig. 1. Abstract overview of the transformation

generated distributed schedulers. These schedulers are conflict ) -
free by construction in the sense that they do not require @ Petri net or automaton extended by data, whose transitions

communication in order to safely execute interactions of the high- are labeled by ports. Whenever a transition is possible, we sa
!evelhmodel. In the 5900”0: phcase,J_rcimthedtran(?formgd mF’tﬂd that the associated port &nabled A rendezvous interaction

in phase one, we generate C++ distributed code using either ; : v

TCP sockets or MPI to implement send/receive primitives. Our IS enabl_ed_ when all |t_s participating pofts are_ enabled.. A
method is fully implemented in a tool for automatic generation of S€duential implementation for BIP models is obtained bpgisi
distributed applications. We present experimental results using @ centralized Scheduler that has consistent view of theagjlob
different case studies. state of the system. The Scheduler orchestrates the behavio

Keywords. Component-based modeling, Automated transfo?—f components by repeating the following straightforward

mation, Distributed systems, BIP, Correct-by-constarcti Operations:
1) It computes the set of enabled interactions at the current
|. INTRODUCTION global state.

As computing systems become more complex, the need® It sele'cts one interac?ion among this set and executes the
for their decentralization is becoming increasingly appar associated computation. _ .
in many domains. Examples include super-computers for3) It calls sequentially each component involved in the
increasing computing power, the world-wide-web for shar- sg_lected |ntera_ct|on to gxecute th_e corresponding tran-
ing information, distributed fault-tolerant systems faimjng sitions and waits for their completion.
robustness and reliability, and complex networks of sensor Unlike the sequential setting, deriving a distributed ieapl
and actuators for coping with hostile physical environreenmentation from a high-level model such as the one in Figure
in deeply embedded systems or the so-called cyber-physitét) is not a trivial task. For instance, the system musteetsp
systems. Although many languages and techniques have b#englobal state semantics although it works in a distrithute
proposed in distributed computing (e.g., [4], [12], [1415], setting where components do not have a global view of the sys-
[18]), constructing correct distributed applicationsti§ §me- tem. Moreover, suppose that interactidnsand, are enabled
consuming, error-prone, and hardly predictive. Thus, it &multaneously. Since these interactions share compdrignt
highly desirable to develop new methodologies that enalifeey cannot be executed concurrently. We call such interast
us to automatically construct correct distributed appiaces conflicting Obviously, a distributed scheduler must ensure that
by starting from high-level models without getting invadive conflicting interactions are mutually exclusive.
in low-level code development. The problem of distributed conflict resolution is known

In this paper, we focus on the BIP formalism as our higtas thecommittee coordination problerfil], where a set of
level modeling language. BIP (Behavior, Interaction, Rty professors organize themselves in different committees an
is a component-based framework with formal semantics relywo committees that have a professor in common cannot meet
ing on multi-party interactions for synchronizing compotse simultaneously. Several solutions to this problem havenbee
and dynamic priorities for scheduling between interactionproposed. Some use a particular set of manager processes
Figure 1(a) shows a simple BIP model, whexemponents to schedule interactions (e.g., [11]). Bagrodia [2] préSemn
C1,...,Cs interact via rendezvousteractions/y, ..., I,. An  solution based on message counting to detect enabledness of
interaction is formed by a set glorts graphically denoted by interactions in managers and a circulating token to ensure
bullets. In BIP, the behavior of each component is descrifyed mutual exclusion. In a later paper [3], he replaces the token



based solution by a reduction to the dining (or drinkingddding distributed schedulers on top of MPI libraries adds
philosophers problem [10]. In [19], Perez et al presentlaot considerable overhead. Our solution to this case involves a
solution using a lock-based mechanism instead of countersnerging mechanism of computing and scheduling processes.
Contributions.  Although the related work provides us with We emphasize that all our transformations presesbe
solutions to conflict resolution, dealing with real distiied servational equivalence.e., the semantics of the high-level
implementations, requires better understanding of thbleno model are not modified during our transformations. In faat, o
beyond abstract algorithms and simulations. In this paper, findings are opposite of the work in [13], where the author
propose a novel method to transform high-level BIP modrgues remote rendezvous should not be supported by Ada
els into distributed implementations that allows paraial because of tremendous complexity and difficulties in seman-
between components as well as parallel execution of ndies. Observational equivalence shows that the our derived
conflicting interactions. Our method utilizes the follogin distributed implementations are correct-by-construgtiehich
sequence of transformations: makes our approach different from solutions such as in [8],
1) First, we transform the given BIP model into anothevr\{here distripgtion s stu.died only from a practical po?nt of
. : view. In addition to the issue of semantics, our experiments

BIP model that (1) operates in partial state semannc? o .
(to relax atomicity), and (2) expresses multi-party in2'>0 show insignificant overhead at rur!tlmt_e. . .

' We also note that the problem studied in this paper is of

teractions n ter_m_s_ of asynf:h_ronous_ Message PaASSHifarent nature from the related work in distributed versi
(send/receive primitives). This is obtained by replacmg]c Ada. Most of the work in this area focuses on task

:;aer;ﬂg?]?ssrr:n atomic components by a request/respon&%tribution in heterogeneous multi-processor platfolfiig]

2) We insert a set of distributed Schedulers, each handlinand client-server implementation of remote rendezvous (8]

subset of conflicting interactions, such that each confli?:\fﬁere the issue of distributed conflicts are unimportant.

is local to a Scheduler. In Figure 1(a), we suppose that o .
. . : ) rganization. In Section I, we present the global state
I, does not conflict with any other interaction because . . . . .
. sequential operational semantics of BIP. Then, in Section
of components inner structure. Thus, the transform . .
. - . we present our BIP to BIP transformation. Section IV
model (see Figure 1(b)) contains two Schedulers. Singg " ° . . .
: . ; -~ deéscribes transformation of the intermediate send/redgi¥?
the interactions of the first Scheduler do not conflict wit . S .
. model into C++ distributed code. Section V presents theltesu
those of the second one, they are conflict-free. Thus : T . -
S f our experiments. Our optimizations are discussed ini@ect
the two Schedulers can resolve conflicts independent . . : .
. o . : VI. Finally, in Section VII, we make concluding remarks and
i.e., no communication between them is required. In thi
: . . . Iscuss future work.
context, maximum parallelism is achieved when eac
Scheduler contains only one interaction. However, the Il. BASIC SEMANTIC MODELS OFBIP

nun;bler of ﬁchedulers depehnds on thle structuri (()jf :heln this section, we present operatiogétbal statesemantics
model. In the worst case, there is only one Schedulgf gip gip is a component framework for constructing

3 C\?ndllng ?” mtekr}acyons. di BIP gel i systems by superposing three layers of modeling: Behavior,
) We transform the intermediate model into actu teraction, and Priority. Since the issue of prioritiesrigl-

C++ code that employs either TCP sockets or the MeSvant to this paper, we omit it

sage Passing Interface (MPI) [14] for communication. ytomic componentswe defineatomic componentas transi-
We conduct a set of experiments to analyze the behavior diwh systems with a set of ports labeling individual traiosis.
performance of the generated code. Our experiments shaw fhaese ports are used for communication between different
depending upon the structure of the model, the distribubelé c components.
generated using our method exhibits little overhead. We als .. .. . . .
illustrate that in some cases, the performance of the gtmbraBefm't'on 1 (Atomic Component) An atomic componen is

code is competitive with the performance of hand-writtedeco a Iabeleq transition system_ represented by a _t”@:_ P, =)
: where( is a set ofstates P is a set ofcommunication ports
developed using MPI.

o ) — C @ x P xQ is a set ofpossible transitionseach labeled
We also present two types of optimizations. First, WEy 'some port

consider a transformation from BIP models directly to MPI

code for cases where there is no conflict between interaction For any pair of stateg, ¢’ € Q and a porip € P, we write

Our experiments show that the performance of automaticauy& ¢, iff (¢,p,q¢') € —. When the communication port is
generated MPI code is almost identical to the hand-writgn oirrelevant, we simply write; — ¢’. Similarly, ¢ 2 means that
timized code. Since most popular MP!I applications fall iis th there exists/ € @ such thaty 2 ¢’. In this case, we say that
category, we argue that this transformation assists degeedo p is enabledin stateq.

of parallel and multi-core applications to start developime In practice, atomic components are extended with variables
from high-level BIP models and avoid getting involved irEach variable may be bound to a port and modified through
low-level synchronization details. The second optimmatis interactions involving this port. We also associate a guand

for cases where distributed conflicts are more complex aad update function to each transition. A guard is a predicate



that only involves binary Send/Receiventeractions. To this
_[ Po _lpl end, we transform each atomic componéhtinto an atomic
B. 4 B Send/Receive componeRt’” (described in Subsection I1I-A).
0 ri] ! We also add a set of atomic componerfig?, ... S5F
o ot that act as schedulers. First, we describe how we build a

centralized scheduler in Subsection IlI-B. We construe th
interactions between Send/Receive components in Subsecti
Fig. 2. BIP composite component [1-C. Finally, we replace the centralized scheduler by e

on variables that must be true to allow the execution of tﬁielstrlbuted schedulers in Subsection il-E.

transition. An update function is a local computation teged  Definition 3. We say thatBS® = 98 (BPE ... B9 is a
by the transition that modifies the variables. Figure 2-axsho Send/ReceiveBIP composite component iff we can partition
an atomic componenB, whereQ = {s,t}, P = {p,q,r}, the set of ports inB°" into three setsP,, P,, P, that are
and —= {(s,p,t), (t,q,s), (t,r,t)}. respectively the set ofend-ports receive-portsand unary
Interaction For a given system built from a set af atomic interaction portssuch that:

components{B; = (Qi, P, —:)}i,, we assume that their | pach interactiona € ~+5%, is either a Send/Receive

(a) Atomic component  (b) Composite component

respective sets of ports are pairwise disjoint, i.e., for avo interactiona = (s,r) with s € P, andr € P,, or a

7 7é_j from {1..n}, we haveP, N P; = (D._We can therefore unary interactiona = {p} with p € P,.

define the set” = (J;_, P of all ports in the system. An | |t ois a port in P,, then there exists one and only one
interaction is a seta C P of ports. When we writea = receive-portr, such that(s,r) € vS%. We say that is
{pi}icr, we suppose that fare I, p; € P;, wherel C {1..n}. the receive-port associated to

As for atomic components, real BIP extends interactions by, |f (s r) is a send/receive interaction in5% and s is
associating a guard and a transfer function to each of them. gpapled at some global state @5%, then r is also
Both the guard and the function are defined over the variables gnapled at that state.
that are bound to the ports of the interaction. The guard must
be true to allow the interaction. When the interaction takes Notice that the second condition requires that only one com-

place, the associated transfer function is called and nesdifPonent can receive a “message” sent by another component.
the variables. The last condition ensures that every Send/Receive irttenac

o ) ] can take place as soon as the sender is enaildethe sender
Definition 2. (Composite Componept)A composite COM- can send the message immediately.
ponent (or simply component is defined by a composition

operator parameterized by a set of interactionsC 2.
B ~(By,...,B,), is a transition systeniQ, v, —), where
Q = Q. Q; and — is the least set of transitions satisfyin | ’ )

®, b gtransformBi into a Send/Receive atomic componéh)jt? that

A. Transformation of Atomic Components

Let B; be an atomic component. We now present how we

the rule
is capable of communicating with the scheduler. There ace tw
v types of Send/Receive interactiomsquestandresponseA re-
a={pi}tier € Viel g,qd Yi¢gl ¢=qd i i SR |
Diyiel €7 - i —i g S g = quest interaction from componet’ informs the scheduler

(@1 s qn) = (q)s -5 ) that B7F is ready to interact through a set of enabled ports.
When the scheduler selects an interaction involvisgf® for

The inference rule says that a composite compoent  oyecytion, it notifies the component by a response intemacti
v(B1, ..., By,) can execute an interactianc v, iff for each 15t includes the port chosen.

port p; € a, the corresponding atomic componeBt can

execute a transition labeled with; the states of componentsDefinition 4. Let B; = (Q;, P;, —;) be an atomic component
that do not participate in the interaction stay unchangegire  and s be a state inQ);. Therequestassociated tos is the set
2-b illustrates a composite componeritB3,, B, ), where each of ports reg® = {p € Pi|s —;}. We denote the set of all
B; is identical to component3 in Figure 2-a andy = requests fromB; by REQ; = {req’|s € Q;}.

{po.p} {ro, mi} {ao}s {an } - Since each response triggers an internal computation, fol-
lowing [5], we split each state into two states, namely
itself and abusy statel ;. Intuitively, reaching; marks the
beginning of an unobservable internal computation. We are

As mentioned in the introduction, the first step of our solthow ready to define the transformation fra into BSE,
tion is an intermediate transformation from a high-levePBI

model into a message passing BIP model. More specificalgefinition 5. Let B; = (Q, P;, —;) be an atomic component.
we transform a composite componelt = (B, ..., B,) thcorrgzgporLclj;ng Send/Receive atomic componeff s
in global state semantics with multi-party interactionmian- (&7 > ", —i"), where

other BIP composite componeBt? in partial state semantics « Q7% = Q; UQ;-, whereQi = { L, [s € Q;}.

IIl. TRANSFORMATION FROMHIGH-LEVEL BIP TO
SEND/RECEIVE BIP
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Fig. 4. An example of a simple Petri net

Intuitively, the Petri net that defines a scheduler compo-
nent is constructed as follows. We associate a token with
each request. This token circulates through three types of
. PSE = P, U REQ, where, as we will see latel;, are Places:waiting places,receivedplaces, andesponseplaces.

7 7 1 1 o et .

receive-ports andREQ, are send-ports. A transition from a waiting place to a received place occurs
« For each transition(s, p, t) €—;, we include the follow- When a request is received. The set of marked received places

ing two transitions in—5%: (s,p, 1,) and (L, regt, ). determines the received requests and, thus, the enabtsd int

. ) ) actions. Transitions from received places to responseeplac
Figure 3 illustrates transformation of the component igyrrespond to interactions. The execution of an interactio

Figure 2-a into its corresponding Send/Receive componegifnsition collects the required tokens in received plaame
Slg}ge there are two states B, we have two request ports inputs them in appropriate response places. A transition from
B*~": one for the requesteq® = {p} and one for the request 5 response place to a waiting place sends the corresponding
reqt = {q, 7} response.
B. Building the Scheduler Component Let a = {p;}ics be an in_teragtion. We say that a se_zt of
. ) ) requests{req; }icr enablesa iff Vi € I, p; € req;, that is, if

In order to implement interactions, we add a new alomiG each port ina, there is one request of the set that provides
componentS, called the scheduler componentThis com- thjs port. For each set of requests that enaklese add a

pone_nt receives request messages sent by the Send/ Re(i? Sition from the received to response places. Definiion
atomic components. Based on the request messages receigf, - i-es the construction of the scheduler

the scheduler calculates the set of enabled interactiods an

selects one of them for execution. Then, it sends a respof¥gfinition 7. Let B = ~(B,...,B,) be a BIP composite
to each component involved in the selected interactionhab tcomponent,REQ = |J;_, REQ, be the set of all requests
they start their internal computations. We define the sdeeduand RES = |J;_, P;, where P; is the set of ports of3;, be
component as a Petri net. the set of all responses. We define teatralized schedule¥
as a Petri net(L, P, T) where:

o The setL of places is the union of the following:

Fig. 3. Send/Receive atomic component of Figure 2-a.

B

Definition 6. A 1-Safe Petri nets defined by a tripleS =
(L, P,T) whereL is a set ofplaces P is a set of ports and

T C 2 x P x 2L is a set of transitions. A transition is a 1) The set{wy|req € REQ} of waiting places

triple (*7,p, ), where®r is the set ofinput placesof r and 2) The set{r,c|req € REQ} of received places

7* is the set ofoutput placesf . 3) The set{s,.req|req € REQ,p € req} of response
places

We represent a Petri net as an oriented.bipartite g@ph . The setP of ports is RES U REQ U ~, which are
(L U_T, E). Places are represented by C|rculgr vertices and respectively send-ports, receive-ports and unary ports.
transitions are rgpresent(_ad by rectangular vertices. &hefs  _ tha sefr of transitions consists of the following:
oriented edge& is the union of the edge§I,7) € LxT|l € 1) (waiting to received) For each requesty € REQ,

T\];VZn(?etwgt ?ggesﬁgél)ofe aT PxetLriunith}}érkin some places T contains the request ransitiofivrey, req, req),
P g P 2) (received to response) For each interaction

with tokens We say that a place imarkedif it contains a

o . I a € v and each set of request§reg;}jcs
token. A transitionr can be executed if all its input places . g2
. . . S that enables a, T contains the transitions
7 contain a token. Upon the execution of tokens in input ({rrer Fiessa, {s Vies) where
places®r are removed and output places it are marked. vj g"qj J{i‘?’ _’} i TZ“’?{ aﬁe'] '

. ’ ) 9 — ] .

Formally, let—¢ be the set of triplegm, p,m’) such that 3) (response 1o waiting) For each requesty ¢

Ir = (*7,p,7*) € T, where®*r Cm andm’ = (m\°*T)UT". ' c
The behavior of a Petri ne§ can be defined by a labeled REQ, T contains the set of response transitions
{(SP-TFHI?pa wreq)|p € ’I‘Eq}.

transition systen(2X, P, —3).
Figure 4 shows an example of a Petri net in two successiveFigure 5 depicts the scheduler constructed for the comgposit
markings. This Petri net has five placép;,...,ps} and component presented in Figure 2. The dotted places are
three transitions{t,,?2,t3}. The places containing a tokenthe waiting places redrawn here for the sake of readability.
are depicted with gray background. The right figure showsitially, all waiting places contain a token. In the depidt
the resulting state of the left Petri net when transitignis state, we assume that both request and reqf have been
fired. received. Then, the execution of transitiayp; is possible and
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Fig. 6. A composite Send/Receive component
pOT qo -:TTO D1 T 7"1—:/ 7—111 9 P p

show that the composite componeBf” is observationally

equivalent to the composite compondat
A state of the composite componeRt is given by the

brings the tokensto response places. Then, these tokems ref-tUple s = (s1,52,...,5,) wheres; is the state ofsgge
to their initial places by sending the responggsand p;. componentB;. A state of the composite componet”™™
also takes into account the state of the Scheduler which is

C. Interactions between Send/Receive Atomic Componeséscribed by its marking, denoted. Thus, we will denote
and the Scheduler the state of B5% by st = (si,s3,...,s5,m) . We also

The next step of our transformation is to construct the s@gnote by@ the set 2; all possible states of the comgosite
~SR of interactions between Send/Receive atomic componefgnponent3 and byQ“" the set of all possible states Bf°**.

and the scheduler. To avoid confusion between ports of the
scheduler and atomic components, we prefix the ports trl‘_%tmma 1. Let BSE pe the Send/Receive transformation of

appear in the scheduler bys*” and we leave the ports of g Then, for each Send/Receive interactionr) € ~5%,
atomic components as they are. whenever a send-port becomes enabled, the associated

Definition 8. Let B = (B, ..., B,) be a composite com- receive-portr is already enabled.

ponent, Bf,..., B be the corresponding Send/Receive prqof: Intuitively, this property holds since each component
atomic components, anfl be the scheduler constructed forstarts Jistening to any response by the time it sends a reques
B. The set of interactions®” is the union of the following: Dually, the scheduler starts listening again to any reqaest

« The set of all request interactions from components tpon as it sends the corresponding response.

Fig. 5. A scheduler component for Figure 2

scheduler{(req, S:req)|req € REQ}, Let B7F be a Send/Receive atomic component. We show
- The set of all response interactions from scheduler that all Send/Receive interactions involvirig®® meets the
componenty(S:p, p)lp € RES}, and statement of the lemma. We abstract the stateSoby

o The set of all unary interaction§{S : a}la € 7} considering only the information related #; and S. We
corresponding to interaction transitions in the schedulegistinguish the following cases, according to the state m):

Observe that by construction of%, request ports are send- 1) Si =Lsg:m 2 {wregs[s € Qi}, where L, is a state
ports in atomic components and receive-ports in the sceedul  Of Bf", andm contains all placesuyc,: associated to
S. Likewise, response ports are send-ports in the scheduler 'equests fromB;". The send-portreg™ is enabled as
and receive-ports in atomic components. Unary ports of the Well as the receive-por : reg*. Thus, the property
scheduler (that are labeled by original interactions fryn holds for the initial configuration, and in general for
remain unary interactions. configurf_:ltions qf this form. .Moreover, by exeputipg this

Figure 6 shows the Send/Receive composite component by réquest interaction, we fall into the second situation.
transforming the composite component in Figure 2-b. We usé i s € Qs # so}. From

S, = So, ™ 2 {Treq'*o}’ U {'wreqS

arrows to denote the direction of communications. For te sa thjs configuration, no send-port is enabled.
of clarity, we have omitted the prefixes for naming the schedl) i~ = 50,7 2 {$p.reg- }U{Wreqs[s € Qi, s # s0}. Such a

interactions, that is interactions not subject to synctzation an interaction involvingB;"™. In this state, since send-
constraints. port p is enabled inS and receive-porp is enabled in

B?E, the corresponding response interaction is enabled.
D. Correctness Moreover, by executing this response interaction, this
In order to prove correctness, we first show that the compos- case is reduced to the first case. u
ite component3>” that we have built thus far is a well-formed We now defineobservational equivalencef two transition
Send/Receive component. In particular, we have to veriy thsystemsA = (Q 4, PU{3}, —4) andB = (Qp, PU{S},—&B
for each Send/Receive interaction, a receive-port is edabl). It is based on the usual definition of weak bisimilarity [16]
when its corresponding send-port becomes enabled. Then,wieere S-transitions are considered unobservable. The same




definition for atomic and composite BIP components triyiall O Q Q
follows. + + -

Definition 9 (Weak Simulation) A weak simulationover A
and B is arelationR C Q4 x Qg such that we have(q,r) €

R,acP: q35s¢ = I (q’,r')ER/\TﬁgﬁBr’
andV(q,7) € R : qﬂA g = I (q’,r’)eR/\rﬁ—ng r’

A weak bisimulation overA and B is a relation R O
such thatR and R~! are weak simulations. We say that T
A and B are observationally equivalentand we write
A ~ B if for each state ofA there is a weakly bisimilar
state of B and conversely. In the context of our problem, Fig. 7. Splitting the scheduler

observable events are interactions of the high-level B 5 tomatically achieved through a simple syntactic clgck

model, that is, unary interactions in the Send/Receive Modgomnyting the transitive closure of each connected compione

and, unobservable events are Send/Receive interactiQSye scheduler developed in Subsection I1I-B.

thjﬂ e bmg;y interaction. Let USSRf'X some ng}%atlons. Let Note that any decomposition of the transitions or places is

s7, 00 € @77 be two states of5”" anda € v 5 be an ot valid. Some places and transitions cannot be discoedect

interaction such that™ —- g5 t*. We rewrites™ —gz t-  For instance, in Figure 7, transitionsr; and ¢, are in the

if a is a Send/Receive interaction, otherwigeis a unary same Scheduler (the black one) because they have a common

interaction aﬁnd is observable iBSE. It can be shown that input p|ace_ Any decomposition Separatml andql cannot

the relation— g is terminating and confluent. Formally, forpe disjoint, since the common input place would be duplitate

any states, there is a unique stafe'] that can be reachedand then, the global state semantics will be violated.

by executing all the possible Send/Receive interactiofter a  Since the overall structure of the system changes, we need

a finite number of steps, that is- ﬂ_*)SR [s1] and([s*] 7233- to re@efing the Send/Receive interactions. Let first coqside
the situation of request porteeg € REQ. Since there is
only one req labeled transition in the centralized scheduler

Lemma 2. Let B be a composite component a*” be g there is only one decentralized scheduferthat contains

its Send/Receive versio3 and B*" are observationally thjs transition and the associated parg. We denote this port
equivalent when hiding all Send/Receive interactionsitf’. by ;. : req. The situation of response portsc RES is

Proof : We define the relation? = {(s,s*) € Q x different. The same response ppreE RES can label multiple
QSRIV1 < i <n :[s']; = s}. It can be shown thaR transitions inS, thus there might be more than one scheduler
is an observational equivalence as follows. ket € Q be S; thattriggers the porp. If the response por is contained
some states 0B, s*, - € Q5% be some states d85%, and N the decentralized schedulél;, we denote itS; : p. The

a € v an interaction. It follows that: formal definition is provided below.
i) If (s,s) € Randst Bogn tt, then(s,t+) € R. Definition 10. Lety5%(BYE ... BSE S) be a Send/Receive
i)y If (s,s7) € Rands™ —gp t',fthen3t € Q such composite component arf, ..., S,, be a disjoint decompo-
thats %+t and (t,t+) € R sition of S. The set of interactions5® is the union of the
i) If (s,s+) € Rands - t then3t+ € Q5%, such that following :
gL Bla 1 and(t,t) € R « The set of all requests from components to schedulers
All these conditions can be checked depending on the {(req, Sj,, :req)|req € REQ}
structure of the state in a similar way to [5]. m « The set of all responses from schedulers to components
{(Sj:p, p)lp € By} _
E. Decentralized Scheduler « The set of all unary interaction§{S:a}|a € v}
The idea behind decentralization is to decompose the cenThen we define the decentralized Send/Receive version of
tralized scheduler component into a set of “disjoint” salled B, denotedBs5" = $%(BE, ..., BS%, Sy, ..., S,,). Figure

components. Lef = (L, P,T) be a centralized scheduler. A8 presents the decentralized version of the composite compo
decomposition ofS = |Jj_, S, is a set of 1-safe Petri netsnent originally presented in Figure 2. The gray Petri netnfro
Si = (Li, P, T;) such thatL = (Jj, L;, P = UJ;~, P; and Figure 7 isS; and the black one is.
T =J/~, T;. We say that a decomposition dssjoint if both
L=U;., Ly andT = |J;_, T; are disjoint unions.
Reconsider the Petri net depicted in Figure 5. As shown inProof : The centralized scheduled in B is the union
Figure 7, it can be decomposed into two disjoint Petri néis, tof the decentralized schedule$s, . . ., S,,. Thus, we can say
gray one and the black one. Thus, we build one scheduler fhat a state of3°% and a state of35" are equivalent if the
each of these Petri nets. Observe that such decomposition carked places are the same. This relation is an observhtiona

Theorem 1. B5% is observationally equivalent t&5%.



C++ Pseudo Code IPetri net
Input: A Petri net of a Send/Receive BIP component and a config-

e

S1 Dop1 Sy do Tort

requ Po Te;ﬁ b1 regé Qo 7o re=q§ Qi uration file.
I I % I I I Output: C++ code that implements the given Send/Receive Petri net
o e 't @ 7‘% *~ @ 't o 7‘%

rego PO regq 1070 reqi Pl reqy 1111 /I Initializations

: CreateTCPSocket();
. EstablishConnections();
PreparelnitialState();

SR SR
BO Bl

WN P

Fig. 8. A Send/Receive composite component with Decentdi8eheduler 4. \yhile true do

/I Handling send-ports and internal computations

. . . 5:
equivalence since the marked places enable the same intergc if there exists an enabled transition labeled by a send-port

tions in both models. [ | then
7 send(...);
8: PrepareNextState();
IV. TRANSFORMING SEND/RECEIVE BIP INTO C++ 9: continue:

In this section, we describe how we generate pseudo C3& endif N
code for a scheduler and a Send/Receive BIP atomic comﬂ&i if there exists an enabled transition labeled by a unary port

- - . th
nent. Notice that since the behavior of these components ate en DolnternalComputation():

formalized as Petri nets, we only present generation of C+3: PrepareNextState();
code for a Petri net whose transitions are labeled by sertd;po14: continue;
receive-ports, or unary port (see C++ Pseudo Code 1). 15 end if

Initially, each component creates a TCP socket and es-

tablishes reliable connections with all components that j /I Handling receiving messages

: select(...);
needs to interact (Lines 1-2). These interactions and thep: recv(_.(_);)
corresponding physical connections are determined amprd19: PrepareNextState();

to the complete Send/Receive BIP model ancbafiguration 20: end while

file. This file specifies the IP address and TCP port number of

all components for final deployment. We assign one Boolean

variable to each place of the given Petri net, which showWgkes a composite BIP model in the global state semantics

whether or not the place contains the token. Thus, the linitend a network configuration file as input and generates the

state of the Petri net is determined by an initial assignmént corresponding C++ executable for each atomic component and

these variables (Line 3). scheduler. Each executable can be run independently on a
After initializations, the code enters an infinite loop thadifferent machine or a processor core.

executes the transitions of the Petri net as follows. Foheac We now present the results of our experiments for two

step, the code scans the list of all possible transitionsyares$  sorting algorithms often used as parallel computing bench-

priority to transitions that are labeled by a send-port ésis- marks. The structure and behavior of the two benchmarks

10) or unary ports of the given Petri net (Lines 11-15). Attu@re considerably different in terms of conflicting interaws,

emission of data is performed by an invocation of the TCRumber of schedulers, and the required computation and

sockets system cadlend() in Line 7. Once data transmissioncommunication times. All experiments in this section are ru

or an internal computation is completed, tokens are removed (single or dual-core).2 GHz Intel machines running under

from input places and put in output places of the correspandiDebian Linux connected through a dedicated 100 Mb/s Eth-

transitions (Lines 8 and 13). ernet network. We consider five different configuratiohs;
Finally, if no send-port is enabled and all internal comptc, 2¢/, 4c and4¢’, which denote respectively, one single-core

tations are completed, execution stops and waits for messagiachine, one dual-core machine, two single-core machines,

from other components (Line 17). Once one of the sockdwo dual-core machines, and four single-core machines.

contains a new message, the component resumes its executidvioreover, for each experiment we compare the performance

and receives the message (Line 18). Note that based on @h&e BIP generated code against a handwritten MPI program,

structure of Send/Receive components and schedulers-deireplementing the same sorting algorithm and deployed on the

oped in Section I, it is straightforward to observe thatr ousame configuration.

code avoids creating deadlocks b)_/ giving priority to sendp A Network Sorting Algorithm

and unary-port. Moreover, sending messages before doing

internal computation triggers receiver components waifor e consider2” atomic components, each of them contain-

a response and increases para”e"sm_ |ng an array ofN items. The goal is to sort all the itemS, SO
that the items in the first component are smaller than those
V. EXPERIMENTAL RESULTS of the second component and so on. Figure 9-a shows the

We have implemented and integrated the transformatiohigh-level model of the Network Sorting Algorithm [1] for
described in Sections Il and IV in the BIP toolset. The toak = 2 using incremental and hierarchical composition of



k MPI (handwritten) C++/Socket (generated
Ic [ 2¢ [ 27 Ic [ 2¢ [ 2

20 118 40 60 105 34 100
40 497 157 198 409 133 256
80 1936 | 669 | 764 || 1526 | 600 758

75
I’Y2 174
Y1 3
B1|[ Bs Bs || Ba
e ] e B ) 160 || 8259 | 2833 | 3090 || 5819 | 2343 | 2601

(a) High-level BIP model (b) Send/Receive BIP TABLE |
model PERFORMANCE OFNSA (n = 1).

Fig. 9. Network Sorting Algorithm.

components The atomic componentB; ... B, are identical. MPI.

Each atomic component computes independently the minim{#S€ 1 = 2. Again, we consider three configuratioris; 4c,

, : .
and the maximum values of its array. Once this computatiGiid 4¢’- For 1c, we use one single-core machine, where the
completes, interaction; compares the maximum value & four atomic components run along with the scheduler. 4or

with the minimum value ofB, and swaps them if the max- W€ use two dual-core machines and place each atomic com-
imum of B, is greater than the minimum oB,. Otherwise, ponent on a different core. The scheduler is placed arlhytrar

the corresponding arrays are correctly sorted and inferact®? ©n€ of the cores. Folc’, the distribution of components
~» gets enabled. This interaction exports the minimunBef and scheduler is similar téc. _
and the maximum of3; to interactions. The same principle The 4results are reported in Table Il for arrays of size
is applied in component®; and B, and interactionsy; and k< 10% elements, fork = 20,40, 80, 160. We_ remark that
~4. Finally, interactionys works in the same way as interactiori® MPI program outperforms the corresponding BIP program.
~1 and swaps the minimum and the maximum values, if théa‘ys can be seen in Table Il the execution time for sorting an

. " ' : -
are not correctly sorted. Notice that all interactions igufe Ty of size160 x 107, for the configurationdc is: 2775
9-a are in conflict and, hence, our transformation constract S€conds for handwritten MPI, and21 seconds for BIP. This

single scheduler that encompasses all these interactiees Pverhead is essentially due to communication. The number of

Figure 9-b), and which cannot be decomposed. Moreover, {BfSSa9€S exchange_d is now four tir_ne_:s biQQEf than for_the case
us remark that the handwritten MPI program has an identica= ! @nd MPI provides a more efficient implementation for
structure, that is several components and one schedulefcggmunication.

deal with communications. We run two sets of experimens giionic Sorting

for n = 1 (2 atomic components) and = 2 (4 atomic
components).

Casen = 1. We consider three different configurations; 2¢
and2¢’. For 1¢, we use a single-core machine, which runs t
two atomic components and the scheduler. kgwe use one
dual-core machine, where each core runs an atomic compo
and one of the cores runs also the scheduler. The compo
distribution is similar for2¢/, except that the cores now are i

different machines. . . . .

The results are reported in Table | for arrays of siZD BIP using four atomic components, each one handling one
k x 10* elements, fork — 20,40,80,160. In general, the part of the array. These components are connected as shown in
generated BIP code outperforms the equivalent MPI programfe F|gur¢ 10. The six connectors are non_confllctlng. I_—|ence,

e use six schedulers for the distributed implementatian. |

For instance, the execution time for sorting an array of siylé.
80 x 104, for the configuratior2e is: 669 seconds for MPI this example each component sends only three messages, each
' ' gne containing its own array.

and 600 seconds for BIP. Moreover, the difference is mor Wi : ts for th p tiorig: 4 d
important for an array of siz&60 x 10, for the configuration | € run experiments for three configurations, <c, an
4¢. For 1¢, we use one single-core machine, where the four

2¢: 3090 seconds for MPI and onlg601 seconds for BIP. . .
atomic components along with the schedulers run.4epmwe

As expected, in the configuratiolx’, we gain less speedup wo dual hi dpl h atomi ¢
compared t@c¢, both for MPI and BIP, because of the network!S€ WO dual-core machines and place each atomic componen

communication overhead (for this example the number of

Bitonic sorting [7] is one of the fastest sorting algorithms
suitable for distributed implementation in hardware or in
h%arallel processor arrays. A sequence is caliggdnic if it is
Initially nondecreasing then it is nonincreasing. The fat&p
anhe algorithm consists in constructing a bitonic seqeenc
Iﬁ?n, by applying a logarithmic number of bitonic merges, th
rbl onic sequence is transformed into totally ordered secee
I’\Ne provide an implementation of the bitonic sorting aldurit

messages sent by each component is equal to the size of [ % MPI (handwritten) C++/Socket (generated
the array x2). Furthermore, for the configuratiohe, we lec [ 4c [ 4¢ le [ 4c [ 4¢
notice an important overhead due to context switching betwe 20 || 224 | 70 | 107 || 217 | 168 | 217

rocesses which appears to be more significant in the case of 40 808 176 | 240 95 | 392 | 502
p pp g 80 || 3239 | 655 | 789 || 3071 | 1792 | 1264

160 || 12448 | 2775 | 3217 || 11358 | 4621 | 3726

1We note that a composite component obtained by composition et a s
of atomic components (as described in Section Il) can be cordpostt TABLE I
other components in a hierarchical and incremental fashiamgubte same PERFORMANCE OFNSA (n = 2).
operational semantics. It is also possible to flatten a cortgp@simponent
and obtain a non-hierarchical one [9].



k MPI (handwritten) C++/Socket (generatedﬂ MPI (direct transformation)
TIc | 4c ] 4c Ic [ 4c | 4 ][ 1c ] 4c ] 4c’
20 80 14 14 96 23 24 57 16 15
40 327 59 60 375 96 100 222 | 58 57
80 1368 | 240 | 240 || 1504 | 390 397 880 | 227 225
160 || 5605 | 1007 | 958 || 6024 | 1539 | 1583 3540 | 952 909
TABLE Il

PERFORMANCE OF BITONIC SORTING ALGORITHM

on a different core. We also distribute the schedulers overln general, letS be a scheduler that handles only interaction
the four cores, such as to reduce the network communicatibnIn this case, we can augment one of the participating
overhead. Foic’, we use the same distribution for componentsomponents il with .S. We call such a component theaster
and schedulers. The results are reported in Table Ill fayarr component. When the master component is ready to take part
of size k x 10* elements, and: = 20,40,80,160. As can in I, instead of sending a request £ it starts listening
be seen in Table Il the overall performance of MPI and BIB requests from other components. When all requests from
implementations are quite similar. For example, the exeout other participants il have been sent, the master component
time for sorting an array of siz&0 x 104, for the configuration executes the interaction code for Then, it sends responses
4c is: 240 seconds for MPI, and90 seconds for BIP. The to all other participants i and continues its own execution.
overhead induced by the schedulers appears in the diffiesendsing this technique, we reduce the number of components
of performance between handwritten MPI and generated Bi#thout losing any parallelism. Moreover, we remove the
code. communication overhead between the master component and
VI. OPTIMIZATIONS the scheduler. We have implemented this method within a BIP
In this section, we present two techniques that aim 19 MPI transformer. We use MPI collective communication
R;imitives Gat her andScat t er) instead of Send/Receive

reducing the overhead introduced by schedulers and anaplif ; .
transfer data. The performance of this transformatian fo

by high-level communication libraries such as MPI. The oo s ,
techniques reduce the number of components generatedt bltor_nc sorting is shown in Table Ill. Observe that t_he
the transformation presented in Section Ill. The first conse au oma_t|cally ge_n_erated code outperforms the han_d-\mntte
cases, where no interactions are conflicting. This is the ca&?de_ S"Qh“y-_Th'S is due the fact that we used coIIectlvmcq
for most parallel computing algorithms and in particular mpmunications in generated MPI code, whereas the handwritten
applications such as bitonic sorting, matrix multiplicatj tree c0d€ used only send/receive primitives.

adder, and the Linpack algorithm for solving linear systenE
(cf. Subsection VI-A). The second technique can be applied
when all interactions that are handled by a scheduler share dhis technique is applied to the intermediate Send/Receive

Merging

common component (cf. Subsection VI-B). model developed in Section Ill. We generalize our obsepwati
_ ) in Subsection VI-A as follows: letS be a scheduler and
A. Direct Transformation to MPI BSE pe a Send/Receive component, such that each interaction

Consider again the gray part of Figure 7. It corresponds f@ndled byS involves B5%. Hence, 35" and S cannot run
the schedulerS; in Figure 8 managing only one interactionjn parallel. If B5 is running, thenS has to wait for a
namely pop:. This scheduler is only active (i.e., executingequest fromB“% and cannot execute any interaction. df
interaction code) when botR;" and B{" have sent a requestis computing, then3°" has committed to an interaction &
to S; and are waiting for a response. Otherwise, this schedugtd is waiting for the response frofhand, hence, not running.
is waiting. Thus, we do not have parallel computation betwee Since B5% and S cannot run in parallel, we can merge
S and the participants in the interaction. This scenario demdhem into one component without losing any parallelism. We
strates a scheduler that is acting only as proxy between t@btain this result by using composition techniques as in [9]
components and does not run in parallel with other scheslulddore precisely, given two components and their interastion
and components. we build their composition as a component whose behavior is
expressed as a Petri net. We apply this technique to theibiton
sorting example, where each scheduler is responsible fer on
BYE ;’O@ B3t interaction involving two components (as shown in Figurg 10
EDEQ?EEID We merge each scheduler with one of these components. We
ES CF obtain a BIP Send/Receive model containing four components
m m m BS; — Qe BTER Using this technique, we generated (1) C++/Socket code
E%DWED as described in Sections Ill and IV, and (2) MPI code by
starting from Send/Receive BIP. The latter is implementgd b
(a) High-level BIP model (b) Send/Receive BIP model  simply replacing TCP socketsend andr ecei ve primitives
by corresponding MPI primitives. The performance of case
4c (2 dual-core machines) configuration is shown in Table

Fig. 10. Bitonic Sorting Algorithm.



k SOCSk/eRt [BIII\D/IPI ggggg?ﬁ’ﬁﬁp resolution problem. For instance, one can reduce our proble

=0 >3 3 o7 57 to distributed graph matching, distributed independentasel

40 96 271 96 96 distributed clique. These approaches would construct & wid

80 390 964 391 394 range of designs for the distributed Scheduler, each apptep

160 || 1539 | 4158 J] 1548 | 1554 for a particular application domain and platform. Thus,taeo
TABLE IV future task is to identify a mapping from each transfornratio

THE IMPACT OF MERGING ONSEND/RECEIVE MODELS to an application domain and platform. Of course, a central

issue that needs to be rigorously studied for each type of
IV. Observe that the performance of the C++/Socket code$nsformation and target language or platform is perfocea
approximately identical in both cases. This is becauseesocgnawsis and communication overhead. We are also working
operations are interrupt-driven. Thus, if a component iSin@ o, 4 generic formal framework where different transforovai
for a message, it does not consume CPU time. On the other, pe applied in a plug-and-play manner.
hand, MPI uses active waiting, which results in CPU time
consumption when the scheduler is waiting. Since we have REFERENCES
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For future work, we plan to pursue several directions.

One direction is introducing the notion of time in distriedt

semantics of BIP. Providing timing guarantees in a distatu

setting has always been a challenge and BIP is not an

exception. Another avenue to explore is to build a library

of transformations based on different solutions to the @infl



