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The existence of weak solutions to the continuous coagulation equation with multiple fragmentation is shown for a class of unbounded coagulation and fragmentation kernels, the fragmentation kernel having possibly a singularity at the origin. This result extends previous ones where either boundedness of the coagulation kernel or no singularity at the origin for the fragmentation kernel were assumed.

Introduction

The continuous coagulation and multiple fragmentation equation describes the evolution of the number density f = f (x, t) of particles of volume x ≥ 0 at time t ≥ 0 and reads ∂f (x, t) ∂t = 1 2

x 0 K(x -y, y)f (x -y, t)f (y, t)dy -∞ 0 K(x, y)f (x, t)f (y, t)dy

+ ∞ x b(x, y)S(y)f (y, t)dy -S(x)f (x, t), (1) 
with

f (x, 0) = f 0 (x) ≥ 0. ( 2 
)
The first two terms on the right-hand side of (1) accounts for the formation and disappearance of particles as a result of coagulation events and the coagulation kernel K(x, y) represents the rate at which particles of volume x coalesce with particles of volume y. The remaining two terms on the right-hand side of (1) describes the variation of the number density resulting from fragmentation events which might produce more than two daughter particles, and the breakage function b(x, y) is the probability density function for the formation of particles of volume x from the particles of volume y. Note that it is non-zero only for x < y. 

The breakage function is assumed here to have the following properties y 0 b(x, y)dx = N < ∞, for all y > 0, b(x, y) = 0 for x > y,

and y 0 xb(x, y)dx = y for all y > 0.

(

) 5 
The parameter N represents the number of fragments obtained from the breakage of particles of volume y and is assumed herein to be finite and independent of y. This is however inessential for the forthcoming analysis, see Remark 2.3 below. As for the condition [START_REF] Ph | On a class of continuous coagulation-fragmentation equations[END_REF], it states that the total volume of the fragments resulting from the splitting of a particle of volume y equals y and thus guarantees that the total volume of the system remains conserved during fragmentation events.

The existence of solutions to coagulation-fragmentation equations has already been the subject of several papers which however are mostly devoted to the case of binary fragmentation, that is, when the fragmentation kernel Γ satisfies the additional symmetry property Γ(x + y, y) = Γ(x + y, x) for all (x, y) ∈]0, ∞[ 2 , see the survey [START_REF] Ph | On coalescence equations and related models[END_REF] and the references therein. The coagulationfragmentation equation with multiple fragmentation has received much less attention over the years though it is already considered in the pioneering work [START_REF] Melzak | A scalar transport equation[END_REF], where the existence and uniqueness of solutions to (1)-( 2) are established for bounded coagulation and fragmentation kernels K and Γ. A similar result was obtained later on in [START_REF] Mclaughlin | An existence and uniqueness result for a coagulation and multiple-fragmentation equation[END_REF] by a different approach. The boundedness of Γ was subsequently relaxed in [START_REF] Lamb | Existence and uniqueness results for the continuous coagulation and fragmentation equation[END_REF] where it is only assumed that S grows at most linearly, but still for a bounded coagulation kernel. Handling simultaneously unbounded coagulation and fragmentation kernels turns out to be more delicate and, to our knowledge, is only considered in [START_REF] Ph | On a class of continuous coagulation-fragmentation equations[END_REF] for coagulation kernels K of the form K(x, y) = r(x)r(y) with no growth restriction on r and a moderate growth assumption on Γ (depending on r) and in [START_REF] Giri | The continuous coagulation equation with multiple fragmentation[END_REF] for coagulation kernels satisfying K(x, y) ≤ φ(x)φ(y) for some sublinear function φ and a moderate growth assumption on Γ (see also [START_REF] Ph | The discrete coagulation equation with multiple fragmentation[END_REF] for the existence of solutions for the corresponding discrete model). Still, the fragmentation kernel Γ is required to be bounded near the origin in [START_REF] Giri | The continuous coagulation equation with multiple fragmentation[END_REF][START_REF] Ph | On a class of continuous coagulation-fragmentation equations[END_REF] which thus excludes kernels frequently encountered in the literature such as Γ(y, x) = (α + 2) x α y γ-(α+1) with α > -2 and γ ∈ R [START_REF] Mcgrady | Shattering" transition in fragmentation[END_REF]. The purpose of this note is to fill (at least partially) this gap and establish the existence of weak solutions to (1) for simultaneously unbounded coagulation and fragmentation kernels K and Γ, the latter being possibly unbounded for small and large volumes. More precisely, we make the following hypotheses on the coagulation kernel K, multiple-fragmentation kernel Γ, and selection rate S.

Hypotheses 1.1. (H1) K is a non-negative measurable function on [0, ∞[×[0, ∞[ and is symmetric, i.e. K(x, y) = K(y, x) for all x, y ∈]0, ∞[, (H2) K(x, y) ≤ φ(x)φ(y) for all x, y ∈]0, ∞[ where φ(x) ≤ k 1 (1 + x) µ for some 0 ≤ µ < 1 and constant k 1 > 0.

(H3) Γ is a non-negative measurable function on ]0, ∞[×]0, ∞[ such that Γ(x, y) = 0 if 0 < x < y.
Defining S and b by ( 3), we assume that b satisfies [START_REF] Ph | On a class of continuous coagulation-fragmentation equations[END_REF] and there are θ ∈ [0, 1[ and two non-

negative functions k :]0, ∞[→ [0, ∞[ and ω :]0, ∞[ 2 → [0, ∞[ such that, for each R ≥ 1:
(H4) we have Γ(y, x) ≤ k(R) y θ for y > R and x ∈]0, R[, (H5) for y ∈]0, R[ and any measurable subset E of ]0, R[, we have

y 0 1 E (x)Γ(y, x)dx ≤ ω(R, |E|), y ∈]0, R[,
where |E| denotes the Lebesgue measure of E, 1 E is the indicator function of E given by

1 E (x) := 1 if x ∈ E, 0 if x / ∈ E,
and we assume in addition that

lim δ→0 ω(R, δ) = 0, (H6) S ∈ L ∞ ]0, R[.
We next introduce the functional setting which will be used in this paper: define the Banach space X with norm • by

X = {f ∈ L 1 (0, ∞) : f < ∞} where f = ∞ 0 (1 + x)|f (x)|dx,
together with its positive cone

X + = {f ∈ X : f ≥ 0 a.e.}.
For further use, we also define the norms

f x = ∞ 0 x|f (x)|dx and f 1 = ∞ 0 |f (x)|dx, f ∈ X.
The main result of this note is the following existence result:

Theorem 1.2. Suppose that (H1)-(H6) hold and assume that f 0 ∈ X + . Then ( 1)-( 2) has a weak solution f on ]0, ∞[ in the sense of Definition 1.3 below. Furthermore, f (t) x ≤ f 0 x for all t ≥ 0.

Before giving some examples of coagulation and fragmentation kernels satisfying (H1)-(H6), we recall the definition of a weak solution to (1)-( 2) [START_REF] Stewart | A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels[END_REF].

Definition 1.3. Let T ∈]0, ∞]. A solution f of (1)-(2) is a non-negative function f : [0, T [→ X + such that, for a.e. x ∈]0, ∞[ and all t ∈ [0, T [, (i) s → f (x, s) is continuous on [0, T [, (ii) the following integrals are finite t 0 ∞ 0 K(x, y)f (y, s)dyds < ∞ and t 0 ∞ x b(x, y)S(y)f (y, s)dyds < ∞,
(iii) the function f satisfies the following weak formulation of ( 1)-( 2)

f (x, t) = f 0 (x) + t 0 1 2 x 0 K(x -y, y)f (x -y, s)f (y, s)dy - ∞ 0 K(x, y)f (x, s)f (y, s)dy + ∞ x b(x, y)S(y)f (y, s)dy -S(x)f (x, s) ds.
Coming back to (H1)-(H6), it is clear that coagulation kernels satisfying K(x, y) ≤ x µ y ν + x ν y µ for some µ ∈ [0, 1[ and ν ∈ [0, 1[ which are usually used in the mathematical literature satisfy (H1)-(H2), see also [START_REF] Giri | The continuous coagulation equation with multiple fragmentation[END_REF] for more complex choices. Let us now turn to fragmentation kernels which also fit in the classes considered in Hypotheses 1.1.

Clearly, if we assume that

Γ ∈ L ∞ (]0, ∞[×]0, ∞[)
as in [START_REF] Giri | The continuous coagulation equation with multiple fragmentation[END_REF][START_REF] Mclaughlin | An existence and uniqueness result for a coagulation and multiple-fragmentation equation[END_REF], (H4) and (H5) are satisfied with k = Γ L ∞ , θ = 0, and ω(R, δ) = Γ L ∞ δ. Now let us take

S(y) = y γ and b(x, y) = α + 2 y x y α for 0 < x < y, (6) 
where γ > 0 and α ≥ 0, see [START_REF] Mcgrady | Shattering" transition in fragmentation[END_REF][START_REF] Peterson | Similarity solutions for the population balance equation describing particle fragmentation[END_REF]. Then

Γ(y, x) = (α + 2)x α y γ-(α+1) for 0 < x < y.
Let us first check (H5). Given R > 0, y ∈]0, R[, and a measurable subset E of ]0, R[, we deduce from Hölder's inequality that

y 0 1 E (x)Γ(y, x)dx = (α + 2)y γ-(α+1) y 0 1 E (x)x α dx ≤ (α + 2)y γ-(α+1) |E| γ γ+1 y 0 x α(γ+1) dx 1 γ+1 ≤ (α + 2)|E| γ γ+1 (1 + α(γ + 1)) -1 γ+1 y α+ 1 γ+1 +γ-(α+1) ≤ C(α, γ)y γ 2 γ+1 |E| γ γ+1 ≤ C(α, γ)R γ 2 γ+1 |E| γ γ+1 . This shows that (H5) is fulfilled with ω(R, δ) = C(α, γ)R γ 2 γ+1 δ γ γ+1 . As for (H4), for 0 < x < R < y, we write Γ(y, x) ≤ (α + 2) R α y γ-(α+1) ≤ (α + 2) R γ-1 if γ ≤ α + 1, (α + 2) R α y γ-(α+1) if γ > α + 1, and (H4) is satisfied provided γ < 2 + α with k(R) = (α + 2) R γ-1 and θ = 0 if γ ∈]0, α + 1] and k(R) = (α+2) R α and θ = γ -(α+1) ∈ [0, 1[ if γ ∈]α+1, α+2[. Therefore, Theorem 1.
2 provides the existence of weak solutions to (1)-( 2) for unbounded coagulation kernels K satisfying (H1)-(H2) and multiple fragmentation kernels Γ given by ( 6) with α ≥ 0 and γ ∈]0, α + 2[. Let us however mention that some fragmentation kernels which are bounded at the origin and considered in [START_REF] Giri | The continuous coagulation equation with multiple fragmentation[END_REF][START_REF] Ph | On a class of continuous coagulation-fragmentation equations[END_REF] need not satisfy (H4)-(H5).

Remark 1.4. While the requirement γ < α + 2 restricting the growth of Γ might be only of a technical nature, the constraint γ > 0 might be more difficult to remove. Indeed, it is well-known that there is an instantaneous loss of matter in the fragmentation equation when S(x) = x γ and γ < 0 produced by the rapid formation of a large amount of particles with volume zero (dust), a phenomenon refered to as disintegration or shattering [START_REF] Mcgrady | Shattering" transition in fragmentation[END_REF]. The case γ = 0 thus appears as a borderline case.

Let us finally outline the proof of Theorem 1.2. Since the pioneering work [START_REF] Stewart | A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels[END_REF], it has been realized that L 1 -weak compactness techniques are a suitable way to tackle the problem of existence for coagulation-fragmentation equations with unbounded kernels. This is thus the approach we use hereafter, the main novelty being the proof of the estimates needed to guarantee the expected weak compactness in L 1 . These estimates are derived in Section 2.2 on a sequence of unique global solutions to truncated versions of (1)-( 2) constructed in Section 2.1. After establishing weak equicontinuity with respect to time in Section 2.3, we extract a weakly convergent subsequence in L 1 and finally show that the limit function obtained from the weakly convergent subsequence is actually a solution to (1)-(2) in Sections 2.4 and 2.5.

Existence

Approximating equations

In order to prove the existence of solutions to (1-2), we take the limit of a sequence of approximating equations obtained by replacing the kernel K and selection rate S by their "cut-off" analogues K n and S n [START_REF] Stewart | A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels[END_REF], where

K n (x, y) := K(x, y) if x + y < n, 0 if x + y ≥ n, S n (x) := S(x) if 0 < x < n, 0 if x ≥ n,
for n ≥ 1. Owing to the boundedness of K n and S n for each n ≥ 1, we may argue as in [START_REF] Stewart | A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels[END_REF]Theorem 3.1] or [START_REF] Walker | Coalescence and breakage processes[END_REF] to show that the approximating equation

∂f n (x, t) ∂t = 1 2 x 0 K n (x -y, y)f n (x -y, t)f n (y, t)dy - n-x 0 K n (x, y)f n (x, t)f n (y, t)dy + n x b(x, y)S n (y)f n (y, t)dy -S n (x)f n (x, t), (7) 
with initial condition

f n 0 (x) := f 0 (x) if 0 < x < n, 0 if x ≥ n. ( 8 
)
has a unique non-negative solution

f n ∈ C 1 ([0, ∞[; L 1 ]0, n[) such that f n (t) ∈ X + for all t ≥ 0.
In addition, the total volume remains conserved for all t ∈ [0, ∞[, i.e.

n 0 xf n (x, t)dx = n 0 xf n 0 (x)dx. (9) 
From now on, we extend f n by zero to ]0, ∞[×[0, ∞[, i.e. we set f n (x, t) = 0 for x > n and t ≥ 0. Observe that we then have the identity

S n f n = Sf n .
Next, we need to establish suitable estimates in order to apply the Dunford-Pettis Theorem [2, Theorem 4.21.2] and then the equicontinuity of the sequence (f n ) n∈N in time to use the Arzelà-Ascoli Theorem [1, Appendix A8.5]. This is the aim of the next two sections.

Weak compactness

Lemma 2.1. Assume that (H1)-(H6) hold and fix T > 0. Then we have: (i) There is L(T ) > 0 (depending on T ) such that

∞ 0 (1 + x)f n (x, t)dx ≤ L(T ) for n ≥ 1 and all t ∈ [0, T ],
(ii) For any ε > 0 there exists

R ε > 0 such that for all t ∈ [0, T ] sup n≥1 ∞ Rε f n (x, t)dx ≤ ε, (iii) given ε > 0 there exists δ ε > 0 such that, for every measurable set E of ]0, ∞[ with |E| ≤ δ ε , n ≥ 1, and t ∈ [0, T ], E f n (x, t)dx < ε.
Proof. (i) Let n ≥ 1 and t ∈ [0, T ]. Integrating [START_REF] Ph | On coalescence equations and related models[END_REF] with respect to x over ]0, 1[ and using Fubini's Theorem, we have

d dt 1 0 f n (x, t)dx = - 1 2 1 0 1-x 0 K n (x, y)f n (x, t)f n (y, t)dydx - 1 0 n-x 1-x K n (x, y)f n (x, t)f n (y, t)dydx + 1 0 n x b(x, y)S(y)f n (y, t)dydx - 1 0 S(x)f n (x, t)dx.
Since K n , f n , and S are non-negative and Γ satisfies (3), we have

d dt 1 0 f n (x, t)dx ≤ 1 0 n x b(x, y)S(y)f n (y, t)dydx = 1 0 1 x Γ(y, x)f n (y, t)dydx + 1 0 n 1 Γ(y, x)f n (y, t)dydx,
Using Fubini's Theorem and (H5) (with R = 1 and E =]0, 1[) in the first term of the right-hand side and (H4) (with R = 1) in the second one, we obtain

d dt 1 0 f n (x, t)dx ≤ 1 0 f n (y, t) y 0 Γ(y, x)dxdy + k(1) 1 0 n 1 yf n (y, t)dydx ≤ω(1, 1) 1 0 f n (x, t)dx + k(1) f n (t) x . (10) 
Recalling that f n (t) x = f n (0) x ≤ f 0 for t ≥ 0 by (9), we readily deduce from (10) that

d dt 1 0 f n (x, t)dx ≤ ω(1, 1) 1 0 f n (y, t)dy + k(1) f 0 .
Integrating with respect to time, we end up with

1 0 f n (x, t)dx ≤ f 0 1 + k(1) ω(1, 1) exp(ω(1, 1)t), t ∈ [0, T ].
Using (9) again we may estimate

∞ 0 (1 + x)f n (x, t)dx = 1 0 f n (x, t)dx + n 1 f n (x, t)dx + n 0 xf n (x, t)dx ≤ 1 0 f n (x, t)dx + n 1 xf n (x, t)dx + f 0 ≤ f 0 1 + k(1) ω(1, 1)
exp(ω(1, 1)T ) + 2 =: L(T ).

(ii) For ε > 0, set R ε := f 0 /ε. Then, by [START_REF] Mclaughlin | An existence and uniqueness result for a coagulation and multiple-fragmentation equation[END_REF], for each n ≥ 1 and for all t ∈ [0, T ] we have

∞ Rε f n (x, t)dx ≤ 1 R ε ∞ Rε xf n (x, t)dx ≤ f 0 R ε < ε.
(iii) Fix R > 0. For n ≥ 1, δ ∈ (0, 1), and t ∈ [0, T ], we define

p n (δ, t) = sup R 0 1 E (x)f n (x, t)dx : E ⊂]0, R[ and |E| ≤ δ .
Consider a measurable subset E ⊂]0, R[ with |E| ≤ δ. For n ≥ 1 and t ∈ [0, T ], it follows from the non-negativity of f n , ( 3) and ( 7)-( 8) that

d dt R 0 1 E (x)f n (x, t)dx ≤ 1 2 I n 1 (t) + I n 2 (t) + I n 3 (t), ( 11 
)
where

I n 1 (t) := R 0 1 E (x) x 0 K n (x -y, y)f n (x -y, t)f n (y, t)dydx, I n 2 (t) := R 0 1 E (x) R x Γ(y, x)f n (y, t)dydx, I n 3 (t) := R 0 1 E (x) ∞ R Γ(y, x)f n (y, t)dydx.
First, applying Fubini's Theorem to I n 1 (t) gives

I n 1 (t) = R 0 f n (y, t) R y 1 E (x)K n (y, x -y)f n (x -y, t)dxdy = R 0 f n (y, t) R-y 0 1 E (x + y)K n (y, x)f n (x, t)dxdy.
Setting -y + E := {z > 0 : z = -y + x for some x ∈ E}, it follows from (H2) and the above identity that

I n 1 (t) ≤ k 2 1 (1 + R) µ R 0 (1 + y) µ f n (y, t) R 0 f n (x, t)1 -y+E∩]0,R-y[ (x)dxdy. Since -y + E∩]0, R -y[⊂]0, R[ and |-y + E∩]0, R -y[| ≤ | -y + E| = |E| ≤ δ,
we infer from the definition of p n (δ, t) and Lemma 2.1 (i) that

I n 1 (t) ≤ k 2 1 (1 + R) µ R 0 (1 + y) µ f n (y, t)dy p n (δ, t) ≤ k 2 1 L(T )(1 + R) µ p n (δ, t).
Next, applying Fubini's Theorem to I n 2 (t) and using (H5) and Lemma 2.1 (i) give

I n 2 (t) = R 0 f n (y, t) y 0 1 E (x)Γ(y, x)dxdy ≤ ω(R, |E|) R 0 f n (y, t)dy ≤ L(T )ω(R, |E|).
Finally, owing to (H4) and ( 9), we have

I n 3 (t) ≤k(R) R 0 ∞ R 1 E (x)y θ f n (y, t)dydx ≤ k(R)R θ-1 |E| ∞ R yf n (y, t)dy ≤k(R)R θ-1 f 0 |E| ≤ k(R)R θ-1 f 0 δ.
Collecting the estimates on I n j (t), 1 ≤ j ≤ 3, we infer from (11) that there is

C 1 (R, T ) > 0 such that d dt R 0 1 E (x)f n (x, t)dx ≤ C 1 (R, T ) (p n (δ, t) + ω(R, δ) + δ) .
Integrating with respect to time and taking the supremum over all E such that E ⊂]0, R[ with |E| ≤ δ give

p n (δ, t) ≤ p n (δ, 0) + T C 1 (R, T )[ω(R, δ) + δ] + C 1 (R, T ) t 0 p n (δ, s)ds, t ∈ [0, T ].
By Gronwall's inequality (see e.g. [14, p. 310]), we obtain

p n (δ, t) ≤ [p n (δ, 0) + T C 1 (R, T )(ω(R, δ) + δ)] exp {C 1 (R, T )t}, t ∈ [0, T ]. (12) 
Now, since f n (x, 0) ≤ f 0 (x) for x > 0, the absolute continuity of the integral guarantees that sup n {p n (δ, 0)} → 0 as δ → 0 which implies, together with (H5) and ( 12) that

lim δ→0 sup n≥1,t∈[0,T ] {p n (δ, t)} = 0.
Lemma 2.1 (iii) is then a straightforward consequence of this property and Lemma 2.1 (i).

Lemma 2.1 and the Dunford-Pettis Theorem imply that, for each t ∈ [0, T ], the sequence of functions (f n (t)) n≥1 lies in a weakly relatively compact set of

L 1 ]0, ∞[ which does not depend on t ∈ [0, T ].

Equicontinuity in time

Now we proceed to show the time equicontinuity of the sequence (f n ) n∈N . Though the coagulation terms can be handled as in [START_REF] Giri | The continuous coagulation equation with multiple fragmentation[END_REF][START_REF] Ph | On a class of continuous coagulation-fragmentation equations[END_REF][START_REF] Stewart | A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels[END_REF], we sketch the proof below for the sake of completeness. Let T > 0, ε > 0, and

φ ∈ L ∞ ]0, ∞[ and consider s, t ∈ [0, T ] with t ≥ s. Fix R > 1 such that 2L(T ) R < ε 2 , (13) 
the constant L(T ) being defined in Lemma 2.1 (i). For each n, by Lemma 2.

1 (i), ∞ R |f n (x, t) -f n (x, s)|dx ≤ 1 R ∞ R x{f n (x, t) + f n (x, s)}dx ≤ 2L(T ) R . (14) 
By ( 7), [START_REF] Walker | Coalescence and breakage processes[END_REF], and ( 14), we get

∞ 0 φ(x){f n (x, t) -f n (x, s)}dx ≤ R 0 φ(x){f n (x, t) -f n (x, s)}dx + ∞ R |φ(x)||f n (x, t) -f n (x, s)|dx ≤ φ L ∞ t s 1 2 R 0 x 0 K n (x -y, y)f n (x -y, τ )f n (y, τ )dydx + R 0 n-x 0 K n (x, y)f n (x, τ )f n (y, τ )dydx + R 0 n x b(x, y)S(y)f n (y, τ )dydx + R 0 S(x)f n (x, τ )dx dτ + φ L ∞ ε 2 . ( 15 
)
By Fubini's Theorem, (H2), and Lemma 2.1 (i), the first term of the right-hand side of (15) may be estimated as follows:

1 2 R 0 x 0 K n (x -y, y)f n (x -y, τ )f n (y, τ )dydx = 1 2 R 0 R y K n (x -y, y)f n (x -y, τ )f n (y, τ )dxdy = 1 2 R 0 R-y 0 K n (x, y)f n (x, τ )f n (y, τ )dxdy ≤ k 2 1 2 R 0 R-y 0 (1 + x) µ (1 + y) µ f n (x, τ )f n (y, τ )dydx ≤ k 2 1 L(T ) 2 2 .
Similarly, for the second term of the right-hand side of (15), it follows from (H2) that

R 0 n-x 0 K n (x, y)f n (x, τ )f n (y, τ )dydx ≤ k 2 1 R 0 n-x 0 (1 + x) µ (1 + y) µ f n (x, τ )f n (y, τ )dydx ≤ k 2 1 L(T ) 2 .
For the third term of the right-hand side of (15), we use Fubini's Theorem, (H4), (H5), and Lemma 2. 

≤ R 0 f n (y, τ ) y 0 1 ]0,R[ (x)Γ(y, x)dxdy + k(R) R 0 ∞ R y θ f n (y, τ )dydx ≤ω(R, R) R 0 f n (y, τ )dy + k(R) R 0 ∞ R yf n (y, τ )dydx ≤[ω(R, R) + Rk(R)] L(T ).
Finally, the fourth term of the right-hand side of (15) is estimated with the help of (H6) and Lemma 2.1 (i) and we get

R 0 S(x)f n (x, t)dx ≤ S L ∞ ]0,R[ L(T ).
Collecting the above estimates and setting

C 2 (R, T ) = 3k 2 1 L(T ) 2 2 + ω(R, R) + Rk(R) + S L ∞ ]0,R[ L(T ) the inequality (15) reduces to ∞ 0 φ(x){f n (x, t) -f n (x, s)}dx ≤ C 2 (R, T ) φ L ∞ (t -s) + φ L ∞ ε 2 < φ L ∞ ε, (16) 
whenever t -s < δ for some suitably small δ > 0. The estimate (16) implies the time equicontinuity of the family {f n (t), t ∈ [0, T ]} in L 1 ]0, ∞[. Thus, according to a refined version of the Arzelà-Ascoli Theorem, see [12, Theorem 2.1], we conclude that there exist a subsequence (f n k ) and a non-negative function f

∈ L ∞ (]0, T [; L 1 ]0, ∞[) such that lim n k →∞ sup t∈[0,T ] ∞ 0 {f n k (x, t) -f (x, t)} φ(x) dx = 0, (17) 
for all T > 0 and φ ∈ L ∞ ]0, ∞[. In particular, it follows from the non-negativity of f n and f , (9), and (17) that, for t ≥ 0 and R > 0,

R 0 xf (x, t)dx = lim n k →∞ R 0 xf n k (x, t)dx ≤ f 0 x < ∞.
Letting R → ∞ implies that f (t) x ≤ f 0 x and thus f (t) ∈ X + .

Passing to the limit

Now we have to show that the limit function f obtained in ( 17) is actually a weak solution to (1)-(2). To this end, we shall use weak continuity and convergence properties of some operators which define now: for g ∈ X + , n ≥ 1, and x ∈]0, ∞[, we put

Q n 1 (g)(x) = 1 2 x 0 K n (x -y, y)g(x -y)g(y)dy, Q n 2 (g)(x) = n-x 0 K n (x, y)g(x)g(y)dy, Q 1 (g)(x) = 1 2 x 0 K(x -y, y)g(x -y)g(y)dy, Q 2 (g)(x) = ∞ 0 K(x, y)g(x)g(y)dy, Q 3 (g)(x) = S(x)g(x), Q 4 (g)(x) = ∞ x
b(x, y)S(y)g(y)dy,

and

Q n = Q n 1 -Q n 2 -Q 3 + Q 4 , Q = Q 1 -Q 2 -Q 3 + Q 4 .
We then have the following result: Lemma 2.2. Let (g n ) n∈N be a bounded sequence in X + , ||g n || ≤ L, and g ∈ X + such that g n ⇀ g in L 1 ]0, ∞[ as n → ∞. Then, for each R > 0 and i ∈ {1, . . . , 4}, we have

Q n i (g n ) ⇀ Q i (g) in L 1 ]0, R[ as n → ∞. (18) 
Proof. The proof of (18) for i = 1, 2 is the same as that in [START_REF] Giri | The continuous coagulation equation with multiple fragmentation[END_REF][START_REF] Stewart | A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels[END_REF] to which we refer. The case i = 3 is obvious since φS belongs to L ∞ ]0, R[ by (H6) and (18) follows at once from the weak convergence of (g n ) in 

Existence

Now we are in a position to prove the main result.

Proof of Theorem 1.2. Fix R > 0, T > 0, and consider t ∈ [0, T ] and φ ∈ L ∞ ]0, R[. Owing to Lemma 2.2, we have for each s ∈ [0, t],

R 0 φ(x){Q n k (f n k (s))(x) -Q(f (s))(x)}dx → 0 as n k → ∞. (24) 
Arguing as in Section 2.3, it follows from (H2), (H4)-(H6), and Lemma 2.1 (i) that there is C 3 (R, T ) > 0 such that, for n ≥ 1, and s ∈ [0, t], we have

R 0 φ(x)Q n (f n (s))(x)dx ≤ C 3 (R, T ) φ L ∞ ]0,R[ . (25) 
Since the right-hand side of (25) is in L 1 ]0, t[, it follows from (24), (25) and the dominated convergence theorem that

t 0 R 0 φ(x){Q n k (f n k (s))(x) -Q(f (s))(x)}dxds → 0 as n k → ∞. ( 26 
)
Since φ is arbitrary in L ∞ ]0, R[, Fubini's Theorem and (26) give

t 0 Q n k (f n k (s))ds ⇀ t 0 Q(f (s))ds in L 1 ]0, R[ as n k → ∞. (27) 
It is then straightforward to pass to the limit as n k → ∞ in ( 7)-( 8) and conclude that f is a solution to (1)-( 2) on [0, ∞[ (since T is arbitrary). This completes the proof of Theorem 1.2. 

  The selection function S(x) describes the rate at which particles of volume x are selected to fragment. The selection function S and breakage function b are defined in terms of the multiple-fragmentation kernel Γ by the identities y)dy, b(x, y) = Γ(y, x)/S(y).

  x)f n (y, τ )dxdy + x)f n (y, τ )dydx

  L 1 ]0, ∞[. For i = 4, we consider φ ∈ L ∞ ]0, R[ and use (3) and Fubini's Theorem to compute, for r > R, R 0 φ(x){Q 4 (g n )(x) -Q 4 (g)(x)}dx = )S(y)b(x, y){g n (y) -g(y)}dydx ≤ )S(y)b(x, y){g n (y) -g(y)}dxdy + ∞ R R 0 φ(x)Γ(y, x){g n (y) -g(y)}dxdy .

Remark 2 . 3 .

 23 It is worth pointing out that the assumption (4) y 0 b(x, y)dx = N is only used to prove (20) and it is clear from that proof that the assumption sup y∈]0,R[ y 0 b(x, y)dx < ∞ for all R > 0 is sufficient. Thus, Theorem 1.2 is actually valid under this weaker assumption.
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This can be further written as

with

We use (H6) and (4) to observe that, for y ∈]0, R[,

This shows that the function y →

We next infer from (H4) that, for

On the one hand, (21) guarantees that the function y → R 0 φ(x)Γ(y, x)dx belongs to L ∞ ]R, r[ and the weak convergence of (g n ) to g in

On the other hand, we deduce from (21) and the boundedness of (g n ) and g in

which is asymptotically small (as r → ∞) uniformly with respect to n. We thus conclude that

Substituting (20) and ( 22) into (19), we obtain

for all r > R. Owing to (23), we may let r → ∞ and conclude that (18) holds true for i = 4 thanks to the arbitrariness of φ and the proof of Lemma 2.2 is complete.