
HAL Id: hal-00558040
https://hal.science/hal-00558040

Submitted on 20 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional Translation of Simulink Models into
Synchronous BIP

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga, Joseph
Sifakis

To cite this version:
Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga, Joseph Sifakis. Compositional Trans-
lation of Simulink Models into Synchronous BIP. IEEE Fifth International Symposium on Industrial
Embedded Systems, Jul 2010, Trento, Italy. pp.217-220, �10.1109/SIES.2010.5551374�. �hal-00558040�

https://hal.science/hal-00558040
https://hal.archives-ouvertes.fr

Compositional Translation
of Simulink Models into Synchronous BIP

Vassiliki Sfyrla, Georgios Tsiligiannis, Iris Safaka, Marius Bozga and Joseph Sifakis
Verimag - University of Grenoble - CNRS

Email: name.surname@imag.fr

Abstract—We present a method for the translation of a discrete-
time fragment of Simulink into the synchronous subset of the
BIP language.

The translation is fully compositional, that is, it preserves com-
pletely the original structure and reveals the minimal control co-
ordination structure needed to perform the correct computation
within Simulink models. Additionally, this translation ca n be seen
as providing an alternative operational semantics of Simulink
models using BIP. The advantages are twofold. It allows for
integration of Simulink models within heterogeneous BIP designs.
It enables the use of validation and automatic implementation
techniques already available for BIP on Simulink models.

The translation is currently implemented in the Simulink2BIP
tool. We report several experiments, in particular, we showthat
the executable code generated from BIP models has comparable
runtime performances as the code produced by the Real-Time
Workshop on several Simulink models.

I. I NTRODUCTION

Simulink [1] is a very popular commercial tool for model-
based design and simulation of dynamic embedded systems.
Simulink lacks desirable features of programming languages,
e.g. the Simulink semantics is provided only informally, itis
only partially documented and the meaning of models depends
significantly on many simulation parameters (e.g. simulation
step, solver used, etc).

BIP [2] is a formalism for modeling heterogeneous real-time
components. BIP is supported by an extensible toolset which
includes functional validation and code generation features.
The BIP toolset includes a highly parametric and efficient code
generation chain, targeting different implementation models
(sequential, multi-threaded, distributed, real-time, etc). Syn-
chronous BIP is a subset of the BIP framework for modeling
synchronous data-flow systems [3]. In this paper we provide a
translation for the discrete-time fragment of Simulink into syn-
chronous BIP. Through this translation, discrete-time Simulink
becomes available as a programming model for developing
synchronous BIP components. That is, Simulink models can
be smoothly integrated in larger heterogeneous BIP systems.
Moreover, the translation from Simulink into BIP allows
the validation and implementation of Simulink models using
the BIP tools. In particular, compositional and incremental
generation of invariants can be applied for complex Simulink
models by using the D-Finder tool [4].

The translation is structural and incremental, propertiesthat

confirm that synchronous BIP is an appropriate formalism
for providing a formal semantics for discrete-time Simulink.
The generated BIP models have the same structure as the
original Simulink models, henceforth, Simulink users can
easily understand and accept them. Moreover, all the syn-
chronous BIP models obtained by translation satisfy important
properties. All modal flow graphs representing the behavior
are well-triggered, confluent and deadlock-free. These results
guarantee predictable behavior of the generated BIP models
and validate the intuitive simulation semantics (i.e., single-
trace) of Simulink.

The translation is currently implemented in the Simulink2BIP
tool. We report several experiments on demonstration models.

Related Work

The work in [5] presents a translation for a subset of MAT-
LAB/Simulink and Stateflow into equivalent hybrid automata.
The work of [6], [7] is probably the closest to our work.
These papers present a compositional translation for discrete-
time Simulink and respectively discrete-time Stateflow models
into Lustre programs [8]. We can also mention [9] where
a restricted subset of MATLAB/Simulink, consisting of both
discrete and continuous blocks, is translated into the COMDES
framework. Finally, [10] presents a tool which automatically
translates discrete-time Simulink models into the input lan-
guage of the NuSMV model checker.

The fragments translated in [5], [9] and [10] are either in-
comparable or handled differently. We cover almost the same
discrete-time fragment as [7]. Also, we adopt exactly the same
semantic choices. However, we believe that our translation
method provides a much understandable representation, which
better illustrates the control and data dependencies in the
Simulink model. For example, we are using (generic) explicit
components for adaptation of sample times for signals going
into/coming from subsystems. In the Lustre translation, this
adaptation is hard-coded using sampling/interpolation oper-
ators and gets mixed with other (functional) equations of
the subsystem. Also, we do not hard-wire the sample time
of signals using absolute clocks. Instead, we track all the
sample time dependencies (e.g., equalities) within the model
and define them only once, at the upper layer, using a sample-
time period generator.

II. MATLAB/S IMULINK

In this section, we review the major Simulink concepts relevant
for our translation.

Models described in the discrete-time fragment of Simulink[1]
operate on discrete-time signals. Every signals is a piecewise
constant function characterized by its sample time, that is, the
periodk > 0 of time at which the signal can change its value.

Simulink models are constructed from ports and atomic blocks.
Ports are of two types,data ports, defining dataflow connection
endpoints in subsystems andcontrol portsproducing triggering
and enabling events for the execution of subsystems. Amongst
the most used atomic blocks aresources, sinks, combinatorial
blocks, unit delay, zero-order holdand transfer functions.

Subsystems are user-defined assemblies constructed recur-
sively from atomic blocks and subsystems. Simulink provides
three types of subsystems, triggered, periodic and periodic
enabled.Triggered subsystemsexecute instantaneously only
when a trigger event occurs.Periodic and periodic enabled
subsystemsare time dependent. Their execution is done ac-
cording to explicit sample times defined from their inner
blocks. For periodic enabled subsystems, execution is con-
strained by the value of an external signal.

III. SYNCHRONOUSBIP

BIP [2] – Behavior, Interaction, Priority – is a component
framework for modeling, analysis and implementation of het-
erogeneous real-time systems. BIP components are obtained
as the superposition of three layers: (1) behavior, described by
automata extended with C/C++ code, (2) interactions, describ-
ing the cooperation between actions of the behavior and (3)
priorities, rules specifying scheduling policies for interactions.
Layering implies a clear separation between behavior and
architecture (connectors and priority rules).

Synchronous BIP [3] is a subset of BIP for modeling syn-
chronous systems. Synchronous systems are obtained as the
composition of synchronous BIP components, defined and
interconnected according to specific restrictions. First,all
synchronous BIP components in a system synchronize periodi-
cally on an implicitsyncinteraction. This interaction separates
the synchronous stepswithin the system. Second, behavior
of synchronous BIP components is described bymodal flow
graphs (MFGs). These graphs express causal dependencies
between events (and their associated actions) within every
synchronous step. This representation is appropriate for syn-
chronous behavior, which is inherently parallel and (loosely)
coordinated by clock and data dependencies.

Modal flow graphs express three types of causal dependencies:
strong, weak and conditional. For two eventsp andq, we say
that q strongly depends onp, if only the executionp · q is
possible in a step,q weakly depends onp if either p can be
executed alone or the sequencep · q, q conditionally depends
on p if both p andq occur, only the sequencep · q is possible,
otherwisep andq can be executed independently.

Henceforth, we will use a simple graph-based representation
for modal flow graphs. Vertices represent the eventss and the
edges (arrows) represent dependencies. We use solid (resp.
thin, resp. dotted) arrows to denote strong (resp. weak, resp.
conditional) dependencies (see figure??).

A modal flow graph isdeadlock-freeif every synchronous step
eventually terminates, that is, reaches a configuration where
the component can cycle, by synchronizing with all the others
(and begin the next step). A modal flow graph isconfluentif
the result of a step is deterministic, regardless the order chosen
for execution of events.

In [3] we have proven that for the subclass ofwell-triggered
modal flow graphs we can guarantee deadlock-freedom and
confluence of execution using simple syntactic conditions.
Well-triggered modal flow graphs satisfy additional conditions
(i) every event must have a unique minimal strong cause and
(ii) every event has exclusively either strong or weak causes.

We have defined composition of synchronous components as a
partial internal operation parameterized by a set of interactions.
Given a set of synchronous components, we obtain a product
component by glueing together the events (and associated
actions) interconnected by interactions.

IV. T RANSLATION

A. Overview

The translation from Simulink to synchronous BIP is modular;
it associates with each Simulink blockB a unique synchronous
BIP componentMB. Moreover, basic Simulink blocks e.g.,
operators, are translated into elementary (explicit) synchronous
BIP components. Structured Simulink blocks e.g., subsystems,
are translated recursively as composition of the components
associated to their contained blocks. The composition is also
defined structurally i.e., dataflow and activation links used
within the subsystem are translated to connectors. We consider
only Simulink models that have explicitly specified sample
times for all signals and which can be simulated using fixed-
step solver in single-tasking mode. For details on the transla-
tion see [11].

Synchronous BIP components associated to Simulink blocks
involve control events and data events:

• control events, includingactp, · · · and trigq, · · · de-
note respectivelyactivationevents andtriggering events.
These events represent pure input and output control
signals. They are used to coordinate the overall execution
of modal flow graph behavior and correspond to control
mechanisms provided by Simulink e.g., sample times,
triggering signals, enabling conditions, etc.

• data events, includinginx, · · · and outy, · · · denote re-
spectively input events andoutput events. These events
transport data values into and from the component. They
are used to build the dataflow links provided by Simulink.

Modal flow graphs obtained by translation enjoy important

structural properties. First, they are well-triggered [3]. Second,
every data event is strongly dependent on exactly one of the
activation events. Intuitively, this means that input/output of
data is explicitly controlled by activation events. Third,all
synchronous BIP components obey the syntactic conditions
for confluence and deadlock-freedom defined in [3].

Finally, the translation of a Simulink modelB needs an
additional synchronous componentClkB, which generates
all activation eventsactk1 , actk2 , ... corresponding to periodic
sample timesk1, k2, ... used within the model. The final
result of the translation is the composition ofMB andClkB

with synchronization on activation events. WithinClkB, the
activation events are produced using a global time reference
and must the corresponding ratio, respectivelyk1, k2,

B. Ports and Atomic Blocks

Simulink ports and atomic blocks are translated into ele-
mentary synchronous BIP components. Some examples are
explained below and shown in figure??.

y
τ

x1, x2, y

in2

in1x1

x2

out

τ v:=v1+v2

in1

actk

in2

actk

actk

in

fT ()op

out

actk actkp

actkp

x

in

v1, v2x, y, s[], r[]

out

v2:=v1

actkq

actkq

in x iny out outyout

Fig. 1. Elementary MFGs for combinatorial blocks (left), transfer functions
(middle) and zero-order hold (right).

For example, figure?? (right) illustrates the synchronous BIP
component for a zero-order hold block. The inputinx and
outputouty events are triggered by different activation events
respectively,actp and actq. Moreover, the two activation
events are also weakly dependent in some order, and this
dependency enforces the Simulink restriction that zero-order-
hold elements can be used to decrease the sample time of the
signal. Furthermore, input and output events are conditionally
dependent on each other, in order to represent the expected
behavior, i.e. an output is produced with the most recent value
of the input.

C. Subsystems

1) Triggered Subsystems:Triggered subsystems are translated
into synchronous BIP components with a unique activation
eventact⊥ and several input and output events, one for every
inport respectively outport defined within the subsystem.

The translation proceeds as follows. First, it collects the
synchronous BIP components of all of the constituent blocks.
We distinguish three categories of blocks, thein/outports, the
atomic blocksand the triggered subsystems. Input (respectively
output) events defined by the components associated to inports

(respectively outports) become part of the interface. Atomic
blocks lead to components with a unique activation eventact⊥.
Triggered subsystems are translated recursively, following the
same procedure. We simply rely on their interface to connect
them.

Second, the components are composed by synchronization
according to dataflow and triggering connections in Simulink.
We distinguish basically three cases. First, eachdataflow
connectionbetween blocks operating on the same sample time
is translated into a strong synchronization between an output
event and an input event. Moreover, the activation events ofthe
two components are also strongly synchronized. Second, each
dataflow connectionbetween blocks operating on different
sample times is realized by passing through asample-time-
adapter component. The behavior of such a component is
similar to the one of the zero-order hold. Thesample-time-
adaptercomponent allows the correct transfer of data between
a producer and a consumer activated by different events. Third,
triggering connectionis realized by passing through atrigger-
generatorcomponent. This component produces a triggering
eventtrig whenever some condition on the input signal holds.

Finally, all the act⊥ events which are not explicitly syn-
chronized with atrig event (i.e., occurring at top level) are
synchronized and exported as theact⊥ event of the composed
synchronous BIP component.

2) Periodic and Enabled Subsystems:Periodic and enabled
subsystems are translated to synchronous BIP components
with multiple activation eventsactk1 , · · ·actkn , each corre-
sponding to a fixed sample timeki ∈ R used explicitly within
the subsystem (or recursively, in some of its sub-subsystems).
Also, as for triggered subsystems, the associated component
has multiple input and output events, one for every inport
respectively outport defined within the subsystem.

The construction of the component associated to a periodic
subsystem (or enabled) subsystem is also structural and incre-
mental. It extends the method defined for triggered subsys-
tems. First, it collects the components for all the constituent
blocks, then, it composes them according to dataflow, trigger-
ing and enabling connections defined in Simulink.

All connections are handled as for triggered subsystems apart
from the enabling condition. Such a connection requires an
additionalenabling-conditioncomponent which filters out any
(periodic) activation eventactki occurring when the input
signal is false (or negative). Otherwise, it propagates the
activation event renamed astrigki towards the system.

Finally, all activation eventsactki which correspond to the
same sample timeki and which are not explicitly synchronized
with a trigki event (i.e., occurring at top level and not filtered
by some enabling condition) are strongly synchronized and
exported as theactki event on the interface of the composed
synchronous BIP component.

V. EXPERIMENTAL WORK

The translation has been implemented in the Simulink2BIP
tool. The tool Simulink2BIP parses MATLAB/Simulink model
files (.mdl), and produces synchronous BIP models (.bip).
The generated models reuse a (hand-written) predefined
component library of atomic components and connectors
(simulink.bip). This library contains the most common
atomic blocks and ports as well as the most useful con-
nectors (for in/out data transfer and for control activation).
Synchronous BIP models can be further used either to generate
standalone C++ code (using the toolBIP2C) or as parts
of larger BIP models. The C++ code can be compiled and
executed as such i.e., no middleware is needed for execution.

Table 2 summarizes experimental results on several Simulink
models. We have discretized and translated several demo
examples available in MATLAB/Simulink including theAnti-
lock Braking system, theConditionally executed subsystem,
the Enabled subsystem demonstrationand theThermal model
of a house. Also, we have translated the examples provided
in [7] i.e., the Steering Wheelapplication and theBig ABC.
Finally, we have considered several artificial benchmarks,e.g.
64-bit counter. The table provides information about the com-
plexity of these models. #A is the number of atomic blocks,
#P the number of periodic blocks, #T the number of triggered
subsystems and #E the number of enabled subsystems.

For all these examples the translation time into synchronous
BIP is negligible and therefore it is not reported. Moreover,
in all cases, the simulation traces produced respectively by
Simulink in simulation mode and by BIP are almost identical.
We have observed few small differences for some exam-
ples, which are probably due to a different representation of
floating-point numbers in Simulink and in BIP.

Finally, for all examples we have produced executable code
using respectively the Real-Time Workshop and the BIP code
generator. Table 2 reports the execution times measured using
the two implementations (i.e., columnstrtw for Real-Time
Workshop,tbip for BIP) for different numbers of iterations
n. We observe that the BIP generated code slightly outper-
forms the Real-Time Workshop in almost all the considered
examples. Nevertheless, we do not claim that BIP outperforms
the Real-Time Workshop in general, because our translation
and code generation does not yet cover all the models that can
be actually handled by the Real-Time Workshop.

VI. CONCLUSION

We present a translation from the discrete-time fragment of
Simulink into synchronous BIP. The translation is structural
and incremental. The synchronous BIP components obtained
by translation of Simulink models have several properties in-
cluding confluence and deadlock-freedom. We provide an im-
plementation of the translation in a tool calledSimulink2BIP.
Experiments show that the generated BIP models lead to
implementations that have comparable performance to the

Ex. #A #P #T #E n trtw tbip

64-bit 365 0 60 0 10
6 5,347s 3,115

counter 10
7 53,652s 31,112s

Anti-lock 39 2 0 0 10
4 0,345s 1,394s

breaking 10
6 3,200s 13,515s

Steering 120 15 1 0 10
6 0,406s 1,676s

Wheel 10
7 3,417s 16,755s

Big 23 2 0 0 10
6 0,359 0,239

ABC 10
7 3,105 2,024

Multi 14 0 0 1 10
6 0,465s 0,411s

Period 10
7 4,012s 3,658s

Enabled 24 0 0 2 10
6 0,382s 0,380s

Subsystem 10
7 3,201s 3,458s

Thermal 45 3 0 0 10
6 0,559s 0,853s

model house 10
7 5,196s 9,624s

Fig. 2. Experimental results

generated code by Real-Time Workshop of MATLAB.

Although we cover a significant part of the discrete-time
fragment of Simulink, our translation is not complete and
can be directly extended in several directions. For example,
we consider only uni-dimensional signals that means we do
not handlen-dimensional combinatorial operators. Also, we
consider only signals with explicit sample times, i.e. we do
not handle inherited sample times.

On a longer term perspective, we would like to extend our
translation to the full discrete-time fragment of Simulink. This
includes all of the conditionally executed subsystems, like the
triggered-enabled subsystems, the function-call subsystems as
well as user defined functions blocks. Finally, we plan to define
a similar translation for discrete-time Stateflow.

REFERENCES

[1] http://www.mathworks.com/products:simulink/.
[2] A. Basu, M. Bozga, and J. Sifakis, “Modeling heterogeneous real-time

systems in BIP,” inProceedings of SEFM’06, invited talk.
[3] M. D. Bozga, V. Sfyrla, and J. Sifakis, “Modeling synchronous systems

in bip,” in EMSOFT ’09: Proceedings of the seventh ACM international
conference on Embedded software. New York, NY, USA: ACM, 2009.

[4] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis, “D-finder: A
tool for compositional deadlock detection and verification,” in CAV ’09:
Proceedings of the 21st International Conference on Computer Aided
Verification, 2009.

[5] A. Agrawal, G. Simon, and G. Karsai, “Semantic translation of
simulink/stateflow models to hybrid automata using graph transforma-
tions,” in International Workshop on Graph Transformation and Visual
Modeling Techniques, 2004.

[6] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi,
“Defining and translating a ”safe” subset of simulink/stateflow into
lustre,” in EMSOFT ’04: Proceedings of the 4th ACM international
conference on Embedded software. New York, NY, USA: ACM, 2004.

[7] S. Tripakis, C. Sofronis, P. Caspi, and A. Curic, “Translating discrete-
time simulink to lustre,”ACM Trans. Embed. Comput. Syst., 2005.

[8] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
dataflow programming language Lustre,”Proceedings of IEEE, 1991.

[9] N. Marian and S. Top, “Integration of simulink models with component-
based software models,”Advances in Electrical and Computer Engineer-
ing, 2008.

[10] B. Meenakshi, A. Bhatnagar, and S. Roy, “Tool for translating simulink
models into input language of a model checker,” inICFEM, 2006.

[11] “Compositional translation of simulink models into synchronous bip,”
Verimag Research Report, Tech. Rep. TR-2010-16.

