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Abstract

Weather Regimes (WR) have been defined over the Euro-Mediterranean region [60°W-60°E; 

15°N-70°N] from May to October season using the daily Sea Level Pressure, 700 hPa 

geopotential height and specific humidity from ERA-interim over 1989-2008 period. 

Computations are based on a neural network classification technique referred to as Self 

Organizing Maps and the WR produced can be used by the community for comparison with

other periods, projection onto model outputs, seasonal prediction or teleconnection studies.

The article particularly examines the relationship between WR and West African (WA) 

rainfall and our results suggest that changes in particular WR frequencies can account for part 

of WA interannual rainfall variability. Thus during anomalous wet (dry) years in WA, both 

higher frequencies of occurrence of WR related to negative (positive) summer NAO-like 

pattern and less frequent WR related to positive (negative) summer NAO-like pattern are 

attested in July and August (hereafter SN- and SN+). This is associated with a zonal 

symmetric pattern, consistent along the middle troposphere, i.e. low pressure anomaly 

centered over 50°N-20°W and Eurasia (Greenland) and high pressure anomaly centered over 

Iceland (central Europe) for SN- (SN+). Another striking characteristic of SN- (SN+) is 

southeastward (southwestward) surface anomalous winds flowing from (to) the Atlantic 

Ocean at 20°N and therefore able to enhance (weaken) wet convection. That sea surface 

temperature associated with SN- shows a warming of the Mediterranean in July and the 

opposite with SN+ in August, suggesting that temperature anomalies could be a precursor in 

the change of frequency of SN- and SN+.
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1. Introduction

The North Atlantic/ Mediterranean region exhibits a great amount of atmospheric variability 

acting at different spatio-temporal scales with large nonlinearities in the system (Lamb and 

Peppler, 1987; Reusch et al., 2007; Cassou et al., 2004a). For example, a sizeable part of the 

Sea Level Pressure (SLP) variability is closely associated with that of large-scale 

teleconnection patterns, usually discriminated by tools based on a linear approach (Wallace 

and Gutzler, 1981). In particular, the North Atlantic Oscillation (NAO, Hurrell, 2003; Folland 

et al., 2009) which represents the largest percentage of SLP variability exhibits marked

differences in opposite phases (Cassou et al., 2004a). Besides tropical/extratropical 

interactions do exist: the tropical convection can be responsible for North Atlantic variability,

favoring occurrence and/or persistence of particular structures (Cassou, 2008; SanchezGomez 

et al., 2008), while the extratropical variability can impact on the more equatorial regions 

through Hadley-type circulation anomalies. 

Sahelian rainfall variability, from intraseasonal to mutlidecadal timescale, is largely affected 

by variations of global and regional Sea Surface Temperature (SST) patterns (Folland et al., 

1986; Giannini et al., 2003; Rowell, 2003). These SST variations include anomalies in the 

tropical Atlantic (Lamb, 1978, Vizy and Cook, 2001), the central and east Pacific (Janicot et 

al., 1996; Rowell, 2001), the Indian Ocean (Shinoda and Kawamura, 1994) and the 

Mediterranean Sea (Rowell et al., 1995; Rowell, 2003; Fontaine et al., 2009; Gaetani et al., 

2010). Moreover, the stronger thermal contrast between the Sahara and surrounding favours a 

penetration of the mean circulation towards the African Sahel from the eastern tropical-

equatorial Atlantic and the Mediterranean (Fontaine et al., 2003). According to Raicich et al. 
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(2003), Fontaine et al. (2009) and Gaetani et al. (2010), warmer conditions over the 

Mediterranean (in JAS period) favour (i) a moderate weakening of the northeasterly flow east 

of 10°E and (ii) an enhancement of the northerly moisture flow from the eastern 

Mediterranean which reaches the eastern and central Sahel and increase the specific humidity.

Changes on rainfall over the Sahel region have been observed, like the contrast between the 

wet 50’s and 60’s and the dry 70’s and 80’s, or more recently the current rainfall recovery. 

The period from the late 70s exhibits also a change in the northern hemisphere teleconnection 

patterns (Johnson et al., 2008), which could be due to a warming trend in the tropical Sea 

Surface Temperatures (SST) (Hurrell et al., 2004). Werner et al. (2000) identified the decade 

1981-1990 as the onset of climate change in the North Atlantic European sector with a trend 

starting in the beginning of the 70s. Several authors interpreted these changes in the 

variability patterns as a change in the intensity and frequency of Weather Regimes (Werner et 

al., 2000; Johnson et al., 2008), which, in turn, can be driven by changes in the Tropical SST-

convection (Cassou et al., 2004b; Hurrell, 2004; Cassou, 2008; SancheGomez et al., 2008).

A Weather Regime (WR) can be defined as a recurrent and persistent atmospheric state

(Vautard, 1990, Michelangeli et al., 1995). The concept assumes that the atmosphere stays in 

discrete preferential states which are peaks in the probability density function of the phase 

space and are usually identified by cluster analysis (Vautard, 1990; Michelangeli et al., 1995; 

Plaut and Simonnet, 2001; Ghil and Robertson, 2002; Cassou et al., 2004a; Cassou, 2008; 

Moron et al., 2003; SanchezGomez et al., 2008). Moreover, the centroids of the nonlinear 

clustering methods can be seen as the corresponding “attractors” to the WR (Lorenz, 1963). In 

this way, low frequency variability can be interpreted as a change in the amplitude of these 

WR or in the preferred transitions between them (Robertson et al., 2000; Ghil and Robertson, 

2002; Cassou et al., 2004a). 
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Can such changes over the northern Atlantic/Mediterranean Sector be important in terms of 

climate impacts and in particular for the subtropical/tropical convection variability over West 

Africa (WA)? This question requires to define WRs from daily atmospheric data from May to 

October season and to project them onto rainfall information. The European Centre for 

Medium-Range Weather Forecast (ECMWF) reanalysis ERA-Interim has been chosen as the 

atmospheric information because it provides daily meteorological data at 1.5° horizontal 

resolution on the period 1989-2008 and represents an improvement on certain key aspects of 

ERA40 such as the representation of the hydrological cycle (see Berrisford et al., 2009 for 

more details). Rainfall estimation is provided by the  Global Precipitation Climatology Project 

(GPCP) for which 6,000 rain gauge stations, satellite geostationary, low-orbit infrared, 

passive microwave and sounding observations have been merged to estimate 5 days averaged

rainfall on a 2.5-degree global grid from 1979 to the present (Gruber and Levizzani, 2008). 

The aim of the present manuscript is twofold: (i) to present a collection from May to October

WRs over a northern hemispheric region centered on the Mediterranean Sea (MS) from the

illustrating and consistent Self Organizing Maps method and, (ii) to evaluate if the changes in 

frequency of these WRs are related to WA rainfall variability.

2. The Method 

Self organizing maps (SOM, Kohonen, 2001) are based on artificial neural networks which 

allow the representation of high dimensional data space onto a reduced and ordered space. 
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Therefore, it provides an alternative to other nonlinear cluster analysis techniques for defining 

WRs. Since a spatially organized set of patterns of variability of the data is obtained from 

SOM, it has been used in different fields with notable success. It has been recently used for 

oceanographic studies (Leloup al., 2007; Tozuka et al., 2008), for climate characterization 

over the northern hemisphere (Hewitson and Crane 2002; Reusch et al., 2007, Johnson and 

Feldstein, 2009) and also for rainfall prediction in the monsoon systems (Cavazos et al., 2002; 

Chattopadhyay et al., 2008) as well as for the study of the relationship between synoptic fields 

and heavy rainfall extreme events (Cavazos, 1999; Nishiyama et al., 2007). Several 

advantages of this methodology have been described, starting for being a powerful 

visualization approach (Reusch et al., 2007; Leloup et al., 2007). The patterns captured from 

the SOM present continuity in the data space due to the conservation of the topology of the 

structure in contrast with other clustering techniques, as agglomerative hierarchical algorithm 

(Mangiameli et al., 1996) or partitioning algorithm of k-means (Cassou et al., 2004a; Fereday 

et al., 2008) or partitioning algorithm of dynamic cluster method (Michelangelie et al., 1995). 

This continuity in the SOM structures provides an efficient way to easily identify the large-

scale atmospheric slow motions. These smoothly transitioning climate states of SOM array 

are indeed obtained from nonlinear classification of the continuum of atmospheric conditions. 

This continuum perspective is feasible with SOM and more realistic than commonly used 

discrete approach (Reusch et al., 2007; Johnson et al., 2008; Jonhson and Feldstein, 2009). In 

fact, Jonhson et al. (2008) and Jonhson and Feldstein (2009) showed that the Northern 

Hemisphere intraseasonal to interdecadal atmospheric variability can be understood in terms 

of changes in the frequency distribution of the cluster patterns that comprise this continuum.

Although works using SOM and other clustering methods as k-means for describing the 

winter North Atlantic variability have shown similar results (Cassou et al., 2004a; Reusch et 
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al., 2007; Fereday et al., 2008), the SOM method reduces subjectivity which make it more 

attractive from usability point of view (Hewitson and Crane, 2002; Reusch et al., 2007). Since

SOM assumes that the data are continuous, the method allows the representative patterns to 

span the phase space even when data are not highly clustered (Johnson et al., 2008).

Mangiameli et al (1996) showed that the SOM is superior to hierarchical clustering methods 

in accuracy and robustness when applied in a synthetic set of data with different levels of 

imperfections. Therefore, SOM method strikingly distinguishes itself from other clustering 

methods through its topological ordering of the representative patterns. 

For this study, an area centered over the MS [60°W-60°E; 15°N-70°N] has been chosen after 

checking that reducing/enlarging the size of this window does not modify the main WR

features. 5x5 SOM-array of coupled SLP, geo-potential height and specific humidity at 700 

hPa pressure level are used to identify 25 seasonal WRs occurring from May to October. 

Using three atmospheric variables gives us an accurate description of the WRs, although 

results do not substantially change when using the first two variables only (not shown). 

Before combining the three variables, each grid-point long-term anomalies have been 

normalized by their standard deviations to ensure that the three fields account for the same 

weight in the analysis. In addition, all data have been weighted by the cosine of latitude to 

take into account the dependence of the grid-point density on latitude. After verifying that 

results are not sensitive to the topology, we have chosen a hexagonal lattice structure of the 

array and a Gaussian neighborhood function. We have also tested the result’s sensitivity to the 

size of the array. Ultimately, the choice of 5x5 SOM-array represents a good compromise 

between economy and the detail’s resolution in the representative patterns, since the 

quantization error and border effects are reduced as the chosen number of SOM increases 

(Johnson et al., 2008). 
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The algorithm presents the input data to a layer of neurons, which describe the positions on 

the two-dimensional grid that contains the representative patterns. The neurons have 

associated a weight or reference vector with the same dimension than the input data. The 

neurons are orderly disposed in a regular lattice and a global map shape is defined to evaluate 

how the neurons are connected, thus describing a topological map. Then a linear initialization

is performed which implies that the weight vectors are initialized in an orderly fashion along 

the linear subspace spanned by the two leading eigenvectors of the covariance matrix of the 

training input data (this initialization have given better results than the random one for our 

data). Then an initial neighborhood function and initial learning rate are defined: several 

authors have showed that the choice of the learning rate and the initial neighborhood function 

radius does not change the results in a range of values (Mangiameli et al., 1996; Liu et al., 

2006). We have used the so-called batch training algorithm to train the data in two phases. In 

this training algorithm two main processes take place: 1) The Best Matching Unit (BMU) is 

sought in each training step using the minimum Euclidean distance criterion between the 

neurons and the input data, 2) The weight vectors of the BMU and of its defined 

neighborhood are updated. The neighborhood function and the learning parameter are also 

updated and decrease at each time step. The first set of training iterations uses relatively large 

initial learning rate and neighborhood radius: this produces a first broad distribution of nodes. 

In the second phase, both learning rate and neighborhood radius are small from the beginning 

in order to refine the mapping (Mangiameli et al., 1996; Hewitson and Crane, 2002). The 

iterative phase is repeated until convergence of the parameters. More details are available in 

Vesanto et al., (2000) and at http://www.cis.hut.fi/projects/somtoolbox/.
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After determining the representative patterns, we classify each daily field to one of the SOM 

patterns using the criterion of minimum Euclidean distance; therefore each observation in the 

input data is associated with one and only one neuron via a weight vector. Later on, following 

the definition of WR, a criterion of persistence is imposed to keep only patterns that occur at 

least two consecutive days. The spatial correlation between the centroids (the 25 SOMs) and 

each corresponding patterns of the composite of daily data always shows a good agreement 

(from 0.9 spatial correlation scores). In this way, the final composites maps of theses recurrent 

and persistent structures are considered and hereafter referred to as WR (Figure 1).

3. Results

a. Pattern Analysis

Figure 1 shows the composite maps of anomalous SLP/Z700 with respect to the long-term 

May-October mean (Figure 2a), related to the SOM-array performed as described above. The 

mean months of the occurrence together with the frequency of occurrence over the season are 

displayed for each WR. Let us recall that four winter North Atlantic weather regimes have 

been described in the literature (Vautard, 1990; Moron et al., 2003; Cassou et al., 2004a; 

Ullmann and Moron, 2007; SanchezGomez et al., 2008, among others): (i) The Blocking 

regime with a strong anomalous high over Scandinavia; (ii) The Zonal regime (positive phase 

of the NAO) characterized by an enhanced zonal flow crossing the North Atlantic area due to 

a reinforced Island Low and Azores High; (iii) The Atlantic Ridge regime exhibiting a 

positive anomaly over the North Atlantic basin and low pressure over Northern Europe. 

Finally, (iv) the Greenland Anticyclone pattern (negative phase of the NAO) dominated by a 

strong positive anomaly centered over western Greenland. The NAO pattern is also found in 
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summer season by empirical orthogonal function and cluster analyses. Summer NAO has a 

near-equivalent barotropic structure on daily and monthly time scales and is characterized by 

a more northerly location and smaller spatial scale than its winter counterpart (Fereday et al., 

2008; Folland et al., 2009).

The SOM-based composites of daily SLP/Z700 shown in Figure 1 is in accordance with the 

patterns found in previous studies described above. These results exhibit mainly the seasonal 

cycle leading the highest variability of the variables (relative to the long-term mean in Figure 

2a). Although the patterns are phase-locked with the seasonal cycle, it is also confirmed that 

the WR are the time-averaged signature of the quasi-daily atmospheric pattern variations

(Cassou et al., 2004a). The negative NAO-like pattern (bottom-left WR 21) and the positive 

NAO-like pattern (top-right, WR 5) are well captured in spring and summer seasons

respectively. A mid-North Atlantic pattern reflecting variability over Iceland low and the 

thermal Arabian low extends over Europe with opposite sign of these centers (top-left WR 1),

and opposed in the SOM-array position and sign of the former WR 1, (bottom-right WR 25), 

frequent in early autumn and summer respectively. The remaining maps could be interpreted 

as intermediate patterns reflecting slow motions of the atmosphere state during transitions 

between the four main patterns, or simply belonging to one of these four main families of 

atmospheric circulation (see also the relative distances of the SOMs which are shown as a 

distortion surface according to Sammon (1969) in Figure 2b).

Frequency analysis illustrates how the seasonal variability is well captured (Figure 2c). The 

beginning of the season (from May to June) is characterized by high frequencies of WR 21 to 

25 (bottom row in Figure 1). The sequence of WR 16 to 20 (the 4th row) is also associated 

with the spring season, although less frequent than WR 21 to 25 (Figure 2c). The seasonal 
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peak (July-August) is defined mainly by WRs 20, 15, 10 and 5 (5th column in Figure 1). In 

September-October, the decreasing in the WR number reports a sequence from summer to the 

beginning of autumn: from 5 to 1, 1st row in Figure 1, but also albeit less frequent from 9 to 6 

and from 14 to 11, 2nd and 3rd rows respectively in Figure 1. October is characterized by WR

numbers 1, 6, 11 and 16 (1st column in Figure 1). These above-mentioned sequences mainly 

represent the seasonal cycle with respect to the mean climatology (Figure 2a); the 

reinforcement of the Azores High and the Arabian-Sahara thermal low pressure systems from 

spring to summer and the enhancement of the Greenland Low pressure system from summer 

to autumn. However, although varying jointed in the seasonal cycle WR numbers describe 

also interannual variability, as referred later on by analyzing a particular interannual 

phenomenon.

Finally to complete the description of the seasonal cycle, figure 2d presents the 2 first 

Principal Components (PC) of an Empirical Orthogonal Function applied on the WR 

occurrences (WR frequency along the season, therefore the size of the matrix is 25 x 184). It

is found that the summer WR (5th column in Figure 1) are mostly associated with the PC1 

(18% of variance), while the PC2 (14% of variance) describes mainly the WR occurring at the 

beginning (June) and at the end (September) of the season. This discrimination will be used 

later to examine the relationship between summer WR and WA rainfall.  

Figure 3a presents the confidence level of the probability of the transition from WRi to WRj. 

This has been calculated following Vautard et al. (1990), where the transition matrix can be 

reliable tested with a Monte Carlo test by assuming the representation of the large-scale 

atmosphere variability as a Markov chain of multiple flow regimes or WRs. A simple 

interpretation of Figure 3a would be that, along the 5x5 SOM-array in Figure 1, the flow 
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diagram more likely of transitions occurs along the columns. For instance, WRi given i=10, 

the most likely transition occurs towards WR 5, 15 or 20, which corresponds to the same 

column in figure 1 or WR family. Also some groups of patterns belonging to the same row, 

such as 21-22-23; 3-4-5 and 6-7-8 are linked in the transitions. The largest probability is 

found in the persistence of each WR in remaining its own state (diagonal of the Transition 

matrix). This could be also measured as the mean persistence in days of each event and each 

WR. An event is defined as a sequence of days with the same characteristics lasting at least 2 

days as in Vautard et al., (1990). Figure 3b displays the mean persistence of each WR together 

with the number of events counted for each WR. The WRs with the highest persistence are 1, 

5, 16, 21, 24 and 25; the number of events is high for WRs 1, 5, 10, 11, 15, 20, 21 and 22. 

Changes in the persistence of a particular WR could account for the probability of a 

phenomenon to occur such as more precipitation in a given area. This could be also 

interpreted as the consequence of an external forcing such as SST forcing (SanchezGomez et 

al., 2008). In the next section we investigate changes in the WR frequency associated with 

anomalous rainfall. 

b. Relationship with West African rainfall

Are such changes in particular WR associated with the WA rainfall variability? In order to 

answer, we first classify years of positive and negative rainfall over the Sahel region. To this 

end, we perform a PC analysis for the anomalous rainfall along the year and the entire season 

averaged over the box 10°W-40°W; 5°N-20°N. From the leading PC index, positive and 

negative years of WA rainfall are classified and the differences of the mean frequency for 

each WR computed between these pools of years. Figure 4a shows the significant differences 
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(at p = 0.10) of the mean frequency for each WR regarding the wet and dry years. The most

striking result is the more frequent occurrence at the beginning of the season of WR 17 and 

WR 21 in wet and dry years respectively and of WR 20 and WR 5 in July-August. These 

differences in mean frequency could be explained by changes in persistence of each WR

and/or in its number of events. Thus in figure 4b the number of events and persistence of WR

5 increases when years of negative anomalous rainfall occur over WA while WR 20 shows

such an increase for years of positive WA rainfall anomalies. In contrast WR 21 presents a 

larger number of events but less persistence for dry years while WR 17 shows more number 

of events in wet years but no significant difference in persistence. 

The significant differences detected in WR 5 and WR 20 occurs at the peak of the WA rainy 

season and exhibit similar frequency. This is the most intriguing feature for our purpose, since 

regarding wet and dry years, these WRs have opposite behavior in terms of persistence and 

number of events. Thus, in July-August, rainfall, SLP, Z700 and surface wind composites 

regarding WR 5 and WR 20 are first computed. Then the climatology is subtracted for 

considering only the WRs that do not match with the corresponding WR 5 and 20 for each 

map (Figure 5): this allows us to enhance the differences and to keep nonlinearities.  

Figure 5 presents the differences between WR 5 and WR 20 occurrences. Figure 5a shows

that WR 20 (WR 5) is related to more (less) Sahelian rainfall in July-August, which confirms 

our previous analyses. A zonally symmetric SLP/z700 pattern is also attested for both WRs

(Figure 5b): WR 5 exhibits a summer positive NAO-like structure (hereafter WR 5 will be 

referred to as SN+) with anomalous high pressures over Europe and anomalous low pressures 

over Greenland; WR 20 displays a summer negative NAO-like pattern (hereafter WR 20 will 

be referred to as SN-) with positive anomalies over Island and negative ones over North 
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Atlantic and the continent. The eastward displacement of the southern branch of the positive

NAO-like pattern (centered over 20W) with respect to the negative phase (centered over 10E) 

is consistent with the winter and summer NAO phases (Cassou et al., 2004a; Folland et al., 

2009). Surface winds associated with SN- (SN+) display anomalous northwesterlies 

(northeasterlies) related to lower (higher) pressures, and a subsequent inland (offshore) flow 

around 20°N. This flow tends to enhance (to weaken) deep wet convection over 10W-0E 

while in upper levels one notices an intensification (weakening) of the Tropical Easterly Jet 

and of the barotropic dipole structures in the extratropics (not shown). Additionally, the whole 

Mediterranean basin suffers a negative (positive) anomalous pressure.

SN- and SN+ WR behaviors in the month of maximum occurrence (i.e. July for SN- and 

August for SN+) are illustrated in figure 5c. Basic SST patterns are discernable: an Atlantic 

Tripole-like pattern over the North Atlantic and warm SSTs over the MS for SN-; a cooler 

Subtropical North Atlantic and eastern MS for SN+. Such SST features in Eastern MS have

been already discussed by other authors (Xoplaki et al., 2003; Fontaine et al., 2009) and 

related to interannual WA rainfall variability (Polo et al., 2008; Fontaine et al., 2009). Our

results demonstrate that differences in SLP/Z700 fields associated with positive and negative 

anomalous rainfall over WA can be attributed to specific changes in the frequency distribution 

within the continuum of patterns. Moreover lead/lag analyses between SST fields and WR

occurrences (not shown) reveal that MS SSTs could act as a precursor of these WRs and in 

turn explain part of their relationship with WA rainfall.  

4. Summary and Discussion



15

This study provides evidence that Self Organizing Maps are a useful tool that provides a 

reliable and quasi-objective representation of Weather Regimes. This information can then be 

used in numerous diagnostic studies. The selected application concerns only their relationship 

with May-October West African rainfall. The results suggest that interannual rainfall 

anomalies over the Sahel are associated with changes in the frequency of occurrence of 

typical WRs. Thus, during abnormally wet (dry) years in WA, both higher frequencies of WR

number 20 (5) and less frequent WR 5 (20) have been attested in July-August. This is 

associated with a zonal symmetric pattern, consistent along the middle troposphere, i.e., a low 

pressure anomaly centered over 50°N-20°W and Eurasia (Greenland) and a high pressure 

anomaly centered over Island (central Europe) for WR 20 (5) showing a SN- (SN+). Another

striking characteristic of SN- (SN+) is a southeastward (southwestward) surface anomalous 

winds flowing from (to) the Atlantic Ocean at 20°N and therefore able to enhance (weaken) 

wet convection.

This study shows that anomalous positive rainfall in the Sahelian region in JAS is associated 

with the SN- atmospheric pattern, highlighting the importance of the large-scale extratropical 

atmospheric circulation in the deep wet convection around 10W – 0E favouring Sahelian 

rainfall in JAS. A point of interest is that SN- is also associated with an anomalous warm 

Mediterranean that could feed the lower troposphere with additional moisture transported 

southwards northerlies and available for Sahelian rainfall (Fontaine et al., 2009; Gaetani et al., 

2010). Moreover, lead/lag correlations have shown that an anomalous warm Mediterranean 

could be a precursor of higher frequency of daily WR 20 during July-September period. In 

order to confirm this hypothesis, we have performed preliminary analysis with Atmosphere 

General Circulation Models (AGCM) outputs forced by anomalous positive and negative SST 

anomalies over the MS and observed climatology elsewhere (Fontaine et al., 2009). Although 

this requires further analysis and is out of scope of this paper, the projection of the WR 
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presented here onto the daily model outputs has shown that SN+ WR has higher (lower) 

frequency when considering the negative (positive) SST anomaly simulations. To summarize, 

this paper highlights the Mediterranean as a “key region” for Sahelian rainfall as a source of 

moisture as well as a possible precursor of the large-scale atmospheric circulation associated 

with anomalous positive rainfall anomalies in this region.

This study also implies further work in relation to WR. First of all, the utilities of the 

presented collection of WR include hence the projection onto model outputs. This work 

extension is being carried out by the authors through the AMMA project sensitivity 

experiment. Moreover, projection of WR on model outputs could also include AR4 and AR5 

simulations in order to analyze changes in WR frequency. Then, still in the AMMA 

framework, an interesting work could be to analyze changes in frequency of WR (i.e. SN- and 

SN+) around the onset period and the by end of the rainy season in order to better understand 

how large-scale atmospheric circulation and Mediterranean SST impact intraseasonal 

variability. Indeed, the presented WR can be used for a lot of other studies (i.e. heat wave in 

the Mediterranean). That's why we plan to make the collection of the daily WR available in 

the AMMA and HYMEX project databases.
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List of Figures

Figure 1.

May-June-July-August-September-October (MJJASO) Weather Regimes (composite 

anomalies with respect to the long-term seasonal mean represented in Figure 2a) of Sea Level 

Pressure (shaded areas CI=2 hPa) and geopotential height at 700hPa (contour lines CI=20 m, 

zero line in grey) of 5x5 SOM-array analysis from Sea Level Pressure, geopotential height at 

700 hPa and specific humidity at 700hPa over the region and the period 1989-2008. The 

percentage at the top-right of each map gives the global population of a given WR. In 

parenthesis is given the months more likely of occurrence for each WR. 

Figure 2. 

a) Long-term Mean Sea Level Pressure (shaded areas in hPa) and geopotential height at 

700hPa (contour lines in m) for the MJJASO season. 

b) Sammon mapping of the SOMs computed and referred to Figure 1. It represents relative 

distance between the SOMs after the training. The reference of the four corners is given for a 

better visualization of the map’s lattice.

c) Mean frequency of each WR along the season (days year-1). 

d) Two first Principal Components of the WR occurrence along the season. The PCs describe

the seasonal cycle corresponding to a pool of WR. The correlation coefficient scores between

the two PCs and WR 5 (SN+) are [0.74; -0.18] and between the two PCs and WR 20 (SN-) 

are [0.78; -0.29]. These two PCs represent ~30% of variance. 
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Figure 3

a) Confidence level of the probability of transition for each WR (i) with the rest WR (j). The 

transition matrix has been computed assuming the WRs behave as a Markov Chain and tested 

with a Monte Carlo test with 10000 permutations of the WR along the timeseries resting the 

number of events for each WR at p=0.10.

b) Mean persistence (in days, blue line) and number of events (green line) of each WR.

Figure 4

a) Difference of the mean frequency occurrence for all the WRs between years of anomalous 

positive and negative rainfall over West Africa. Statistical significance has been tested with a 

Monte Carlo test with 10000 realizations at p=0.10.

b) Difference of persistence (in days, blue line) and number of events (green line) for all the 

WRs between years of anomalous positive and negative rainfall over West Africa.

Figure 5

a) Composite anomalies of rainfall (in mm day-1) of occurrence of WR 20 (SN-, top panel) 

and WR 5 (SN+, bottom panel) in July and August minus the mean of July and August

without considering the WR selected.

b) Same as a) but for SLP (shaded areas, in hPa), Z700 (contour lines, CI=20 m, zero line in 

grey) and surface winds (vectors, in m s-1).

c) Same as a) but for the SST (in K) and the subtraction of the climatology is done for July 

and August for SN- and SN+ respectively.



25

Figure 1. May-June-July-August-September-October (MJJASO) Weather Regimes (composite anomalies with 
respect to the long-term seasonal mean represented in Figure 2a) of Sea Level Pressure (shaded areas CI=2 hPa) 
and geopotential height at 700hPa (contour lines CI=20 m, zero line in grey) of 5x5 SOM-array analysis from 
Sea Level Pressure, geopotential height at 700 hPa and specific humidity at 700hPa over the region and the 
period 1989-2008. The percentage at the top-right of each map gives the global population of a given WR. In 
parenthesis is given the months more likely of occurrence for each WR. 
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Figure 2. 

a) Long-term Mean Sea Level Pressure (shaded areas in hPa) and geopotential height at 700hPa (contour lines in 
m) for the MJJASO season. 
b) Sammon mapping of the SOMs computed and referred to Figure 1. It represents relative distance between the 
SOMs after the training. The reference of the four corners is given for a better visualization of the map’s lattice.
c) Mean frequency of each WR along the season (days year-1). 
d) Two first Principal Components of the WR occurrence along the season. The PCs describe the seasonal cycle 
corresponding to a pool of WR. The correlation coefficient scores between the two PCs and WR 5 (SN+) are 
[0.74; -0.18] and between the two PCs and WR 20 (SN-) are [0.78; -0.29]. These two PCs represent ~30% of 
variance. 



27

Figure 3. 

a) Confidence level of the probability of transition for each WR (i) with the rest WR (j). The transition matrix 
has been computed assuming the WRs behave as a Markov Chain and tested with a Monte Carlo test with 10000 
permutations of the WR along the timeseries resting the number of events for each WR at p=0.10.
b) Mean persistence (in days, blue line) and number of events (green line) of each WR.
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Figure 4.

a) Difference of the mean frequency occurrence for all the WRs between years of anomalous positive and 
negative rainfall over West Africa. Statistical significance has been tested with a Monte Carlo test with 10000 
realizations at p=0.10.
b) Difference of persistence (in days, blue line) and number of events (green line) for all the WRs between years 
of anomalous positive and negative rainfall over West Africa.
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Figure 5.

a) Composite anomalies of rainfall (in mm day-1) of occurrence of WR 20 (SN-, top panel) and WR 5 (SN+, 
bottom panel) in July and August minus the mean of July and August without considering the WR selected.
b) Same as a) but for SLP (shaded areas, in hPa), Z700 (contour lines, CI=20 m, zero line in grey) and surface 
winds (vectors, in m s-1).
c) Same as a) but for the SST (in K) and the subtraction of the climatology is done for July and August for SN-
and SN+ respectively.


