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Abstract. As knowledge bases move into the landscape of larger ontologies and

have terabytes of related data, we must work on optimizing the performance of

our tools. We are easily tempted to buy bigger machines or to fill rooms with

armies of little ones to address the scalability problem. Yet, careful analysis and

evaluation of the characteristics of our data—using metrics—often leads to dra-

matic improvements in performance. Firstly, are current scalable systems scalable

enough? We found that for large or deep ontologies (some as large as 500,000

classes) it is hard to say because benchmarks obscure the load-time costs for

materialization. Therefore, to expose those costs, we have synthesized a set of

more representative ontologies. Secondly, in designing for scalability, how do we

manage knowledge over time? By optimizing for data distribution and ontology

evolution, we have reduced the population time, including materialization, for the

NCBO Resource Index, a knowledge base of 16.4 billion annotations linking 2.4

million terms from 200 ontologies to 3.5 million data elements, from one week

to less than one hour for one of the large datasets on the same machine.

1 Introduction

Researchers are using ontologies extensively to annotate their data, to drive decision-

support systems, and to perform natural language processing and information extrac-

tion. As a result, we have an abundance of information across many domains making

their way into knowledge-based systems. For example, annotation databases that link

terms from biomedical ontologies to clinical data reach well into the tens of billions

of records and help scientists discover new connections among genes and diseases, or

drugs, treatments, and patient outcomes [11, 20].

At the same time, ontologies are diverse; they are evolving; and they are getting

larger. Many have over 25,000 classes. A few have over 200,000 classes. Some change

on a daily basis. As we move into this abundant landscape, we are tempted to meet the

computational challenges either by scaling-up and purchasing bigger machines, or by

scaling-out and renting armies of little ones from the various compute clouds. Here, we

study how a careful analysis and evaluation of the characteristics of our ontologies and

data—using metrics—leads to dramatic improvements in performance, without spend-

ing on new infrastructure.

We focus on the domain of biomedicine, which has some of the largest, actively

used, and actively evolving ontologies today. In our laboratory, as part of the Na-
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tional Center for Biomedical Ontology (NCBO), we have developed BioPortal [16]—

the largest repository of publicly available biomedical ontologies. It currently contains

more than 200 ontologies, which comprises over 2.4 million classes.

BioPortal includes the NCBO Resource Index [19], which is a searchable database

of semantic annotations for biomedical resources using all BioPortal ontologies. In this

context, a biomedical resource is a repository of elements that may contain patient

records, gene expression data, scholarly articles, and so on. A data element is unstruc-

tured text describing elements in the resource. An annotation—a central component—

links an ontology term to a data element, indicating that the element refers to the term.

To generate the Resource Index, we use a concept-recognition tool to find ontology

terms and their synonyms in data elements, and to store these associations in the index.

The Resource Index currently includes 22 different data resources, comprising over

3.5 million data elements resulting in 16.4 billion annotations stored in a 1.5 terabyte

MySQL database. We are ramping-up the system to include nearly 100 different data

resources, 50 million data elements, and well over 100 billion annotations.

Many large-scale knowledge bases will pay an amortized penalty up-front by ma-

terializing inferences (e.g., forward chaining, materializing views, computing transitive

closures) so that queries will run much faster, but at what cost? Knowing these trade-

offs and performance limitations helps us make critical decisions on which systems will

work best for our needs, or when—and how—to build something entirely new. As one

example of a critical problem we encountered for the Resource Index: what happens

when ontology evolution outpaces materialization?

Therefore, we approach the scalability problem for a knowledge base of annota-

tions, like the Resource Index, first by examining existing, scalable systems. Our goal

is to incorporate a large variety of ontologies as well as a large amount of data. However,

we found that benchmarks fall short in illuminating the fundamental tradeoffs between

query-time and load-time costs precisely because they do not account for variability

among ontologies. The size and depth of an ontology hierarchy significantly affects

the cost-curve for materialization. Furthermore, ontologies are not stagnant. Hence, in

building our own tool to handle a variety of ontologies and datasets, we found that op-

timizing primarily for data distribution and ontology evolution significantly improves

the performance of the system.

Besides providing metrics for the most comprehensive set of ontologies and anno-

tations available in biomedicine (Section 3), we offer the following contributions:

– we used clustering algorithms on the size and depth of ontologies to identify some

characteristic distributions (4.2).

– we synthesized a set of representative ontologies as a new benchmark and demon-

strate that these ontologies illuminate previously opaque materialization costs (4.3).

– we analyzed the distribution of annotations together with ontology evolution met-

rics to determine partitioning schemes that streamline our workflow (5.2).

– we improved the performance time of the Resource Index by several orders of mag-

nitude by applying our analysis toward optimization strategies (5.3).
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2 Related Work

Some of the related areas for this study include work on annotation indexes, bench-

marking tools, ontology metrics, and the motivating biomedical uses cases.

Annotation indexes. An annotation assigns a tag to some media as a whole, but it

also records the context in which the tag applies. Text annotations differ from multi-

media annotations mainly in terms of dimensionality. For text strings, the context can

be as simple as a position-offset value. For images or video (such as radiology x-rays,

EKG data, CT scans, MRI images, or even YouTube videos), additional dimensions,

including temporal offsets are required to localize the annotation context [18]. Large-

scale annotation systems often resort to scale-out architectures. Annotation databases

and ontology-based indexes often exemplify this: GoPubMed [5] indexes all of the

PubMed1 articles using terms from the Gene Ontology; Sindice [6] is another example

of a more general ontology-based index; Yahoo! is adopting the Healthline2 ontology-

based search engine. Some of the underlying technologies include databases such as

MySQL, indexing tools like Lucene, and frameworks like Hadoop and Solr.3

Benchmarking tools. Researchers use the Lehigh University Benchmark (LUBM) [7]

to evaluate the scalability of knowledge bases. LUBM provides developers, engineers

and architects with methods for quantifying the load-time and query-time for com-

putationally intensive tasks such as computing massive RDF closures [23, 26]. Some

researchers have indicated that the benchmark can be improved by reflecting real-world

workloads based on various dimensions such as reasoning complexity [13], data dis-

tribution [24], and even ontology variation [21]. However, to our knowledge, still no

benchmark takes the diversity of ontologies into account; therefore, materialization

costs remain inadequately characterized.

Ontology metrics. Researchers aiming to characterize various dimensions of large

numbers of ontologies in RDF(S), OWL or DAML format have performed several sur-

veys of the Semantic Web landscape [4, 14, 21, 25]. Ontologies vary considerably along

many dimensions: by size and shape [4, 25], by expressiveness and complexity [13, 25],

by feature selection [21, 25], or by instance density [4].

Biomedical use cases. The NCBO annotations have been used to interpret high-

throughput biomedical data (e.g., gene expression) using generalized (ontology neu-

tral) enrichment analysis [22] to discover significant gene–disease relationships that are

implicitly embedded in scientific literature. We have also used annotations to discover

context-specific mappings among biomedical terminologies, which gives insights into

the relationship between, for example, the liver (Minimal Anatomical terminology) and

transduction (Gene Ontology) within the context of cancer (Human Disease Ontology).

One of the gaps in current research involves using multiple ontologies at once in

large-scale knowledge base systems, such as the Resource Index, for scientific analysis.

Not only must we keep pace with the growing abundance of biomedical data, we must

also account for the number, variety and evolution of ontologies being used in practice.

1 http://www.ncbi.nlm.nih.gov/pubmed
2 http://www.healthline.com
3 http://www.apache.org
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3 Data

We have collected metrics for the most comprehensive set of publicly available ontolo-

gies and annotations in biomedicine. In this section, we outline what ontologies and

annotations we used and how we gathered metrics on them. Our collected data repre-

sents a snapshot taken in May, 2010.

Ontologies. The BioPortal repository [16] stores biomedical ontologies developed in

various formats—OWL, OBO, RRF, Lexgrid-XML and Protégé Frames—and rang-

ing in subject matter from representation of anatomy and phenotype to diseases. Re-

searchers in biomedicine actively contribute their ontologies to BioPortal. Users can

submit new versions of their ontologies; visualize, browse and search them; make com-

ments on and get notifications about ontology changes; or create mappings between

terms from different ontologies.

BioPortal makes all data accessible programmatically via RESTful Web services.

Almost all of the BioPortal ontologies, including earlier versions, can be downloaded.4

We used these services to collect the ontologies used in our study. Of the 200 ontologies,

we incorporated 145. We skipped the remainder due to limitations on what was available

for parsing at the time.

Annotations. The Resource Index workflow, as illustrated by Figure 1, is composed

of two main steps: First, direct annotations are created from the text metadata of a

resource element using an off-the-shelf concept recognition tool, which in our case is

MGREP [3]. Second, we use subclass relations to traverse ontology hierarchies to create

new, expanded annotations.5

The ontology terms play a vital role because of the subsumption hierarchy. Users

who search for a general term like “cancer” will find results for documents that have

been annotated with, say, “melanocytic neoplasm” because it is defined as a kind of

cancer in the NCI Thesaurus, one of the ontologies in BioPortal.

The Resource Index currently has 22 resources indexed. We use the following sam-

ple of 4 resources in this study because they are representative in terms of size, type of

content, frequency of updates, and quantity of data per element:

Biositemaps (BSM) represent a mechanism that researchers in biomedicine use to

publish and retrieve metadata about biomedical resources (1.5K elements).

ArrayExpress (AE) is a public repository of microarray data and gene-indexed ex-

pression profiles from a curated subset of experiments (10K elements).

ClinicalTrials.gov (CT) provides regularly updated information about federally and

privately supported clinical trials (89K elements).

GRANTS combines three different funding databases: Research Crossroads, CRISP,

and the Explorer of the NIH Reporter (1,400K elements).

4 http://www.bioontology.org/wiki/index.php/BioPortal_REST_

services#Download_an_ontology_file
5 This workflow is also available as a web service called the NCBO Annotator [10], which pro-

vides researchers with an easy mechanism to employ ontology-based annotation using Bio-

Portal ontologies in their respective pipelines.
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Fig. 1. Resource Index workflow: Using the Gene Expression Omnibus (GEO) data resource,

we illustrate how direct annotations are associated with a data element, then we expand those

annotations to account for the ontology hierarchy.

Metrics. BioPortal maintains a limited set of ontology metrics, such as the number

of classes or siblings (Table 1), which we gathered using REST services. For every

ontology in either OWL or OBO format, we also used the ontology download service

and used the OWL API Metrics tool [8] to complement those statistics. We followed

imports during all calculations and consider only the asserted hierarchy.

For annotation metrics, we directly download the statistical data on the number and

kinds of annotations per resource and per ontology kept by the Resource Index. Table 1

lists the specific metrics we used in this study. All the metrics are available online.6

6 http://www.bioontology.org/wiki/index.php/Metrics_Study

Table 1. Ontology and annotation metrics that we used.

Ontology Metrics Annotation Metrics

Number of classes Number of data elements

Number of versions Number of direct annotations

Maximum depth of the class hierarchy Number of expanded annotations

Maximum and average number of siblings

Average number of adds, deletes and changes per version
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Fig. 2. Materialized versus non-materialized KBs: OntoDB outperforms DLDB on LUBM

query-time performance (A). Yet, OntoDB appears to add no additional cost for load-time per-

formance (B). (Note: we reported these figures previously [12].)

4 Are existing systems scalable enough?

The set of ontologies in BioPortal, which we use to generate the Resource Index, is

extremely diverse, both in terms of size and depth of the class hierarchy. In order to

analyze and improve the query performance of the Resource Index, we must first ana-

lyze the effects of the ontology characteristics on both load-time and query-time per-

formance. We started by using popular ontology benchmarks to compare the perfor-

mance of different approaches. However, as we show in this section, these benchmarks

do not account for the diversity in size and depth of ontologies. We then discuss the

complementary set of benchmarks that we synthesized based on the ontologies in our

repository.

4.1 A Tale of Two KBs: Is Materialization Really Free?

Because materializing inferences is a large part of high-performance KBs, we would

expect the obvious tradeoff: systems that perform materialization should obtain faster

query time at the cost of slower load time. However, upon comparing two dichotomous

KB systems, we were baffled to find that materialization seems to cost nothing at all.

DLDB [17] is a knowledge base system developed at Lehigh University that uses

database views to assist with query answering on large sets of data. OntoDB [12] was

developed at the University of Oregon using other database features. These two systems

are very similar: they take an ontology and a set of instances as input; they create and

load a relational database schema based on predicates from the ontology; they store the

instances in database tables; and they use intrinsic database features to maintain the

knowledge model and answer queries. OntoDB differs from DLDB by materializing

inferences at load time—using triggers—rather than by unfolding views at query time.

Comparing OntoDB with DLDB using LUBM, we clearly see the expected gains in

query-response time, as illustrated by Figure 2–A: materializing the inferences yields

marked gains because of the pre-computation. However, suspiciously, the gains come at

no apparent cost as shown in Figure 2–B: the slope of the overlapping lines indicates the
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Table 2. EM clustering: Cluster 3 characterizes 38 percent of ontologies.

Cluster Num. Classes Max. Depth Max. Siblings Avg. Siblings 

0 (8%) 19628 

(+/- 29189) 

13.7 

(+/- 5.6) 

249.9 

(+/- 118.6) 

39.5 

(+/- 13.4) 

1 (26%) 1264 

(+/- 791) 

10.7 

(+/- 4.7) 

68.8 

(+/- 35.5) 

5.1 

(+/- 6.0) 

2 (3%) 13338 

(+/- 10483) 

37.0 

(+/- 5.3) 

2252.9 

(+/- 2335.9) 

10.4 

(+/- 10.0) 

3 (38%) 181 

(+/- 170) 

7.5 

(+/- 3.4) 

13.6 

(+/- 8.4) 

3.4 

(+/- 2.6) 

4 (21%) 34401 

(+/- 66037) 

18.8 

(+/- 11.0) 

385.1 

(+/- 380.9) 

1.1 

(+/- 0.5) 

5 (2%) 344095 

(+/- 158541) 

29.7 

(+/- 10.3) 

9939 

(+/- 100.4) 

1 

(+/- 18.0) 

6 (3%) 45303 

(+/- 20784) 

21.2 

(+/- 15.1) 

2226.3 

(+/- 790.2) 

76.8 

(+/- 49.8) 

 
Table 3. K-means clustering: The characteristics of small, medium and large ontologies.

Cluster Num. Classes Max. Depth Max. Siblings Avg. Siblings 

Small (80%) 4925 9.6 110.6 3.8 

Medium (8%) 26062 14.7 654.7 55.8 

Large (12%) 96502 33.2 2571.4 8.6 

 

same constant cost per assertion for both systems. Would larger or deeper ontologies

demonstrate the expected load-time cost for materialization?

4.2 Is the LUBM Ontology Too Small and Shallow?

To determine whether larger and deeper ontologies would expose the expected load-

time costs, we need ontologies that vary in size and depth. Motivated by results that are

practical and relevant to biomedicine, we analyzed the 145 ontologies from BioPortal

by running clustering algorithms on the ontology metrics that we gathered for them

(Section 3, Table 1). We specifically considered the number of classes, maximum depth

and maximum and average number of siblings. We used two clustering algorithms: the

Expectation-Maximization clustering algorithm (EM) with an unspecified number of

clusters, which uses an iterative mechanism to find an optimal clustering distribution

(Table 2); and the simple K-means clustering algorithm with 3 clusters, identifying

small, medium, and large ontologies (Table 3).

We found that the most representative ontology has 181 classes and depth 8 (Ta-

ble 2). In addition, the three clusters with the largest number of ontologies (3, 1, 4)

cover 85% of the ontologies. The characteristics in the K-means results are highly

skewed, with 80% of ontologies falling into the “small” category. The previous EM

results (cluster 3, 38%) suggest that there are a significant number of clustered on-

tologies having smaller characteristics—so, we might consider introducing a smaller

division than K-means suggests. Furthermore, the medium and large categories can be

collapsed into cluster 4.

Reasoning in this way, we combined the results of EM clusters 3, 1 and 4 with the

K-means clusters to extrapolate a division between small, medium and large ontologies:

100, 2,000 and 25,000 classes. Similarly, we defined the range of shallow, mid-range
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Table 4. Ontologies: nine synthetic ontologies representing biomedicine.

 Ontology Parameters Schema Load Time Instance Load Time 

 Size Depth  Mean  Mean 

78 5 6.95 ms 3.65 ms 

81 10 7.12 ms 4.99 ms 

 

Small 

72 20 8.64 ms 

 

7.57 ms 

5.69 ms 

 

4.78 ms 

1623 5 8.21 ms 6.51 ms 

1555 10 8.93 ms 9.45 ms 

 

Medium 

1827 20 8.68 ms 

 

8.61 ms 

  15.69 ms 

 

10.55 ms 

19992 5 9.57 ms 11.84 ms 

22588 10 9.59 ms 22.80 ms 

 

Large 

19578 20 10.28 ms 

 

9.82 ms 

40.14 ms 

 

24.93 ms 

(mid) and deep ontologies as having depths of 5, 10, and 20. We use these results to

generate a set of ontologies that account for the variety of depths and sizes.

4.3 Accounting for Size and Depth: New Benchmark Ontologies

The clustering results give us the characteristics of nine possible ontologies varying

along the size and depth dimensions: small–medium–large and shallow–mid–deep. Our

goal is to determine whether this benchmark produces enough variability to compare

load times for use cases that rely on different ontologies.

We developed OntoGenerator, a tool that generates a synthetic ontology given the

following parameters: a seed, the maximum number of classes, maximum number of

siblings (i.e., span), density, and number of individuals. The density parameter intro-

duces a degree of randomization in the fullness of the tree structure. It denotes the

probability that the maximum number of siblings or the maximum depth will be reached

along any path to a leaf node. We use the seed value to prime the randomizing func-

tion which allows us to reproduce the same ontology given the same parameters, or,

conversely, to construct a new ontology (of the same kind) by using a different seed. Fi-

nally, the tool creates the given number of individuals as instances of randomly chosen

classes in the ontology, distributing data uniformly at various depths in the hierarchy.

We used OntoGenerator to synthesize the nine different ontologies whose specific

size and depth are outlined in Table 4. We also had OntoGenerator create one million

individuals for each of the ontologies. The data is available online.7

4.4 Conclusion: Materialization Costs Depend on the Size and Depth

Our hypothesis that materialization costs will be exposed for larger and deeper ontolo-

gies was confirmed: the results demonstrate that cost is not constant per assertion, but

it depends on ontology size and depth. We obtained the load-time results in Table 4

by populating OntoDB (the KB that explicitly materializes inferences) with the nine

ontologies we generated, i.e., we loaded the ontology and the data. We measured load

time in two phases: the time to transform the ontology into a schema and load it into

the database (averaged per class), and the average time for loading a single instance

assertion (taken 1,000 at a time).

7 http://www.bioontology.org/wiki/index.php/Metrics_Study
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Fig. 3. New benchmark performance: For OntoDB, the average time in milliseconds to load a

single assertion for small, medium, and large ontologies increases with larger-sized ontologies

(A). Load time also increases with depth (B).

The positive slope of the lines displayed in Figure 3 show a clear cost dependency.

Interestingly, size and depth have both super-linear and interactive effects on the cost.

The crooked slope of each line indicates that size (and depth) independently yields a

super-linear effect on load time. Furthermore, size and depth have a cumulative effect:

the larger the ontology, the larger the role of depth (note increasing crookedness).

In conclusion, we should include ontologies of varying size and depth in KB bench-

marking suites. We have proposed a set of ontologies that can be used to enhance the

LUBM for characterizing materialization costs. This study clearly points out that, de-

pending on their ontologies, system designers should worry about materialization.

5 Managing Large-scale Annotation Databases

Based on the results above (cf. Table 4), neither OntoDB nor DLDB could handle data

on the scale of the Resource Index: they would take several hours just to create the

schema (let alone process any data!) for the NCI Thesaurus, which has 74,646 classes.

Furthermore, the Resource Index uses not just one ontology, but over 200 of them (over

2.4 million classes) for annotation purposes. Finally, not only must we abate the costs of

materializing inferences for large-scale KBs, but we must also consider how to manage

that knowledge over time for various, evolving ontologies.

Whereas ontology size and depth affect materialization costs in the stagnant scenar-

ios described above, we demonstrate below that data distribution and ontology evolution

significantly also affect how we manage a very large KB over time. By optimizing for

these metrics, we have streamlined the Resource Index population workflow by several

orders of magnitude: from taking over one week for loading to less than one hour for

one of our larger datasets on the same machine.

5.1 The NCBO Resource Index

Annotation databases such as the NCBO Resource Index take the structure of an ontol-

ogy into account to provide enhanced search and retrieval functionality for documents.

As mentioned previously, a direct annotation “tags” a data element with a class from an

ontology. If a document is annotated with a class from an ontology, then we infer that

it is also annotated by the superclasses of that class (Figure 1).
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Table 5. Annotations: A sample of four biomedical resources from the Resource Index shows the

number of elements, the number of direct annotations, and the number of expanded annotations.

In terms of load time versus query time, the tradeoff has to do with materializing

those superclass annotations. We can perform the inference at query time by unwinding

the hierarchical structure and issuing a union of sub-queries, one for each subclass (re-

cursively), to retrieve annotations. However, unfolding queries is probably not a viable

option because users expect split-second response times and the number of subclasses

for a given class can reach into the thousands. The query-time results in Figure 2 testify

to the slowness of query unfolding, even for a small ontology. But, as our benchmarking

study further illustrates (Figure 3), we can expect that for very large and deep ontolo-

gies (e.g., the NCBI Organismal Classification Ontology, which has 513,248 classes) a

user could potentially wait for several minutes to get answers on a very simple query as

it unfolds into tens of thousands of sub-queries.

The other option is to materialize the expanded annotations by forward propagating

(i.e., copying) them up the class hierarchy when they are created. As a result, no un-

folding occurs during query time—we can directly look up the answers for each class

quickly by using an index. However, materializing inferred annotations results in very

large expanded annotation databases (Table 5). In general, the ratio of annotations to

elements is 1000:1 and the ratio of expanded to direct annotations is 8:1.

Prior to optimization, the Resource Index population workflow took approximately

one week to generate and materialize annotations for the CT resource (the largest pro-

cessable resource), which has 89,000 data elements. We extrapolated that it would take

several months to process a repository of a million documents (e.g., the GRANTS re-

source), which puts repositories serving nearly 20 million documents (e.g., PubMed)

completely out of reach. Therefore, our goal is to reduce the load time by optimizing

the workflow so that it will scale to handle these large data resources—and to keep up

with them as each one grows.

5.2 Optimizing for Data Distribution and Ontology Evolution

Since our goal is to manage very large sets of annotations and expanded annotations,

one obvious choice is to partition the data in a way that supports a streamlined and effi-

cient execution. Ideally, a good partitioning mechanism will also distribute easily over

multiple nodes (if necessary). In order to determine how to partition the data, we look

at metrics on data distribution and ontology evolution:

Data Distribution. Instance density tells us how the data is distributed. If we treat

annotations as a kind of data instance, the instance density (I-density) of an ontology
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Fig. 4. Annotations per ontology: The number of annotations per ontology obviously prefer-

ences some of the larger ontologies like NCIT, MeSH and Galen (A). However, I-density (B)

shows that small but generic ontologies have higher percentages of their terms used for annota-

tion.

measures the number of instances for each class in an ontology [4]. As Table 5 shows,

larger resources have larger I-densities because there is simply more data to be dis-

tributed. This indicates that resource size is an important consideration. By the same

token, larger ontologies entail more annotations (Figure 4–A) because more terms are

available for annotation matches, so ontology size is another factor. Interestingly, ac-

counting for ontology size, the actual I-density of a resource per ontology preferences

very small but very general ontologies such as the Cell Behavior Ontology (6 terms),

Basic Formal Ontology (an upper ontology), and BioPortal Metadata Ontology (Fig-

ure 4–B) because there is a higher chance that a high percentage of terms are used in

those ontologies.

Ontology Evolution. Ontologies evolve by growing in size and changing in struc-

ture. We used the structural differences (diffs) that BioPortal provides for 15 of its

ontologies to understand their evolution. The diffs record the additions, deletions and

changes to classes in the ontologies for consecutive versions. Figure 5 shows that users

modify ontologies (change or delete terms) more often than they add new terms. This

implies that materialized inferences must be updated regularly as well. Moreover, the

number of versions per ontology in BioPortal indicates that the frequency of updates

depends on the ontology in question: new versions of ontologies accumulate frequently

for a few but rarely for most, following a power law distribution (Figure 6).

The metrics on data distribution and ontology evolution help to decide how to parti-

tion the database so that we can streamline the workflow. Our goal is not only to mate-

rialize the expanded annotations efficiently, but also to manage them as the ontologies

evolve. In developing an optimization strategy, we need to determine which partitioning

criteria are most important, in what order.
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Fig. 5. Version differences: Based on a sample of 15 ontologies, normalized by ontology-size,

the percentage of modifications (updates and deletes) are double the percentage of additions.

59% 

18% 

15% 

5% 

3% 

1.3 

3.8 

12.7 

38.3 

150.1 

Fig. 6. Ontology versions: Ontologies loaded in BioPortal evolve according to a power law dis-

tribution: most ontologies (59%) are rarely modified (1.3 versions on average) but some (3%) are

revised weekly (150 versions). The Gene Ontology changes the most (daily, 212 versions).

Partitioning the Database. First of all, we can see from Table 5 and Figure 4 that

data is naturally distributed along resource size and ontology size by examining in-

stance density metrics—therefore, those attributes make good partitioning candidates.

We confirmed this by using information theory on the annotation metrics to determine

feature selection: we ran a basic information gain algorithm (ID3). However, we still

need more information to decide which should be the primary partitioning criteria: re-

source size or ontology size.

Hence, we looked at ontology evolution metrics next. Evolution influences how

we keep the database up-to-date. Whereas data is always added, metrics confirm that

ontologies are mostly (but infrequently) updated. From these evolution metrics, we con-

cluded that resources should be the primary partitioning criterion because data additions

will far outweigh ontology updates in importance.

Therefore, we first partition the database by resource, which means that each set

of annotations for a resource will be kept in its own database file. Next, we partition

again by ontology. Partitioning first by resource allows us to process data elements in a

pipelined fashion: it enables adding new data elements over time extremely quickly by

merely appending to the end of the file (minimizing disk seeks). Furthermore, adding

a new resource is as simple as adding a new partition: it has no detrimental effect on

existing annotations. Finally, as we show in the next section, this partitioning helps with

expanding annotations very rapidly.

Sub-partitioning by ontology allows us to drop annotations efficiently for only the

ontology that has changed: it has no effect on annotations associated with other ontolo-

gies. Moreover, since sub-partitioning subdivides the files into smaller chunks, we also

gain speed in reading, indexing and updating annotations by ontology.
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Table 6. Optimized workflow: We achieve highly scalable performance using partitioning and

merge-join optimization based on density and evolution metrics.

Resource No. Elements Old Population Time Optimized Population Time 

BSM 1.5 K << 1 day 0.4 min 

AE 11 K ~ 1 day 3 min 

CT 89 K ~ 7 days 49 min 

GRANTS 1,400 K N/A 492 min 

Speeding-up Expanded Annotations. Expanding annotations along the subsumption

hierarchy is—by far—the most computationally intensive, storage expensive and time

consuming phase of the population workflow. Partitioning by resource makes it possible

to compute the expansions extremely efficiently. Again, the goal is to take a direct an-

notation using a class and to use the ontology hierarchy to materialize (i.e., expand) the

annotations to superclasses of that class (cf. Figure 1). There are 2.4 million classes in

BioPortal ontologies, which, if we compute the transitive closure on subclass assertions,

result in 20.4 million subclass relationships to consider during expansion. However, the

real challenge comes when we have to cross-reference these 20.4M subclass relation-

ships against 2 billion direct-annotation records (e.g., the GRANTS data set, Table 5).

Stored in a database, we essentially have two tables to join: [term, superclass] and

[term, data-element]. The former contains the subclass relationships and the latter con-

tains the direct annotations. The efficient way to compute this join—called a merge-

join—is to sort both tables first by the join condition (term) and then scan them both

sequentially, outputting the join result in a linear fashion in the size of each table. How-

ever, sorting 2 billion records on disk is unrealistic: it would take days if not weeks;

moreover, data is constantly being added, so maintaining sorted order would slow down

inserts. Joining them using just indexes causes thrashing and unnecessary seeking and

re-reading of records (billions of times over!). The database is unable to automatically

optimize the join because it lacks the appropriate metrics.

The solution relies on two important facts: (1) the data grows rapidly but is parti-

tioned by resource, and (2) the ontology subclass relations will not grow quickly be-

yond the 20.4 million (or, say, a 100 million) mark any time soon. Therefore, we stream

annotations by resource into the [term, data-element] table as rapidly as the disk can

write them (which is many thousands of records a second). We also force the [term,

superclass] table into main memory using the MySQL MEMORY engine. (Forcing the

annotations into main memory is not an option because they are simply too large.) By

having the entire hierarchy in main memory, we can achieve the optimal performance

of the simple merge-join query without sorting any records. The result of applying these

key decisions yields remarkable performance gains.

5.3 Conclusion: Memory-based Merge-Join with Partitioning Performs Well

Table 6 shows that we have achieved extraordinary performance gains—on a single

machine. In the worst case, we could repopulate the entire database (all resources and

all ontologies) in less than a day. Extrapolating these results, we anticipate that indexing

PubMed (20M articles) with all BioPortal ontologies will take only 5 days, as opposed

to nearly a year based on previous estimates.
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In conclusion, by analyzing how data is distributed, how it grows, and how it evolves,

we can determine how to partition the data, how to streamline population speed, what

to keep in main memory, and how to update data without slowing down population.

6 Discussion

We would like to see previous results on large-scale knowledge base systems [17, 23,

26] re-evaluated using the nine new benchmark ontologies we created. For example,

we believe that anomalies described when evaluating the BibTeX benchmark [24]—a

phenomenon similar to that in our “tale of two KBs”—would be explained by using a

variety of ontologies, rather than merely a variety of data. Furthermore, we believe that

differences in materialization heuristics will be easier to comprehend for systems that

compute massive RDF closures [23, 26].

We would like to see metrics used more often for query optimization on Semantic

Web queries [1]. As our study illustrates, database optimization techniques should be

reused. Just as query optimizers use catalogs, which are metrics kept on the data distri-

bution in each database table, so can metrics improve knowledge bases. For example,

we can use ontology metrics for improving query federation over SPARQL endpoints:

we can easily optimize a query intersecting two ontologies by taking the smaller one

first. The same goes for annotations. What makes optimization in this area different

from database optimization, is that ontologies are just like data—they are not treated as

higher class citizens the way schemas are treated in databases.

As future work, we plan to develop better metrics on resource evolution: how fre-

quently and how drastically do resources change. Likewise, we are working on comput-

ing the differences between all versions of all ontologies. What will be most interesting

is to analyze those differences to come up with a viable change-propagation model that

could increase the performance of our systems even further. Considering that only frac-

tions of an ontology change during a revision, this approach should save a considerable

amount time updating annotations.

Our future research directions include using metrics for SPARQL query optimiza-

tion. Also, we can analyze differences between ontology revisions to determine an in-

cremental, change-propagation model for updating materialized inferences as ontolo-

gies evolve. Finally, we will consider providing annotations as Linked Open Data in a

scalable way.

7 Conclusion

We collected metrics for the most comprehensive ontologies available in biomedicine.

By analyzing those ontology metrics, we have created a set of representative ontologies

that improve upon existing benchmarks. These new ontologies help to illuminate pre-

viously opaque load time costs. By using these new evaluation tools, researchers can

improve upon KB systems that use materialization strategies.

We followed up on our evaluation by studying additional metrics on instance density

and ontology evolution to reduce load time for the NCBO Resource Index as much as

possible. As a result of our analyses, we improved performance time by several orders
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of magnitude, without investing in new infrastructure. In the worst case, the current

database of 16.4 billion annotations can be re-materialized overnight. More importantly,

now we can annotate resources that were previously impossible, such as PubMed.
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