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Description of the simulation model

Our probabilistic cellular automaton (PCA) is constructed along the same
lines as in [1], that is, modelling a simple birth-death process on a fixed
lattice with the main simplification that there is no movement of individuals.
Specifically the environment is represented by a (fixed) network of habitable
sites (typically 10000) where every site is connected to z other sites (fixed
throughout the lattice). Sites may be empty (�) or occupied by a single
individual with a given genotype: if there are n beard colours, the set of
genotypes G is

G = {C1, C2, . . . , Cn, D1, D2, . . . , Dn}.

Mortality is assumed to be a density and configuration-independent event:
an individual of genotype xi ∈ G dying and thus creating an empty site is
represented as xi → � and it is assumed that these events occur at a fixed
rate (probability per unit of time) rxi→� = d.

Births are conveniently described as so-called ‘edge events,’ where the
event is not so much associated with a site as well as a connection between two
sites. Since in our model all events are local, birth implies that an individual
of genotype xi puts an individual of type yj in a neighbouring empty site
(xi, yj ∈ G), where the strategy or beard colour of the offspring (yj) may
have changed through recombination or mutation (or both). Formally, such
birth events, represented by the edge event xi� → xiyj, have the associated
rate,

rxi�→xiyj
=

1

z
φxi

(yj),

where φxi
is the pay-off gained by individual xi in interaction with its neigh-

bours and the fraction 1 over z ensures that this invididual’s birth rate does
not depend on connectivity itself (it has z−1 other neighbouring sites that it
potentially could reproduce in). An essential but complicating aspect of our
model is that the rate of reproduction of individual xi is that it depends on
the state of its neigbouring sites. Denoting the proportion of yj-neighbours
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Figure 1: Example of a local configuration on the lattice. The quantity yi|xi�
gives the proportion of neighbours of the xi-individual in the xi�-pair that
has genotype yi; in the depicted example, C1|xi� = 1/4.

of the individual of genotype xi in an xi� pair by yj|xi� (see Figure 1 for an
example), the pay-offs φxi

are given by

φCi
= R Ci|Ci� + S Di|Ci� + P

(
1 − Ci|Ci� − Di|Ci�

)
φDi

= T Ci|Di� + P
(
1 − Ci|Di�

)

where it is assumed that interaction with an empty site, like interaction with
differently coloured beards, yields P . The simplified model analysed in the
main text results from the assumptions that yj|xi� = v+(1−v)xi for xi = yj

and yj|xi� = (1−v)yj for xi �= yj. The simulations were carried out using the
full model, explicitly calculating the yj|xi� for all reproducing individuals.

Of course, in absence of mutation and recombination, φxi
(yj) = 0 for any

xi �= yj while φxi
(xi) = φxi

. However, because of mutation and recombina-
tion offspring may not have the same genotype as their parent. We define
mutation as the replacement of an allele by an allele picked at random from
the set of alleles and recombination as the replacement of an allele by its
homologous counterpart of a neighbour of the reproducing individual (re-
combination is thus completely local). Birth events are decomposed into a
number of components (listed in Table 1) that represent faithful reproduc-
tion and all permitted combinations of mutation and recombination. The
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Table 1: Components of reproduction events

Component Rate Remark
xi� →
→ xixi (1 − µs − µb) (1 − ρs) (1 − ρb) φxi

faithful reproduction
→ xixj µb/n (1 − ρs) (1 − ρb) φxi

beard colour mutation
→ xiyi µs/2 (1 − ρs) (1 − ρb) φxi

strategy ”
→ xixj (1 − µs − µb) (1 − ρs) ρb •j|xi� φxi

beard colour recombination

→ xiyi (1 − µs − µb) ρs y•|xi� (1 − ρb) φxi
strategy ”

→ xiyj (1 − µs − µb) ρsρb yj|xi� φxi
double ”

Here, y•|xi� =
∑

j yj |xi� is the probability that a given neighbour has strategy
y irrespective of its beard colour and •j |xi� = Cj |xi� + Dj |xi� is the probability
that a given neighbour has beard colour j. The index s refers to the strategy
locus, the index b to the beard colour locus. It is assumed that mutation and
recombination never occur simultaneously. For all simulations the recombination
rates and mutation rates for the beard colour locus and the strategy locus were
chosen equal, i.e. ρs = ρb = ρ and µs = µb = µ

overall rate of a given birth event is the sum of all components that apply.
For instance, a D2� → D2D3 birth event may result from mutation (the 2
mutates into a 3) or recombination (the D2 happens to have a neighbour
with beard colour allele 3), so this event occurs with overall rate

rD2�→D2D3 =

(
1

n
µb(1 − ρs)(1 − ρb) + (1 − µs − µb)(1 − ρs)ρb

(
C3|D2� + D3|D2�

))
φD2 .

In a similar fashion, a D2� → D2D2 birth event may be the result of faithful
reproduction of a D2-individual (obviously) but also of a recombination event
(when the 2-allele happens to be swapped with that of a neighbour also hav-
ing beard colour 2) or a mutation event (as we define mutation as replacement
by a random allele, which formally includes 2 → 2 mutations). Note that the
combination of behavioural interactions with neighbours and recombination
makes that the expected rates of birth events depend in a rather complicated
way on the state of the reproducing individuals’ neighbourhoods. For a more
formal treatment of this kind of model, see [1, 2].
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The simulations were run either on square lattices with Von Neumann
neighbourhoods (z = 4) or on random graphs with varying neighbourhood
sizes (z = 3, . . . , 10). The lattices were initialised with populations whose
genomes were drawn randomly but heavily biased towards by D1-individuals
with a few C2-s sprinkled in (to speed up the appearance of the first wave of
cooperators). After the simulations were started all other beard colours could
only appear through mutation. The lattice was updated asynchronously
using a sufficiently small time step.

Derivation analytical model

Although it is possible to analyse dynamics of the PCA using correlation
dynamics techniques [1, 2], this would result in high dimensional dynamical
systems which, in order to gain interpretable results, would have to be sim-
plified further. To avoid this step we make the following simplification. To
capture the effects of viscosity we assume that an individual encounters with
a probability, v an individual with an identical genotype, and with a probabil-
ity 1−v a random individual from the population. That is, y|x = v+(1−v)y
when y = x and y|x = (1 − v)y when y �= x, where v is approximately in-
versely proportional to the number of neighbours [1]. This results in the
pay-offs φx for phenotype x:

φCi
= vR + (1 − v) (RCi + SDi + (1 − Ci − Di)P )

φDi
= vP + (1 − v) (TCi + (1 − Ci)P )

Incorporation of recombination, taking into account that with probability v
no recombination takes place as the neighbour has an identical genotype, and
ignoring mutations, leads to the following system of replicator equations

Ċi = ([h + v(1 − h)]φCi
− Φ) Ci + (1 − v)ρ(1 − ρ)Φi

∑n
j=1 Cj

+(1 − v)ρ(1 − ρ)ΦC (Ci + Di) + (1 − v)ρ2ΦCΦi

Ḋi = ([h + v(1 − h)]φDi
− Φ)Di + (1 − v)ρ(1 − ρ)Φi

∑n
j=1 Dj

+(1 − v)ρ(1 − ρ)ΦD (Ci + Di) + (1 − v)ρ2ΦDΦi,

(1)

where Φ =
∑n

j=1 φCj
Cj +φDj

Dj represents the average fitness in the popula-
tion, Φi = φCi

Ci +φDi
Di the average fitness of individuals with beard colour

i, ΦC =
∑n

j=1 φCi
Ci the average fitness of altruists and ΦD =

∑n
j=1 φDi

Di
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the average fitness of defectors, and where ρ is the probability of recombina-
tion per locus, and h = (1− ρ)2 the probability that no recombination takes
places.

If we ignore the small probability that an offspring inherits both tag and
trait from the partner we can use a first order approximation in ρ. In doing
so we obtain h = 1 − 2ρ and after substituting the effective probabilities
h′ = h + v(1 − h) and ρ′ = (1 − v)ρ we find the model equations used in the
main text:

Ċi = (h′φCi
− Φ)Ci + ρ′Φi

∑n
j=1 Cj + ρ′ΦC (Ci + Di)

Ḋi = (h′φDi
− Φ)Di + ρ′Φi

∑n
j=1 Dj + ρ′ΦD (Ci + Di)

(2)

Model Analysis if h = 1

The analysis of the mathematical model without recombination provides re-
sults that help to form an intuition of the general beard chromodynamics. In
what follows we will give an account of the qualitative changes in the dynam-
ics that occur if the viscosity decreases. It is assumed that T > R > P > S
and that T + S > P + R. We will discuss the qualitative changes in the
dynamics that are encountered as the connectedness, 1/v, increase

If the connectedness is very low (i.e. if 1
v

< T−P
T−R

) cooperators with a single
beard colour dominate the population and can exclude defectors. In this case
the equilibrium (C1, D1) = (1, 0) is stable and no further beard colour can
invade. If the connectedness increases cooperators and defectors in the same
beard colour can coexist in the equilibrium (C1, D1) = (C̄(1), (1 − C̄(1))),
this equilibrium is always stable if no further beard colours are present. The
equilibrium density of the cooperators decreases with viscosity, and if the
viscosity is too low (i.e. 1

v
> R−S

P−S
) cooperation cannot be maintained with

only a single beard colour and the equilibrium (C1, D1) = (0, 1) is stable.
Since a single beard colour does not allow for discrimination the dynamics
with a single beard colour are identical to those generated through blind kin
selection.

Without recombination a defector with a new beard colour can never
increase in numbers because such a defector has no cooperators to exploit. A
cooperator in a new beard colour potentially can invade because, it cannot
be exploited if defectors in the new beard colour are not present, and it
therefore has an advantage over the cooperators already present. When rare,
a cooperator in a new beard colour has a pay off of vR. Because the average
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pay off decreases with increasing connectedness, this cooperator can invade,
when rare, if its payoff when exceeds the average fitness in the population.
This is if

1

v
> 1 +

(R − P )(S − R)

(S − P )(T − P )
.

This new beard colour can invade in the population, and mostly oust the
cooperators and defectors present with original beard colours. For certain
combinations of parameters this new colour can coexist with the existing
colour at a low density if the viscosity is slightly larger than the invasion
threshold, to be precise, this requires.

1

v
<

2(T − P )

S − R + T − R +
√

(S − R + T − R)2 − 4(S − P )(T − P )
.

However, the parameter region of such coexistence is very small, and most
frequently the newly introduced beard colour will invade the population and
outcompete and exclude the existing beard colour.

Once a novel beard colour can invade and dominate a population we
will encounter the following sequence of events: starting from a state of
coexistence of cooperators and defectors of the same beard colour, invasion of
a cooperator in a new beard colour leads to this new beard colour completely
taking over, resulting in a population consisting of cooperators in a single
beard colour. This population can be invaded by a defector in the same
beard colour and lead to coexistence of cooperators and defectors in the
new beard colour. This new state can be invaded by a cooperator in the
original (or a new, different beard colour) and this sequence of events can
repeat indefinitely. Hence, we have established that there exists a heteroclinic
connection between the equilibria (denoted as: (C1, D1, C2, D2)):

(C̄(1), 1 − C̄(1), 0, 0) → (0, 0, 1, 0)

→ (0, 0, C̄(1), 1 − C̄(1)) → (1, 0, 0, 0) → (C̄(1), 1 − C̄(1), 0, 0)

Together these connections form a heteroclinic cycle. The stability of a hete-
roclinic cycle, which determines whether or not the heteroclinic cycle attracts
orbits, can be established by comparing the product of the positive and the
negative (also called contracting and expanding) eigenvalues [3].) The hete-
roclinic cycle always attracts if it exists.

An alternative sequence of events develops if no coexistence between co-
operators and defectors is possible in the same beard colour (i.e. if 1

v
> R−S

P−S
).
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In this case a heteroclinic cycle exists of the form:

(1, 0, 0, 0) → (0, 1, 0, 0) → (0, 0, 1, 0) → (0, 0, 0, 1) → (1, 0, 0, 0)

This cycle is always attracting within the 4D state space if it exists. In
Figure S1 the stability boundaries are depicted as a function of the model
parameters.

More complicated heteroclinic cycles, involving more beard colours, can
exist, but they all share the property that the beard diversity is limited to
one colour for most of the time, and these more complicated cycles can only
exist if the heteroclinic connection exist, therefore they are of limited interest
here.
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Figure 2: Stability boundaries of the dynamics with 2 beard colours without
recombination, as a function of the parameters T −P and 1/v. In the region
labelled C a cooperator in a single beard colour dominates the population.
In the region labelled CD a cooperator and defector in a single beard colour
stably coexist. In the small region labelled CCD two cooperators, in different
beard colours, stably coexist with a single defector. In the region labelled hc1
a heteroclinic cycle exist in which coexistence equilibria are included, in the
region labelled hc2 the heteroclinic cycle connects defector and cooperator
only equilibria. In the grey shaded area an unstable symmetric equilibrium
with two beard colours exists. Parameters: R = 3, S = 0, h = 1.
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Model Analysis if h < 1

If h < 1 this heteroclinic cycle disappears, and gives rise to a family of
limit cycles on which, for low recombination rates, the average beard colour
diversity remains low. A full analysis of the case h < 1 is complex and does
not lead to transparent results. We will therefore restrict ourselves to study
the potential for invasion of a rare beard colour if the rest of the population
is at an equilibrium. This gives some insight in the maximum beard colour
diversity.

A rare beard colour, j, with densities Cj, Dj ≈ 0 has a pay-off of φCj
=

vR+(1− v)P , φDj
= P . The Jacobian matrix for the linearised dynamics of

a rare beard colour invading a population in which n further beard colours
stably coexist at equal densities is:[

h′φCj
− Φ̄ + nC̄ρ′ (φCj

+ Φ̄
)

nC̄ρ′ (φCj
+ Φ̄

)
(1 − nC̄)ρ′ (φDj

+ Φ̄
)

h′φDj
− Φ̄ + (1 − nC̄)ρ′ (φDj

+ Φ̄
)

]

where C̄ = C(n). Using the determinant of the Jacobian matrix it can be
shown that the dominant eigenvalue of the jacobian matrix is proportional
to

(φDj
− Φ̄)(h′φCj

− Φ̄) − (1 − h′)nC̄(φCj
− φDj

)Φ̄

Because φDj
< Φ̄ a rare beard colour requires φCj

> Φ̄ in order to invade,
i.e. a rare beard colour can never invade with recombination if it would
not invade without recombination. A second condition for invasion is that
h′φCj

< Φ̄, i.e., rare beard colours cannot invade if the recombination rate of
the tag-trait combination is excessively high, but note that the absolute value
of this lower boundary depends on the average pay-off. Because the average
pay-off, Φ̄, increases with the number of beard colours, with every next beard
colour that can invade the invasion criteria become more stringent and, once
a certain number of beard colours is present, no further beard colour can
invade.
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