N
N

N

HAL

open science

Incremental Component-based Construction and
Verification using Invariants

Saddek Bensalem, Marius Bozga, Axel Legay, Thanh-Hung Nguyen, Joseph

Sifakis, Rongjie Yan

» To cite this version:

Saddek Bensalem, Marius Bozga, Axel Legay, Thanh-Hung Nguyen, Joseph Sifakis, et al.. Incremental
Component-based Construction and Verification using Invariants. Formal Methods in Computer Aided

Design, FMCAD 2010, Oct 2010, Lugano, Switzerland. pp.257-266. hal-00557802

HAL Id: hal-00557802
https://hal.science/hal-00557802

Submitted on 20 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00557802
https://hal.archives-ouvertes.fr

Incremental Component-based Construction and
Verification using Invariants

Saddek Bensalem Marius Bozgd Axel Legay Thanh-Hung Nguyeh Joseph Sifakis Rongjie Yart
1 Verimag Laboratory, Université Joseph Fourier GrenoBMRS
2INRIA/IRISA, Rennes

Abstract—We propose invariant-based techniques for the effi- are used to cope with state explosion in concurrent systems.

cient verification of safety and deadlock properties of conarrent
systems. We assume that components and component interawis
are described within the BIP framework, a tool for component
based design. We build on a compositional methodology in wti
the invariant is obtained by combining the invariants of the
individual components with an interaction invariant that t akes
concurrency and interaction between components into acca.
In this paper, we propose new efficient techniques for compiirtg
interaction invariants. This is achieved in several stepskirst, we
propose a formalization of incremental component-based degn.
Then we suggest sufficient conditions that ensure the presation
of invariants through the introduction of new interactions. For

Nonetheless, we also should consider the behavior and prop-
erties resulted from mutually interacting components. Meo
positional verification method based on invariant compoitat

is presented in [2, 3]. This approach is based on the follgwin
rule:

{Bi < P, >}i, v e II(H’Y{BZ}la {@1}1), (/\Z q)l) ANV =
[{Bi}i < @ >

The rule allows to prove invariance of properfy for
systems obtained by using an n-ary composition operation

cases in which these conditions are not satisfied, we propose|| parameterized by a set of interactions It uses global

methods for generation of new invariants in an incremental
manner. The reuse of existing invariants reduces considebdy
the verification effort. Our techniques have been implemerdgd
in the D-Finder toolset. Among the experiments conducted, &
have been capable of verifying properties and deadlock-fredom
of DALA, an autonomous robot whose behaviors in the functioal
level are described with500000 lines of C Code. This experiment,
which is conducted with industrial partners, is far beyond the
scope of existing academic tools such as NuSMV or SPIN.

I. INTRODUCTION

invariants that are the conjunction of individual invat&n

®,; of individual components3; and aninteraction invariant

W. The latter expresses constraints on the global state space
induced by interactions between components. In [2], we have
shown that¥ can be computed automatically from abstractions
of the system to be verified. These are the composition of
finite state abstraction8 of the component®; with respect

to their invariants®;. The approach has been implemented
in the D-Finder toolset[3] and applied to check deadlock-

Model Checking[10, 12] of concurrent systems is a chalreedom on several case studies described in the BIP (Be-
lenging problem. Indeed, concurrency often requires corhavior, Interaction, Priority) [1] language. The resulfdteese
puting the product of the individual systems by using botéxperiments show that D-Finder is exponentially fastentha
interleaving and synchronization. In general, the sizehif t well-established tools such as NuSMV [9].

structure is prohibitive and cannot be handled without naanu Incremental system design methodologies often work by
interventions. In a series of recent works, it has been aatedc adding new interactions to existing sets of componentsh Eac
that compositional verification techniquesuld be used to time an interaction is added, one may be interested to verify
cope with state explosion in concurrent systems. Compenewhether the resulting system satisfies some given property.
based design techniques confer numerous advantages.-in pateed, it is important to report an error as soon as it ajgpear
ticular, through reuse of existing components. A key issudowever, each verification step may be time consuming,
is the existence of composition frameworks ensuring thehich means that intermediary verification steps are gdlgera
correctness of composite components. We need framewoakeided. The situation could be improved if the result of the
allowing us not only reuse of components but also reuse rification process could be reused when new interactions
their properties for establishing global properties of posite are added. Existing techniques, including the one in [2], do
components from properties of their constituent compaienhot focus on such aspects. In a very recent work[6], we
This should help cope with the complexity of global monohave proposed a new fixed point based technique that takes
lithic verification techniques. incremental design into account. This technique is gelyeral
Compositionality allows us to infer global properties ofaster than the one in [2] for systems with an acyclic topglog
complex systems from properties of their components. Th@r systems with a cyclic topology, the situation may howeve
idea of compositional verification techniques is to applipe reversed. There are also many case studies that are beyond
divide-and-conquer approaches to infer global propenies the scope of these techniques.
complex systems from properties of their components. Theyln this paper, we continue the quest for efficient incremlenta

® ° Definition 1 (Atomic Component) An atomic component is
P1 P2 a transition systenB = (L, P, T), where:
@ o L={l1,ls,...,lx} is a set of locations,
4 >% ok . P is a set of ports, and
@ @ e« 7 CLxPxLis a set of transitions.
B @ B ¢ Givent = (I,p,l") € T, 1 andl’ are thesourceanddestination
B locations, respectively. In the rest of the paper, we %asand
Fig. 1. A simple example 7* to compute the source and destinationrpfespectively.

techniques for computing invariants of concurrent systéies Example 1. Figure 1 presents two atomic components.

present a detailed methodology for incremental constoctiThe ports of componenB; are p; and ¢;. B; has two
and verification of component-based systems. This is aellieyocations:/; andl, and two transitions:; = (11, p1,l2) and

in several steps. First, we propose a formalization of incre, — (1, ¢, 1)
mental component-based design. Then we suggest sufficient] N
conditions that ensure the preservation of invariantsupho e aré now ready to define parallel composition between
the introduction of new interactions. For cases in whictsehe@0mic components. In the incremental design setting, the
conditions are not satisfied, we propose methods for géaeragP@rallel composition operation allows to build bigger com-
of new invariants in an incremental manner. The reuse BPnents starting fromatomic componentsAny composition
existing invariants reduces considerably the verificaéiiort. OPeration requires to define a communication mode between
Contrary to the technique in [6], our technique, which ebe COMPONeENts. In our context, components communicate via
a relation between behaviors of components and interagtiofiteractions i.e., by synchronization on ports. Formally, we
turns out to be efficient for both cyclic and acyclic topolegi Nave the following definition.

Our techniques have been implemented as extensionspeffinition 2 (Interactions) Given a set ofn components
the D-Finder toolset[3] and applied on several case studi@l’B% ..., B, with B; = (L;, P;,T;), an interactiona is a

Our experiments show that our new methodology is generaf¥t of ports, i.e., a subset bf/_, P;, such thatyi = 1,...,n.
much faster than the ones proposed in [2, 6]. In particular, Won Pyl < 1. B

have been capable of verifying deadlock-freedom and safety L) _
properties of DALA, an autonomous robot whose behaviors By definition, each interaction has at most one port per
the functional level are described wish0000 lines of C Code. component. In the figures, we will represent interactions by
This experiment, which is conducted with industrial partne Nk between ports. As an example, the sgt, p»} is an
is far beyond the scope of [2, 6] and of existing academigtéraction between Componerfts and B, of Figure 1. This
tools such as NUSMV or SPIN. interaction describes a synchronization between Comgenen

Structure of the paper. In section II, we recap the conceptsBt and Bz by Portsp, andp,. Another interaction is given
that will be used through the paper as well as the incremenj the set{a1, ¢2}. The idea being that a parallel composition
methodology introduced in [6]. Section Il discusses suffiS entirely defined by a set of interactions, which we call a
cient conditions for invariant preservation while Sectiph CONnector As an example the connector f6% and B is the
presents our incremental construction for invariants.tiSec SEt{{PlaPﬂ’ {QLQQ}}_- In the rest Qf the paper, we simplify
V discusses the experiments. Finally, Section VI concludi notations and writgip; ... py instead of{pi, ..., px}.
the paper. Due to space limitation, some proofs and moddf also writea; +... + as, for the connectofay, . .., am .
descriptions are given in the appendix. As an example, notation for the connectdp:, p2}, {¢1, ¢2}}

IS p1 p2 +q1 qa.
[I. PRELIMINARIES We now propose our definition for parallel composition. In
In this section, we present concepts and definitions th4pat follows, we use for a set of integers.

will be used through the rest of the paper. We start with thgefinition 3 (Parallel Composition) Given n atomic com-
concepts otomponentsparallel composition of components ponentsB; = (L;, P;, T;) and a connectory, we define the

systems and invariants In the second part of the sectionparallel compositionB = ~(By,..., B,) as the transition
we will recap a very recent methodology [6] we proposed fafystem(£, v, 7), where:

incremental desigimf composite systems.

e L=1Lyx Ly x...x L, is the set ofglobal locations,

« v is a set of interactions, and

e 7 C L x « x L contains all transitionsT =
((I1,...,1ln),a,(l},...,1)) obtained by synchronization

A. Components, Interactions, and Invariants

In the paper, we will be working with a simplified model
for compon(_ent-bas_ed design. Roughly s_p_eakmg, an atomic of sets of transitiong7; = (Is, pi, I!) € T;}ses Such that
component is nothing more than a transition system whose , i
transitions’ labels are callegorts These ports are used to {pitic; =acyandly=1;if j ¢ 1.
synchronize with other components. Formally, we have tfée idea is that components communicate by synchronization
following definition. with respect to interactions. Given an interactigronly those

components that are involved in can make a step. This is First, when building a composite system in a bottom-up
ensured by following a transition labelled by the correspog manner, it is essential that some already enforced synidaron
port involved ina. If a component does not participate to théions are not relaxed when increments are added. To guarante
interaction, then it has to remain in the same state. In tki@s property, we propose the notionfofbidden interactions
rest of the paper, a component that is obtained by composing..

hap np . y P Bgfmmon 6 (Closure and Forbidden Interactiond)et v be
several components will be called @mposite component

. ; LT a\connector.
Consider the example given in Figure 1, we have a composite) _
C

componenty(By, By), wherey = p; ps + qi gs. Observe ¢ The closurey® of 4, is the set of the non empty in-

that the component (B, ..., B,), which is obtained by teractions contained in some interaction of That is
applying the connector, = Y7 (3, cp p;), is the V={a#0|Fbey.aC b}-f .

transition system obtained by interleaving the transitiofi ~ * The forbidden interactions)’ of ~ is the set of the
atomic components. Observe also that the parallel coniposit mteracupns'strlctly contained in all the interactions of
v(Bu,...,By) of By, ..., B, can be seen as ksafe Petri 7. Thatisy/ = 7¢ — 1.

net (the number of tokens in all places is at most one) whoggis easy to see that for two connectors and 2, we have

set of places is given by = |J;_, L; and whose transitions (41 472) = 7€ + 75 and (11 +72)F = (11 +72)° — 71 — 7.
relation is given byZ. In the rest of the papef, will be called 1 oyr theory, a connector describes a set of interactions
the set of locations of3, while £ is the set ofglobal states ang, py default, also those interactions in where only one
We now define the concept of invariants, which can be usggmponent can make progress. This assumption allows us to
to verify properties of (parallel composition of) COMPOL®N gefine new increments in terms of existing interactions.

We first propose the definition adystemthat is a component
with an initial set of states. Definition 7 (Increments) Consider a connectory over

o))) B and leto C 27 be a set of interactions. We saly is
Definition 4 (System) A systens is a pair (B, Init) where 41 increment over if for any interactiona € & we have
B is a F:omponent andnit is a state predicate CharaCte”Z'”ginteractionsb1, ..., by €~ such thatlJ"_, b; = a.
the initial states ofB.

In practice, one has to make sure that existing interactions

In a similar way, we distinguish invariants of a componefefined by~ will not break the synchronizations that are
from those of a system such that the invariants of a Syst&ffforced by the incremerdt For doing so, we remove from
S = (B, Init) can be obtained from those d# according he original connector all the interactions that are forbidden
to the constraint/nit. Therefore we define invariants for 3y 5. This is done with the operation dfayering which
component and for a system separately. describes how an increment can be added to an existing set

Definition 5 (Invariants) Given a componen® = (L, P,7), ©f interactions without breaking synchronization enfadzgy
a predicateZ on L is an invariant ofB, denoted bynv(B,7), the increment. Formally, we have the following definition.

if ;or/any '9ca“0”lle L and any portp € P, I(l) and pefinition 8 (Layering) Given a connectory and an

[= 1" e T imply Z(), whereZ(l) means thal satisfiesZ. increments over ~, the new set of interactions obtained by
For a systemS = (B, Init), 7 is an invariant ofS, denoted compining 5 and v, also called layering, is given by the

by inv(S,7), if it is an invariant of B and if Init = 7. following setdy = (y — 8/) + & the incremental construction

Clearly, if Z;, Z» are invariants ofB (respectivelyS) then by layering, that is, the incremental modification-oby ¢.

Ti NIy andZ, V I are also invariants oB (respectivelyS). The above definition describes one-layer incremental con-

Let y(By,...,Bn) be the composition of. components sryction. By successive applications of the rule, we can
with B, = (Li, b, T;) for i € 1...n. In the paper, construct a system with multiple layers. Besides the fusion
an invariant onB; is called acomponent invarianind an of interactions, incremental construction can also beiobth
invariant ony(By, ..., By) is called aninteraction invariant y first combining the increments and then apply the result
To s!mplify the no.tations, we will assume that interactiog, the existing system. This process is caldperposition
invariants are predicates quj;_, L;. Formally, we have the following definition.

B. Incremental Design Definition 9 (Superposition) Given two increments, d,
In component-based design, the construction of a compositeer a connectoty, the operation of superposition betwesn
system is both step-wise and hierarchical. This means tlaad d, is defined by; + 6.

a system is obtained from a set of atomic components by, o . .
. " .)) Superposition can be seen as a composition between incre-
successive additions of new interactions also cafiecements : " . .
ments. If we combine the superposition of increments with
In a very recent work[6], we have proposed a methodolo . . - .
i : . . e layering proposed in Definition 8, then we obtain an
to add new interactions to a composite component withou . .
. L) : mcremental construction from a set of increments. Forynall
breaking the synchronization. The techniques we will psgpo . .
. we have the following proposition.
to compute and reuse invariants intensively build on this

methodology, which is described hereafter. Proposition 1. Let~ be a connector oveB, the incremental

construction by the superposition afincrements{J; }1<i<, The above proposition, which will be used in the incremental

is given by design, simply says that if an invariant is satisfied, then it
" " " will remain when combinations of conflict-free interaction

§)y = (v — §)7) + 5 1) are added (following our incremental methodology) to the
(; =0 (;) ; @) connector. This is not surprising as the tighter connecéor c

N _ ~only restrict the behaviors of the composite system.
The above proposition provides a way to transform incre- we now switch to the more interesting problem of providing

mental construction by a set of increments into the separaigficient conditions to guarantee that invariants areguvesl
constituents, where — (37_,6;)/ is the set of interactions by the incremental construction.

that are allowed during the incremental construction pgece .
Proposition 3. Let v be a connector oveB and ¢ be an

I1l. | NVARIANT PRESERVATION ININCREMENTAL DESIGN increment ofy such thaty < 4, then we havey < d7.

In Section 1I-B, we have presented a methodology for thEhe above proposition, together with Proposition 2, saps th
incremental design of composite systems. In this sectian, e addition of an increment preserves the invariant if the
study the concept dhvariant preservationMore precisely, we initial connector is looser than the increment.
propose sufficient conditions to guarantee that alreadsfisat ~ We continue our study and discuss the invariant preserva-
invariants are not violated when new interactions are addedtion between the components obtained from superposition of
the design. increments and separately applying increments over the sam

We start by introducing thioser synchronization preorder Set of components. We use the following definition.

on connectors, which we will use to characterize invaria@efinition 12 (Interference-free Connectorsfziven two
preservation. As we have seen, interactions charactenze Eonnectors% o, fOr ANy a1 € 71, as € o, if either a;
) 1) L]

behavior of a composite component. We observe that if twg, 4 as are conflict-free ora; = as, we say thaty, and
interactions do not contain the same port, the executiomef Ogre interference-free. ’

interaction will not block the execution of the other intetian.
Formally, we have the following definition. This definition considers a relation between two connec-

o))) tors. We observe that two interference-free connectors wil
Definition 10 (Conflict-free Interactions)Given a connector ot preak or block the synchronizations specified by each
7, letay, ap € 7, if ay Nay =, we say that there is N0 gther. Though we require that the interactions between
conflict betweem; andas,. If there is no conflict between anyg,q ~, are conflict-free,y; or ~» respectively can contain

interactions ofy, we say thaty is conflict-free. conflict interactions. For example, consider two connector

We now propose a preorder relation that allows to guarantée = P1 P2 + P2 P3, Y2 = pa ps. 7 IS not conflict-free,
the absence of conflicts when new interactions are add€ty1 andy. are interference-free. _
Formally, we have the following definition. We now present the main result of the section.

Definition 11 (Looser Synchronization Preordefje define Proposition 4. Consider two increments;, J, over+y such

the looser synchronization preorderC 22” x 22" For two that” < di and~y < ds, if 4, and J, are interference-free,
connectorsy:, 72, 11 < 7 if for any interactiona € s, there @nd inv(017(B), I1), inv(d2y(B),Z>), we haveinv((d: +
exist interactions, ..., b, € v, such thata = |J;_, b, and 92)7(B), Z1 A I2).

there is no conflict between ahyandb;, wherel <1i,j <n The above proposition considers a set of increméfits <i<,
andi # j. We simply say that, is looser thamy,. over ~ that are interference-free. The proposition says that
if for any ¢, the separate application of increments over
componen®;y(B) preserves the original invariants ¢fB),
lBréen the system obtained from considering the superposifio
increments overy preserves the conjunction of the invariants
PPJ individual increments.

We now briefly study the relation between the looser
synchronization preorder argloperty preservationFigure 2
shows the three ingredients of the BIP language, that are (1)
priorities, which we will not use here, (2) interactionsdg)

The above definition requires that the stronger synchrtiniza
should be obtained by the fusion of conflict-free interatsio
The reason is that the execution of interactions may
disturbed by two conflict interactions, i.e., the executan
one interaction could block the transitions issued from t
other interaction. However, if we fuse them together, it n®ea
that the transitions of both interactions can be executéd;w
violates the constraints of the previous behavior. It isydas

see that ify;, 9, 73, are connectors such that < 7o,)
ands < 711 thvezn J\f)e r?;veyl s < va+ SN behaviors of components. We shall see that the looser synchr
o B ' &ization preorder preserves invariants (Proposition 4)isT

We now propose the following proposition which establish that th q th led bil
a link between the looser synchronization preorder andrinvacans that tne preorder preserves the so-caile readhabill
roperties. On the other hand, the preorder does not peeserv

i p
ant preservation. . : .
P deadlocks. Indeed, adding new interactions may lead to the

Proposition 2. Let 74, 72 be two connectors oveB. If addition of new deadlock conditions. Given two connectors
7 =< Y2, we haveinv(y1(B),Z) = inv(y2(B),). ~1 and~, over componenB such thaty, is tighter thamy,

Priorities That is,a, consists of sets of component transitions involved
in interactiona. As an example, consider the components
deadlock_free preservation given in Figure 1. Givery = p; p2 + ¢1 g2, we have
- invariant preservation (pl p2)T = {{7—1’ T3}}’ and (Q1 G2)r = {{TQ’M}}'

X . Locations of components will be viewed as Boolean vari-
ables. We useBool[L] to denote the free Boolean algebra
generated by the set of locatiohsWe also extend the notation
°r, 7° to interactions, that i& = {°r |7 € T; Aport(r) € a},
anda® = {7* |7 € T, Aport(r) € a} .

v Interactions

Behaviors

Definition 13 (Boolean Behavioral Constraints (BBCs))
Fig. 2. Invariant preservation for looser synchronizatietation Let v be a connector over a tuple of componerts =

i.e.,71 < 72, we can conclude that if»(B) is deadlock-free, (Bi,--, Bn) with B; = (L, P;,7;) and L = {J;_, Li. The
then~, (B) is deadlock-free. However, we can still reuse thB0Clean behavioral constraints for componets) are given

invariant of v (B) as an over-approximation of the one ofY the function - | : y(5) — Bool[L] such that

n(B). o (B) = A la(B)],
Discussion. Though we can reuse invariants to save com- acy ,
putation time, the invariants of the system with a looser la(B)| = AN CA U=V 1)
. {ritier€ar le{ri} re{r}
connector may be too weak with respect to a new system _
obtained with a tighter connector. Consider the examplergiv If v = 0, then [y(B)| = true, which means that no

in Figure 1 and lety = p1 + p2 + ¢1 + g2, 61 = p1 po, INteractions between the componentstbivill be considered.
andd, = q1 ¢o. By using the technigue presented in the next Roughly speaking, one implicatioh = \/; .,y in
section, we shall see that the invariant fr(B) anddyy(B) |v(B)| describes a constraint ohthat is restricted by an
is (11 V12) A (I3 V14).By applying Proposition 4, we obtain thatinteraction ofy issued from/.

this invariant is preserved fap; + d2)y(B). This invariantis In what follows, we usé for the complement of, i.e., —l.

weaker than the invariarity Vis) A(l3 Vi) AL V) A(laVIs) - Example 2. Consider the components in Figure 1. Consider
that is directly computed of¥; + d2)v(B). To overcome the o5 the following connecto — pi + ps + q1 + go. Two
above problem, we will now propose an approach that can pe ements overy are &, = p1 ps and &2 = q1 go. According
used to compute invariants in an incremental manner. to Definition 8, we havel;y = p1 ps + q1 + go When we

IV. EFFICIENT INCREMENTAL COMPUTATION OF only consider incremens, over ~. For é,v(B), the BBC
INVARIANTS lp1 p2(B)], |q1(B)| and |g2(B)]| are respectively given by:
In Section II-B, we have proposed a methodology to build Ip1p2(B)] = (L = la Vig) A (s = 13V 1Y),
a composite system by successive addition of increments. We lu(B)| = (la = 11), |q2(B)] = (Iy = I3)

now propose a methodology that allows to reuse existi . _

interaction invariants when new interactions are addedi¢o %?B?lBC (Sorivl(é\)l Ii/lé(llW(:B;)l' 7\ l|p)1ﬁ2((131>/> |)q}\(5)|:/>\
g; =l 2 N ly 3=l Nly 2 1 4
3

system. The section is divided in two subsections. In ti'i AN AL AT AL AL AL AT .
first subsection, we recap the conceptBufolean Behavioral = U ALAAL)YV (I AL ARV (2 A A L)V (1A
I]_Q A lg) \ (ll ANlg A l4)

Constraint42, 6], which can be used to characterize inte hen we consider two increments together, we Haver
action invariants. In the second subsection, we propose %ugN - di g . o 5 yd 9
incremental methodology. 2)7(B) = p1 p2 + @1 2, according to Definition 8 and 9.

Because the BBC for interaction g2 over B is (la = 1 V

A. Boolean Behavioral Constraints (BBCs) I3) A (Il = 11 V13), we obtain that the BBC fofd; + d2)v(B)

In [2], we have presented a verification method fois [(d1 + 02)v(B)| = |pip2(B)| A lq1g2(B)| = (L = l2 V

component-based systems. The method uses a heuristidgoN Iz = L Vi) A(ls3 = Vi) Ay = 11 Vi) =
symbolically compute invariants of a composite componer(iy Alx Alz Aly) V (Ih Al) V (I Al3) V (Ih Alg) V (I3 Aly).

These invariants capture the interactions between conmggne .
. S Example 2 shows that any BBE/(B)| can be rewritten
which are the cause of global deadlocks. For this, it is b y BBG/(B)]

Into a disjunctive normal form (DNF), where every conjuwmeti

sufficient to find an invariant that does not contain deadlo?lc)(rm is called anonomial Any satisfiable monomial df/(B))|
states. In this section, we improve the presentatlon. ofebalt is a solution of|y(B)|. In fact, the enumeration of the clause
of [2] and prepare them for the incremental version that we

. . : of any monomial corresponds to an interaction invariant.
will present in the next subsection.

Interactions describe the communication between difterehheorem 1. Lety be a connector over a set of components
components, and transitions are the internal behavior wi-coB = (B, - - , B,) with B, = (L;, P;,7;) and L = |J"_, L;,
ponents. Here we unify these two types of behavioral descrnd v : L — {true, false} be a Boolean valuation different
tion by introducingBoolean Behavioral Constraint®8BCs). from false. Ifv is a solution ofjy(B)|, i.e.,|v(B)|(v) = true,

We takea, = {{7i}icr | (Vi.r; € T;) A({port(ri) }ier = a)}. thenV,;_,.,. [is an invariant ofy(B).

The above theorem gives a methodology to compute interac- i 1
tion invariants ofy(B) directly from the solutions ofy(B)|. p —P4
In the rest of the paper, we will often use the teBBC- @
invariant to refer to the invariant that corresponds to a single a3 D4
solution of the BBC. D3 44
Since locations are viewed as Boolean variables, a location @ @
in a BBC is either a variable or the negation of a variable. 434 & o 44
As an example] is a positive variable anehl is a negative — e

variable. However, as observed in Theorem 1, invariants are Fig. 3. Incremental construction example
derived from positive variables of the solution|ef). This B. Incremental Computation of BBCs

suggests that all the negations should be removed. In denerajn the previous section, we have shown that interaction
due to incremental design and implementation (see Propositinyariants can be computed from the solutions of Boolean
6 and Section V), these valuations can be removed graduaiéhavioral Constraints. In this section, we show how to eeus
We now propose a general mapping on removing variablggisting invariants when new increments are added to the
with negations that do not belong to a given set of variablegystem. We first give a decomposition form for BBC and then
14 (Positive Mapping) Given two sets of shogv how this decomposition can be used to save computation

Definition
variables L and L’ such thatL’ C L, we define a mapping tim
p(L') over a disjunctive normal form formula that remove®roposition 5. Let v be a connector ovei3, the Boolean

all the variables not inL’ and with negations from the behavioral constraint for the composite component obtine

formula, such that by superposition of. increments{d; }1<;<, can be written as
I A i A [)PE) = I A l; . _ g Als.
CAEA N A N JPi= A A A (e =l = (LaN@In Al @

v (L) — Py, p(L)
1V f2) /i f Proposition 5 provides a way to decompose the computation
where f; and f, are in disjunctive normal form. of BBCs with respect to increments. The decomposition is

based on the fact that different increments describe tieednt

If L" is empty, then the positive mapping will remove all thgjyng petween different components. To simplify the notti
negaﬂons from a DNF formulg, which we will denote by v — (2r_,8;)7 is represented by,. We have the following
J?. Notice that(A,_; [;)* = false. example.

We are now ready to propose an interaction invariant that
takes all the solutions of the BBCs into account. We firéxample 4. [Incremental BBC computation] In the example
introduce the notatiory that stands for the dual of, by ©f Figure 3, lety = p1 + ps +ps +ps + @1 + g2 + 43 + ¢a.
replacing the AND operators with ORs (and vice versa) andVo increments ovety are 61 = p1 p3 + q1 g3 and o3 =
the constan® with 1 (and vice versa). As we have seen, BBCB2 P4+ g2 ¢4. The new connector obtained by applyingand
can be rewritten as a disjunction of monomials. By dualizirp t0 7 is given by(d1 +02)y = p1 ps+q1 43 +p2 pa+ G2 ¢s-
a monomial, one can obtain an interaction invariant. If onehe€ BBC|01(B)| and |d2(B)| are respectively given by:

wants the strongest invariant that takes all the solutida in 61(B) = (lo =1 VI)A (L= loVIs)A

account, one simply has to dualize the BBC. This is stated (Is =1L VI)A(ls= 1o Vi),

with the following theorem. [62(B) = (lo=12Vig)A(la= 1o Vis)A
(15 =V la) A\ (la =y \/ls)

Theorem 2. For any connectory applied to a tuple of
components3 = (B, -+, B,), the interaction invariant of Sincey—(31+d2)/ = 0, we have (6 +d2)(B)| = [51(B)|A
7(B) can be obtained as the dual ¢f(B)[", denoted by 192(B)|-

[y (B)IP. We now switch to the problem of computing invariants

Example 3. We consider the components, connectors, a lle .taklng |.n<.:r.emental d§5|gn |n-to account. We propose th
lowing definition that will help in the process of reusing

BBCs introduced in Example 2. The positive mapping remo LS :
variables with negations from¥,~(B)| and |(§; + d2)v(B)|. existing invariants.
We obtain that|6w(/\§)|17 = (4 V1) A (I3 V 14), and Definition 15 (Common Location Variables.). The set of
(61 +/(§2‘);(B)|p — (ILVI) A3V AL VI Al V). Ifwe €OmmonN location variables of a set of connectpys} <<y, is
specifylnit = I, Als, every invariant of systertd, (B), Init) 9€fined byLe = U; jepn njning support(vi) N support(y;),

and ((3; + 62)7(B), Init) should contain either; or Is. Wheresupport(’y)_z Uae, *aUa®, the set of locations involved
Therefore(l; V 1o) A (I5 V 14) is the interaction invariant of N Some Interaction: of .

(017(B), Init), and (Iy VI2) A (I3 V1) A(li VIg) A(l2VIs) Our incremental method assumes that an invariant has
is the interaction invariant of (61 + d2)v(B), Init). already been computed for a set of interactions (We Tise

to denote the BBC-invariant gb(B)[). This information is
exploited to improve the efficiency. The idea is as follows: A <
cording to Equation 1, the superposition of a set of increiien_
{6:}1<i<n OVer a connectory can be regarded as separatelyt
applying increments over theirs constituents. We prophee t
following proposition, which builds on Equation 2.

Local deadlock-
™ free
__ verification

Component
invariant

Abstraction and
ion invariant
generation

Proposition 6. Consider a composite compondst Let~y be
a connector forB and assume a set of incremeRt}1<i<x

over V(B) Let 50 = 7 - (Z?:l 57’)f' Iéi’ = /\keli ¢k’ =false-strengthen =false-give up
for i = 0,...,n, be the BBC-invariants for eachy;(B)|, 2=

Ss. = Vyer, M, fori =0,...,n, be the corresponding BBC- B
solutions, and let Fig. 4. D-Finder tool

o L, be the set of location variaples in in_variamt result is (Io V 11 V 1) A (Io V 1 V Ig) A (o V 1y V 1) A (Io V
e« L. be the common location variables betweegl2 VI A V) A (I3 VL) A (s Vi) A (ls V)

{00,061, ..., 00}
Then the interaction invariant d&27_, 6;)~(B) is obtained as V. EXPERIMENTS
follows: Our methodology for computing interaction invariants and
deciding invariant preservation has been implemented én th
D-Finder toolset[3].

Deadlock
confirmation

Clall ADIS

In this section, we start with a brief introduction to the
* l./:\o kE/I\M o |1 (k“,../,>i,\)em> j\:/l P the D-Finder tool and explain what are the modifications that
LeNLg, =0 have. Then we show the experimental results obtained by
implementing the methods discussed in this paper.
where
D = {(ki1, ... kir)| (Vj =1...7Akij € Iij) N(Lg,,, NLc # A, D-Finder Structure
0) A (Nj=y M, # false) A (K, ..., ki) is maxima) }. D-Finder is an extension of the BIP toolset[7] — BIP can

The proposition simply says that one can take the conjulmx;tiobf3 used to def_me components and component mteracpons. D-
of BBC-invariants that do not share common variables, whiﬁa’nder can vern‘y_both safety a.nd deadlo<_:k—freedom progeert
one has to take the disjunction of the remaining invariant%f systems by using the techniques of this paper and of [2, 6].
This is to guarantee that common location variables will not W& US€global to refer to the method of [2]F'P for the
change the satisfiability of the formulae. Observe that eaffpremental method of [6], andncr to refer to our new
non common variable occurs only in the solutions of On@cremental techmque.))

BBC. This allows deleting the non common variables with 1€ 00l provides symbolic-representations-based method
negations separately by using the positive mapping of comm@r computing interaction invariants, namely thecr methods

variables in every BBC-solutions, which reduces compjexif’re'_sented in this paper, the fixed ppint based method and
of computation significantly. its incremental method”P proposed in [6] as well as the

global method presented in [2] and discussed in Section Il.
Example 5. [Incremental invariant computation] In ExampleD-Finder relies on the CUDD package| and represents
4, we have computed the BBCs for the two increments. Hegsts of locations by BDDs. D-Finder also proposes techsique
we show how to compute the invariants from BBC-invariants compute component invariants. Those techniques, which
of the increments. By Definition 15, we obtain tiiat= {lo}. are described in [2], relies on the Yic&] and Omega? |
Let S5,, S5, be the BBC-solutions fofd, (B)| and |62(B)| toolsets for the cases in where a component can manipulate
respectively, ands, ,Zs, be their BBC-invariants, we have:data. A general overview of the structure of the tool is given
Ssy = (lo ANl A3 ALYV (Lo AV (I Als) V(o Als) V (IsAls), in Figure 4.

S5y = (lo Nla Nls Alg) V (o Al2) V (Ia Als) V (Lo Als) V (Is Als), D-Finder is mainly used to check safety properties of
sy = (o Vi) Ao Vi) A1 Vi) A3V L), composite components. In this paper, we will be concerned
Tsy = (loVI2) A(loVie) AN(l2ViIs) A (s Vis) with the verification of deadlock properites. We Ief .S be the
BecauseZ s, +5,)v(B) = Z((v—(5,+48:)¢)+5:+82)(B) @nd v — set of global states in where a deadlock can occur. The tdiol wi
(61 + 62)7 =0, we haveZ s, 5,),(5) = L(s,+5,)(B)- progressively find and eliminate potential deadlocks as fol

Among the BBC-invariants/; Vis), (I3V14), (I2Vis), (IsV lows. D-Finder starts with an input a BIP model and computes
lg) do not contain any common location variables, so thegomponent invariant€'l by using the technique outlined in
will remain in the global computation. BBC-invariant VvV [2]. From the generated component invariants, it computes a
1), (lo V1), (lo Vi2) and (Ip V lg) containly as the common abstraction of the BIP model and the corresponding intemact
location variable, and the conjunction between every monimwariants/I. Then, it checks satisfiability of the conjunction
mial from two groups of solutions are not false. So the findll A CI A DIS. If the conjunction is unsatisfiable, then there

TABLE |

is no deadlock else either it generates stronger component COMPARISON FOR ACYCLIC TOPOLOGIES

and interaction invariants or it tries to confirm the detdcte Component information [Time (minutes) | Memory (MB)
. T . . I locati int ti lobal FP I lobal FP I
deadlocks by using reachability analysis technidues S ocation _nteractior]_global _ mer | globa e
) 50 pumps 2152 2004 0:50 0:17 0:49 48 53 47
B. Implementation of the Incremental method 100 pumps 4302 4009 2:58 0:52 L5176 52 47
) o) 200 pumps 8602 8000 11:34 155 2:26| 135 65 47
We build on the symbolic implementation of the method in400 pumps 17202 1600p 47:38 351 543|270 93 76
. 500 pumps 21502 2000 - 4:43 7:21 - 101 86
[2] that computes the interaction invariant of an entiretesys 600 pumps 25802 24001 - 553 905 - 115 97
with all the interactions within the connector. The impleme % Pumee Soi02 2800p - 714 a4l - 138 107
tation relies on the CUDD packag® [and represents sets of 300 smokers 907 903 007 007 0077 44 11 7
| t b BDD 600 smokers 1807 180: 0:13 0:14 0:13 46 26 8
ocations by S. 1500 smokers 4507 4503 1:38 044 034 65 54 18
. H 000 smokers 9007 9008 6:21 1:57 1:14 113 86 28
_ We have employed_ the‘_ following st_eps to mtegr_ate thelooo smokers 18007 18008 27:03 557 324| 222 172 55
incremental computation into the D-Finder tool. First we/s00 smokers pand osop L3882 Aok D e ®
compute a set of common location variables from all the ATM
. . 50 hi 1104 902 10:49 2:20 1:23 81 86 22
increments. Then we compute the BBC-solutions for everyoomnfgc'ﬁ}ﬁzs 3204 180h 4300 600 17| 143 271 aa
increment instead of computing the solutions for the cotorec 23 machines oo pet S S Loy %
in global method, and apply positive mapping to remove theoo machines 13204 ;osgz - - 2414 - - 19
location variables with negations that do not belong to #te Sg55consamers— 007 B T35
i i i 000 consumers 8004 8003 1:27 1:18 1:05 90 28 20
Of common l(_)catlon Varlable_s’ to_reduce the SI_Ze Of BPD%OOO consumers 12004 12003 3:01 2:32 2:03 126 37 31
for BBC-solutions. We can either integrate existing solng 8000 consumers 16004 16003 535 422 233 164 40 35
. . 10000 consumers 20004 20003 8:44 6:12 3:15 218 66 56
from the already computed BBCs progressively or integrat@ooo consumers 24004 24003 12:06 837 538 257 75 66
all the solutions when all the increments have been explored TABLE Il
Fina||y we apply positive mapping to remove all the remajﬂiﬂCOMPAMSON BETWEEN DIFFERENT METHODS ONDINING PHILOSOPHERS
common location variables with negations and call the dual | cOmponlent informafion Time (minufes) Memory (MB)
. L . . . ti int i lobal P Inc lobal FP I
operation to obtain interaction invariant. 200 pRIoS 9000 2500 40T T8 03 61— 60— 29
. 1000 philos 6000 5000 17:09 - 2:04 105 - 60
C. Experimental Results 1500 philos 9000 7500 39:40 - 300| 148 - 74
We have compared the performance of the three methods g 822::22 raoe 20000 L1 L e
several case studies. All our experiments have been cogdiuct000 philos 36000 3000 - - 1426 - - 3
9000 philos 53000 45000 - - 24:16 - - 581

with a 2.4GHz Duo CPU Mac laptop with 2GB of RAM.

We started by considering verification of deadlock proper-
ties. The case studies we consider are the Gas Station [11}n Table Il, we also provide results on checking deadlock-
the Smoker [13], the Automatic Teller Machine (ATM) [g8]freedom for the dining philosopher algorithm. Contraryhe t
and the classical example of Producer/Consumer. Regard@pVve examples, the dining philosopher algorithm has accycl
the Gas Station example, we assume that every pump hasarplogy, which cannot be efficiently managed witi (this
customers. Hence, if there are 50 pumps in a Gas Statiéhthe only case for whiclylobal was faster tharF'p.
then we have 500 customers and the number of componentQur results have also been applied on a complex case
including the operator is thus 551. In the ATM examplestudy that directly comes from an industrial applicatiorori#
every ATM machine is associated to one user. Therefof@€cisely, we have been capable of checking safety and
if we have 10 machines, then the number of componeritgadliock-freedom properties on the modules in the funation
will be 22 (including the two components that describe tHevel of the DALA robot[5]. DALA is an autonomous robot
Bank). The computation times and memory usages for tiéth modules described in the BIP language running at the
application of the three methods on these case studies #ectional level. Every module is in a hierarchy of compesit
given in Table I. Regarding the legend of the tablegle COmMponents (see Appendix D for details).
is the “size” of examplesjocation denotes the total number All together the embedded code of DALA in the func-
of control locations;interaction is for the total number of tional level contains more than 500 000 lines of C code.
interactions. The computation time is given in minutes. Thas illustrated in Appendix D, the topology of the modules
timeout, i.e., “-” is one hour. The memory usage is given iand the description of the behaviors of the components are
Megabyte (MB). Our technique is always faster thdnbal. complex. This is beyond the scope of tools such as NuSMV
This means that we are also faster than tools such as NuSMIVSPIN. We first checked deadlock properties of individual
and SPIN that are known to be much slower th@obal on modules. Bothglobal and FP fails to check for deadlock-
these case studies[2, 3]. Ouincr technique is faster than freedom (Antenna is the only module that can be checked
FP except for the gas statidrand it always consumes lessby using global). However, by usinglncr, we can always
memory. generate the invariants and check the deadlock-freedom of

all the modules. Table Il shows the time consumption in

*D-Finder is also connected to the state-space exploratiohof the BIP o5 ting invariants for deadlock-freedom checking ofesev
platform, for finer analysis when the heuristic fails to praleadlock-freedom. . . .

2A more complex example for whicl'P is faster thaniner is proposed Modules by the incremental method; it also gives the number
in Appendix C. of states per module. In these modules we have successively

TABLE Il

DEADLOCK-FREEDOM CHECKING ONDALA BY Incr METHOD (2] S. Bens"_ﬂ.emv M. Bozga, T.-H. Nguyen, and J. Sifakis.

module component location interaction states time (mBjute Compositional verification for component-based systems
20 29
SICK 43 213 202 270 x 329 x 34 1:22 . .
Aspect 2% 160 117 917 523 0:39 and application. IPATVA pages 64-79, Seoul, 200_8. .
EELDEX gg ;gg ;g 2_34222;53“1;42 gég [3] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis.
o X X B . aye .

Battery 30 176 138 222 x 317 x5 026 D-Finder: A tool for compositional deadlock detection
Heating 26 149 116 2'7 x 314 x 145 0:17 ifi i
o P 1o 181 19322 x 30 g and verification. INCAV, volume 5643 ofLNCS pages

— 614—619. Springer, 2009.
detected (and corrected) two deadlocks within Antenna anfh] S. Bensalem, L. de Silva, M. Gallien, F. Ingrand, and

NDD, respectively. . R. Yan. “Rock solid” software: a verifiable and correct-
Aside from the deadlock-freedom requirement, some mod- y_construction controller for rover and spacecraft func-

ules also have safety property requirements such as dyusali tional levels. INISAIRAS 2010.
service can be triggered only after a certain service has be‘fS] S. Bensalem, M. Gallien, F. Ingrand, I. Kahloul, and
running successfully, i.e., only if the variable corresgiog T.-H. Nguyen. Toward a more dependable software

to this service is set to true). In checking the causality gichitecture for autonomous robotEEE Robotics and
requirement between different services, we need to compute aytomation Magazinel6(1):1-11, 2009.

invariants according to different causality requiremeint. 5] S Bensalem, A. Legay, T.-H. Nguyen, J. Sifakis, and

spired from the invariant preservation properties intiatiin R. Yan. Incremental invariant generation for composi-
Section Ill, we removed some tight synchronizations betwee tjgpal design. INTASE 2010.

some componentghat would not synchronize directly with 7] BIP _ incremental component-based con-
the components involved in the property and obtained a~ giyction of real-time systems.
module with looser synchronized interactions. As the irarar verimag.imag.fr~-async/bip.php.

of the module with looser synchronizations is preservechiy t [8] M. Chaudron, E. Eskenazi, A. Fioukov, and D. Ham-

one with tighter synchronizations, if a property is satisfie mer. A framework for formal component-based software
the former, then it is satisfied in the latter. Based on this, fa architecting. INOOPSLA pages 73-80, 2001.

we could obtain the satisfied causality property in 17 sespndgy A Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.

while it took 1003 seconds before using the preorder. A more = NyuSMV: a new symbolic model checkeBTTT 2:410—

detailed description of DALA and other properties verified 425. 2000.

with our Incr and invariant preservation methods can be fouqqo] E. M. Clarke, O. Grumberg, and D. A. Peledvodel

in [4]. checking The MIT Press, 1999.

[11] D. Heimbold and D. Luckham. Debugging Ada tasking
programs.IEEE Softw. 2(2):47-57, 1985.

] J-P.Queille and J.Sifakis. Specification and verifarat
of concurrent systems in CESAR. I8ymposium on

http://www-

VI. CONCLUSION

We present new incremental techniques for computing i (o
teraction invariants of composite systems defined in the BIP
framework. In addition, we propose sufficient conditionatth Programming volume 137 ofLNCS Springer, 1982.
guarantee invariant preservation when new interactioes 3] S. Patil. Limitations and Capabilities of, Dijkstra’s
added to the system. Our techniques have been implemente Semaphore Primitives for Coordination among Pro-
in the D-Finder toolset and have been applied to complex case cesses Cambridge, Mass.: MIT, Project MAC, Com-
studies that are beyond the scope of existing tools. putation Structures ’Group Mem(; 57 Feb 197’1

As we have seen in Section V, our new techniques and ’ ’ '
the ones in [2, 6] are complementary. As a future work, we
plan to set up a series of new experiments to give a deeper
comparison between these techniques. This should help the
user to select the technique to be used depending on the case
study. Other future works include to extend our contribmtio
to liveness properties and abstraction.

Acknowledgment. We are grateful to the reviewers for their
careful work and their valuable and insightful comments and
suggestions.

REFERENCES

[1] A. Basu, M. Bozga, and J. Sifakis. Modeling heteroge-
neous real-time components in BIP. %EFM '06 pages
3-12, Washington, DC, USA, 2006.

3The latter can be seen as an abstraction of the componentarevsome
services have been removed.

APPENDIXA We will show thatd;y < (01 + d2)y anddzy < (01 + d2)7,

PROOFS INSECTION |11 then the conclusion can be obtained from Proposition 2.

Proof for Proposition 2. B}ecause&l and 0, are interference-free, we hav@, +

We first introduce some conce 62)f = &1 + 7, theny — (61 + 62)f = v — (8] +57). As

pts_ ¥ 1 ¥ 2 ¥] ¥ 1 f2 f

Intuitively, invariants are the predicates that should et 7 ~ (91 +§§2) St we obtfam thaty —d; <7 —(6; +03)

in every state. Therefore, the relation between two sets #d7 — 91 +91 <7 _f(‘Sl +0;) + 01. Because), an?ég are

reachable states, which are obtained by applying resmtivlnterfere;\ce—freeig06-1 3 0 aj',"dV < 92, we havey—d7 < d.
two connectors over the same set of components, provideS&? — 91 +91 <7 — (01 +)+ 01+ 62. The same rule can

way to reason their invariant preservation relation. Wet fir@€ applied t@),y. Therefore, we have,y < (01 +d2) and

propose the formal definition on reachable states. 027 < (01 + d2)7, thusinv((61 + 62)v(B), Z1 A I2).
Definition 16. Given a component(B) with a set of states APPENDIXB

L, we definereach(f,v(B)) = {¢; € £ |Fa; € yANL 25 4} PROOFS INSECTION IV

the set of reachable states frofre £ by interactions ofy. Proof for Theorem 1. According to Definition 13, the con-

e . . straints are the conjunction of all the implications foreirstc-
The above definition provides a notation to record the set gf < of~. Consider a valuation such thaty(B)|(v) = true
reachable states from a stdtéhrough all possible interactions ' i invari '
9 P In order to prove that/ [is an invariant, assume that

in v(B). If there is no executable interaction frofnwe have ¢ . <o global stategli).:_tf“eln) there existsl; such that
thatreach(¢,v(B)) = {¢}. v

v(l;) = true. If from [; there is an interactiom such that
Lemma 1. Given two connectorsy, v2 over B, if 71 < Y2, l; € ‘a, then there exist$;- € a®, such thatv(l}) = true

we havereach(,v2(B)) C reach(f,y1(B)) for any¢ € £. by Definition 13. So any successor state(ff - - -, 1,,) by an
@ a an ___ interactiona satisfies\/,, ;) _,.,,. [-

Proof: Let / — (; — --- == {, be an execution proof for Theorem 2. (Sketch).|y(B)| can be written in the
sequence front € L in 73(B), wherea; € 2. Because gigjunctive normal form, that isy(B)| = \/,., m;, where
Y1 =< Y2, forkanyal-, we have a set of interactiohg € v; such m; is of the formm; = A, 15 A /\kemk# s~ According
thata; = Uj_, b;. From any state; in the sequence startediy Theorem 1, for any solutiom; of |7(B)f, we have that

from £ in v, (B), there exists a set ofinteractiol[y§:1 b; such T’,{? = Ve, 1y is an invariant ofy(B). Hence|y(B)r =
b b —_— —_— —
that¢; — --- = (;41. Therefore, we conclude thatach(¥, (Vyey mi)? = V,e,mP = AmP is the interaction invariant
v2(B)) C reach(t, v1(B)) for any(€ L. ® of 1(B).
This lemma shows that from the same state the set pfyof for Proposition 5.
reachable states under a tighter connector is always atsubs§ye start with the following lemma.
of reachable states under a looser connector. _
We are now ready to prove the proposition. Lemma 3. Consider two connectors;, v» over B, we have
Let reach(,v2(B)) be the set of reachable states from the T B — B A (B
path started frond € £ in v,(B). Becauseeach({,v2(B)) C |1 +22)(B)] = 1 (B)] A 2(B)]
reach(¢,v1(B)), forany?’ € reach(¢, v2(B)), ¢’ is reachable Proof: By Definition 13, we have|(v1 + 72)(B)| =

in y1(B). Asinv(71(B),I) is true, we have (). Sowe can A, ., . y[a(B)] = A, laB)] A A, la(B)] =
conclude thatnv(y2(B),Z) is true. |71 (B)| A |v2(B)|. u
Proof for Proposition 3. Becausey < v — ¢/, we havey < By Equation 1, the union of — (X7, 6;)/ andX_, d; is the
(y— 65) +6 = do7. result of the superposition of a set of incremefds}<i<y,
Proof for Proposition 4. over~. The proof can be concluded by applying Lemma 3.
We first have the following lemma. Proof for Proposition 6. In every Ss,, there exists a solution

mg; Without any variables in the positive form, which has

no BBC-invariant corresponding to. For any,k € I;,

there existsm;, such thatg, = m%. According to Proposi-
Proof: Since~y; and~, are interference-free, if; Ny, = tion 5, the BBC-solution of| (X7, 0;)v(B)| is A/, Ss, =

0, we havey; N 75 = and~2 N 71f =0. 1Ny #0, NioVier, Mk = Vioero,....knel, Nizo Mki-

.....

Lemma 2. Given two interference-free connectors 72, we
havey; Ny =0 andya Ny =0, and (1 +72) = +{ ++4.

for any a € ~1 N ., we know thata ¢ 7{ anda ¢ 75. « If an my; does not contain any common location vari-
Therefore,y; N 'yg =0 andy N 'y{ = () are still correct. ables, there exists solutiomg; containing only nega-
According to Definition 6, we havéy, + v2)f = 7§ + 5 — tions in Ss; such thati # j and (Aj_ou;z Mki A
(11 +72) = (f = (11 +12)) + (95 — (71 + 12)). Becausey, mo;)? = mb,, SO ¢x; is one of the BBC-invariants of
and~, are interference-freeyf — (y1 +72) =7f — 7 = f{ |(3710:)v(B)|.

and~5 — (71 4+ 72) = 74. So we havey; +72)f = 7{ +44. o Ifthere is a maximal setmy,,,...,mg,. }, Vi =1...7rA

[| ki; € 1;; such that all of them contain common location
We now prove the proposition. variables, and/\;;1 my,; = false, it is not a solution

TABLE IV 02T GerSips [
COMPARISON BETWEEN DIFFERENT INVARIANT COMPUTATION METHOS H0geT ToetStatu{ abor] i

[finisHTexe§ [STar] [codel ‘F executdd

[Start | Tcodel is_executéd Tinternal_starf] [internal_exe}
getStatus getstatus
ON THE UTOPAR CASE STUDY b 5 Codelis_exealieg
trigger 8] el send_final_report
Component information Time (minutes) Memory (MB) @ @ g a
scale location interaction] global FP Incr | global FP Incr Creport contro g g
100 UC, 400 CU 1503 41404 335 056 215 50 42 59 abort o o =
200 UC, 400 CU 2203 82404 8:05 145 413 56 42 59 e ﬁ i
300 UC, 400 CU 2303 123404 13:38 2:29 7112 67 42 59 '@ o @. B g et oo
400 UC, 400 CU 2903 164404 20:32 346 8:02 79 42 59 et 5| .
100 UC, 900 CU 2503 91904 17:52 2:44 9:56 64 66 50 i) s B g
200 UC, 900 CU 3203 182904 38:41 459 19:47 82 66 50 & =
300 UC, 900 CU 3903 273904 - 7118 31:29 - 66 50 ~ BT @ oree |8 ﬂ /o T memaLinanes
100 UC, 1600 CU 3903 162604 59:30 553 33:02 96 160 73 P A g N W i - "
200 UC, 1600 CU 4603 323604 - 1746 - - 160 - e - codel s execue
lsporowinRemn moniol ’W‘Ccnlvollev Activity
Control Service Service Service " 'c_‘)‘m‘ W‘W K K K Servie
Controller Controller Fig. 6. An Execution Service in DALA
Actiity Activiy map (Aspect), (3) navigating using the near diagram apgroac

(NDD), (4) managing the low level robot wheel controller
(RFLEX), (5) emulating the communication with an orbiter

InterfaceServer (Antenna), (6) providing power and energy for the robot (Bat
mer e tery), (7) heating the robot in a low temperature environmen

------------ (Heating) and (8) controlling the movement of two cameras

Scheduler | v ! Permanent i
| Permanent | ; Permanent ; (Platlne).

Execution Service |Execution Service

Execltionklask Exeeutionhiiasly As shown in Figure 5, a module in the functional level
Module of DALA can be regarded as a three-hierarchy composite
Fig. 5. Module structure in functional level component mainly with (1) Execution Tasks, each of which

of [(X70:)v(B)]. If Nj_ymy, # false, we have includes a Task Controller controls to trigger, block anapst

R o - a service and a Scheduler executes the activities of service
(Njzr 1) = Njmr Oy = Vit Ok in a cyclic manner, (2) Execution Services, each of which
APPENDIXC consists of a controller controls the validity of the parame

UTOPAR ters and the execution of its corresponding activity, and an

Utopar*, an automated transportation system, is one of tiRétivity executes the commands inside the service, (3)r@bnt
two main case studies of the European project COMBE;ST§ervices, each of which takes negligible time to execute and
]. Rougly speaking, the Utopar system is the compositidh responsible for setting and returning variable valud3, (
of three types of components that are: (1) autonomous vehiterface Server, which is responsible for receiving retgie
cles, called U-cars (UC), (2) a centralized Automatic Cointrfrom some external source, and then forwarding the requests
System, and (3) Calling Units (CU). The centralized Autd© the associated service, (5) Posters, which are produged b
matic Control System and the Calling Units have (almo##e corresponding module and can be read by other modules,
exclusively) discrete behavior. On the other hand, U-caes @nd (6) Lock, which is a semaphore that ensures the mutual
equipped with a local controller, responsible for handlihg exclusion between different Execution Tasks, Servicesrwhe
U-car sensors and performing various routing and drividganipulating Posters.
computations depending on users’ requests. The system i§ach Execution Task and Interface Server has a Timer to
deadlock-free if there always exists some U-car that c&antrol the period of its execution. Also there is a Timer for
respond a request from either a Calling Unit, the AutomatiBe posters of a module to control the freshness of the data in
Control System or a Customer inside the U-car. In this papéf€ posters.
we have analyzed a simplified version of Utopar by abstrgctin Observe that the topology of a module in DALA is more
from data exchanged between components as well as fréfnplex than those of the other benchmarks we considered.
continuous dynamics of the U-cars. In this version, each W-is well known that a good variable ordering will improve
car is modeled by a component havifigcontrol locations Performance greatly in the symbolic implementation. How-
and 6 integer variables. The Automatic Control System haver, the topology is so complex that we cannot always find a
3 control locations and integer variables. The Calling Units900d variable ordering for the integration of invariantstie
have 2 control locations and no variables. In Table 1V, on&cremental method. Second, the components inside a module
can see thaF'P is always faster thatncr on this case study. are more sophisticated than those in the benchmarks. Inerigu

APPENDIXD 6 we present a composite component for execution service
MODULES IN THE FUNCTIONAL LEVEL OF DALA RoBoT template for the modules in functional level. Usually one

There are eight modules described with the BIP languag®dule contains several services. And the size of Execution
that are running in DALA. Their functions are (1) collectinglask is proportional to the number of services, which rasult
data from the laser sensors (SICK), (2) generating an destai more common location variables.

4A succinct description of the Utopar case study can be fouhd a
http://www.combest.eu/home/?link=Application2.

