
HAL Id: hal-00557802
https://hal.science/hal-00557802

Submitted on 20 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental Component-based Construction and
Verification using Invariants

Saddek Bensalem, Marius Bozga, Axel Legay, Thanh-Hung Nguyen, Joseph
Sifakis, Rongjie Yan

To cite this version:
Saddek Bensalem, Marius Bozga, Axel Legay, Thanh-Hung Nguyen, Joseph Sifakis, et al.. Incremental
Component-based Construction and Verification using Invariants. Formal Methods in Computer Aided
Design, FMCAD 2010, Oct 2010, Lugano, Switzerland. pp.257-266. �hal-00557802�

https://hal.science/hal-00557802
https://hal.archives-ouvertes.fr

Incremental Component-based Construction and
Verification using Invariants

Saddek Bensalem1 Marius Bozga1 Axel Legay2 Thanh-Hung Nguyen1 Joseph Sifakis1 Rongjie Yan1
1 Verimag Laboratory, Université Joseph Fourier Grenoble,CNRS

2INRIA/IRISA, Rennes

Abstract—We propose invariant-based techniques for the effi-
cient verification of safety and deadlock properties of concurrent
systems. We assume that components and component interactions
are described within the BIP framework, a tool for component-
based design. We build on a compositional methodology in which
the invariant is obtained by combining the invariants of the
individual components with an interaction invariant that t akes
concurrency and interaction between components into account.
In this paper, we propose new efficient techniques for computing
interaction invariants. This is achieved in several steps.First, we
propose a formalization of incremental component-based design.
Then we suggest sufficient conditions that ensure the preservation
of invariants through the introduction of new interactions. For
cases in which these conditions are not satisfied, we propose
methods for generation of new invariants in an incremental
manner. The reuse of existing invariants reduces considerably
the verification effort. Our techniques have been implemented
in the D-Finder toolset. Among the experiments conducted, we
have been capable of verifying properties and deadlock-freedom
of DALA, an autonomous robot whose behaviors in the functional
level are described with500000 lines of C Code. This experiment,
which is conducted with industrial partners, is far beyond the
scope of existing academic tools such as NuSMV or SPIN.

I. I NTRODUCTION

Model Checking [10, 12] of concurrent systems is a chal-
lenging problem. Indeed, concurrency often requires com-
puting the product of the individual systems by using both
interleaving and synchronization. In general, the size of this
structure is prohibitive and cannot be handled without manual
interventions. In a series of recent works, it has been advocated
that compositional verification techniquescould be used to
cope with state explosion in concurrent systems. Component-
based design techniques confer numerous advantages, in par-
ticular, through reuse of existing components. A key issue
is the existence of composition frameworks ensuring the
correctness of composite components. We need frameworks
allowing us not only reuse of components but also reuse of
their properties for establishing global properties of composite
components from properties of their constituent components.
This should help cope with the complexity of global mono-
lithic verification techniques.

Compositionality allows us to infer global properties of
complex systems from properties of their components. The
idea of compositional verification techniques is to apply
divide-and-conquer approaches to infer global propertiesof
complex systems from properties of their components. They

are used to cope with state explosion in concurrent systems.
Nonetheless, we also should consider the behavior and prop-
erties resulted from mutually interacting components. A com-
positional verification method based on invariant computation
is presented in [2, 3]. This approach is based on the following
rule:

{Bi < Φi >}i, Ψ ∈ II(‖γ{Bi}i, {Φi}i), (
∧

i Φi) ∧ Ψ ⇒ Φ
‖γ{Bi}i < Φ >

The rule allows to prove invariance of propertyΦ for
systems obtained by using an n-ary composition operation
|| parameterized by a set of interactionsγ. It uses global
invariants that are the conjunction of individual invariants
Φi of individual componentsBi and aninteraction invariant
Ψ. The latter expresses constraints on the global state space
induced by interactions between components. In [2], we have
shown thatΨ can be computed automatically from abstractions
of the system to be verified. These are the composition of
finite state abstractionsBα

i of the componentsBi with respect
to their invariantsΦi. The approach has been implemented
in the D-Finder toolset [3] and applied to check deadlock-
freedom on several case studies described in the BIP (Be-
havior, Interaction, Priority) [1] language. The results of these
experiments show that D-Finder is exponentially faster than
well-established tools such as NuSMV [9].

Incremental system design methodologies often work by
adding new interactions to existing sets of components. Each
time an interaction is added, one may be interested to verify
whether the resulting system satisfies some given property.
Indeed, it is important to report an error as soon as it appears.
However, each verification step may be time consuming,
which means that intermediary verification steps are generally
avoided. The situation could be improved if the result of the
verification process could be reused when new interactions
are added. Existing techniques, including the one in [2], do
not focus on such aspects. In a very recent work [6], we
have proposed a new fixed point based technique that takes
incremental design into account. This technique is generally
faster than the one in [2] for systems with an acyclic topology.
For systems with a cyclic topology, the situation may however
be reversed. There are also many case studies that are beyond
the scope of these techniques.

In this paper, we continue the quest for efficient incremental

p1

p1

p2

p2

q1

q1

q2

q2

l1

l2

l3

l4

B1 B2

B

τ1 τ2 τ3 τ4

Fig. 1. A simple example

techniques for computing invariants of concurrent systems. We
present a detailed methodology for incremental construction
and verification of component-based systems. This is achieved
in several steps. First, we propose a formalization of incre-
mental component-based design. Then we suggest sufficient
conditions that ensure the preservation of invariants through
the introduction of new interactions. For cases in which these
conditions are not satisfied, we propose methods for generation
of new invariants in an incremental manner. The reuse of
existing invariants reduces considerably the verificationeffort.
Contrary to the technique in [6], our technique, which relies on
a relation between behaviors of components and interactions,
turns out to be efficient for both cyclic and acyclic topologies.

Our techniques have been implemented as extensions of
the D-Finder toolset [3] and applied on several case studies.
Our experiments show that our new methodology is generally
much faster than the ones proposed in [2, 6]. In particular, we
have been capable of verifying deadlock-freedom and safety
properties of DALA, an autonomous robot whose behaviors in
the functional level are described with500000 lines of C Code.
This experiment, which is conducted with industrial partners,
is far beyond the scope of [2, 6] and of existing academic
tools such as NuSMV or SPIN.

Structure of the paper. In section II, we recap the concepts
that will be used through the paper as well as the incremental
methodology introduced in [6]. Section III discusses suffi-
cient conditions for invariant preservation while SectionIV
presents our incremental construction for invariants. Section
V discusses the experiments. Finally, Section VI concludes
the paper. Due to space limitation, some proofs and model
descriptions are given in the appendix.

II. PRELIMINARIES

In this section, we present concepts and definitions that
will be used through the rest of the paper. We start with the
concepts ofcomponents, parallel composition of components,
systems, and invariants. In the second part of the section,
we will recap a very recent methodology [6] we proposed for
incremental designof composite systems.

A. Components, Interactions, and Invariants
In the paper, we will be working with a simplified model

for component-based design. Roughly speaking, an atomic
component is nothing more than a transition system whose
transitions’ labels are calledports. These ports are used to
synchronize with other components. Formally, we have the
following definition.

Definition 1 (Atomic Component). An atomic component is
a transition systemB = (L, P, T), where:

• L = {l1, l2, . . . , lk} is a set of locations,
• P is a set of ports, and
• T ⊆ L × P × L is a set of transitions.

Givenτ = (l, p, l′) ∈ T , l andl′ are thesourceanddestination
locations, respectively. In the rest of the paper, we use•τ and
τ• to compute the source and destination ofτ , respectively.

Example 1. Figure 1 presents two atomic components.
The ports of componentB1 are p1 and q1. B1 has two
locations: l1 and l2 and two transitions:τ1 = (l1, p1, l2) and
τ2 = (l2, q1, l1).

We are now ready to define parallel composition between
atomic components. In the incremental design setting, the
parallel composition operation allows to build bigger com-
ponents starting fromatomic components. Any composition
operation requires to define a communication mode between
components. In our context, components communicate via
interactions, i.e., by synchronization on ports. Formally, we
have the following definition.

Definition 2 (Interactions). Given a set ofn components
B1, B2, . . . , Bn with Bi = (Li, Pi, Ti), an interactiona is a
set of ports, i.e., a subset of

⋃n
i=1 Pi, such that∀i = 1, . . . , n.

|a ∩ Pi| ≤ 1.

By definition, each interaction has at most one port per
component. In the figures, we will represent interactions by
link between ports. As an example, the set{p1, p2} is an
interaction between ComponentsB1 andB2 of Figure 1. This
interaction describes a synchronization between Components
B1 and B2 by Portsp1 and p2. Another interaction is given
by the set{q1, q2}. The idea being that a parallel composition
is entirely defined by a set of interactions, which we call a
connector. As an example the connector forB1 andB2 is the
set{{p1, p2}, {q1, q2}}. In the rest of the paper, we simplify
the notations and writep1p2 . . . pk instead of{p1, . . . , pk}.
We also writea1 + . . . + am for the connector{a1, . . . , am}.
As an example, notation for the connector{{p1, p2}, {q1, q2}}
is p1 p2 + q1 q2.

We now propose our definition for parallel composition. In
what follows, we useI for a set of integers.

Definition 3 (Parallel Composition). Given n atomic com-
ponentsBi = (Li, Pi, Ti) and a connectorγ, we define the
parallel compositionB = γ(B1, . . . , Bn) as the transition
system(L, γ, T), where:

• L = L1 × L2 × . . . × Ln is the set ofglobal locations,
• γ is a set of interactions, and
• T ⊆ L × γ × L contains all transitions τ =

((l1, . . . , ln), a, (l′1, . . . , l
′
n)) obtained by synchronization

of sets of transitions{τi = (li, pi, l
′
i) ∈ Ti}i∈I such that

{pi}i∈I = a ∈ γ and l′j = lj if j 6∈ I.

The idea is that components communicate by synchronization
with respect to interactions. Given an interactiona, only those

components that are involved ina can make a step. This is
ensured by following a transition labelled by the corresponding
port involved ina. If a component does not participate to the
interaction, then it has to remain in the same state. In the
rest of the paper, a component that is obtained by composing
several components will be called acomposite component.
Consider the example given in Figure 1, we have a composite
componentγ(B1, B2), whereγ = p1 p2 + q1 q2. Observe
that the componentγ⊥(B1, . . . , Bn), which is obtained by
applying the connectorγ⊥ =

∑n
i=1(

∑
pj∈Pi

pj), is the
transition system obtained by interleaving the transitions of
atomic components. Observe also that the parallel composition
γ(B1, . . . , Bn) of B1, . . . , Bn can be seen as a1-safe Petri
net (the number of tokens in all places is at most one) whose
set of places is given byL =

⋃n
i=1 Li and whose transitions

relation is given byT . In the rest of the paper,L will be called
the set of locations ofB, while L is the set ofglobal states.
We now define the concept of invariants, which can be used
to verify properties of (parallel composition of) components.
We first propose the definition ofsystemthat is a component
with an initial set of states.

Definition 4 (System). A systemS is a pair 〈B, Init〉 where
B is a component andInit is a state predicate characterizing
the initial states ofB.

In a similar way, we distinguish invariants of a component
from those of a system such that the invariants of a system
S = 〈B, Init〉 can be obtained from those ofB according
to the constraintInit. Therefore we define invariants for a
component and for a system separately.

Definition 5 (Invariants). Given a componentB = (L, P, T),
a predicateI onL is an invariant ofB, denoted byinv(B, I),
if for any location l ∈ L and any portp ∈ P , I(l) and
l

p
−→ l′ ∈ T imply I(l′), whereI(l) means thatl satisfiesI.

For a systemS = 〈B, Init〉, I is an invariant ofS, denoted
by inv(S, I), if it is an invariant ofB and if Init ⇒ I.

Clearly, if I1, I2 are invariants ofB (respectivelyS) then
I1 ∧ I2 andI1 ∨ I2 are also invariants ofB (respectivelyS).

Let γ(B1, . . . , Bn) be the composition ofn components
with Bi = (Li, Pi, Ti) for i ∈ 1 . . . n. In the paper,
an invariant onBi is called acomponent invariantand an
invariant onγ(B1, . . . , Bn) is called aninteraction invariant.
To simplify the notations, we will assume that interaction
invariants are predicates on

⋃n
i=1 Li.

B. Incremental Design
In component-based design, the construction of a composite

system is both step-wise and hierarchical. This means that
a system is obtained from a set of atomic components by
successive additions of new interactions also calledincrements.
In a very recent work [6], we have proposed a methodology
to add new interactions to a composite component without
breaking the synchronization. The techniques we will propose
to compute and reuse invariants intensively build on this
methodology, which is described hereafter.

First, when building a composite system in a bottom-up
manner, it is essential that some already enforced synchroniza-
tions are not relaxed when increments are added. To guarantee
this property, we propose the notion offorbidden interactions.

Definition 6 (Closure and Forbidden Interactions). Let γ be
a connector.

• The closureγc of γ, is the set of the non empty in-
teractions contained in some interaction ofγ. That is
γc = {a 6= ∅ | ∃b ∈ γ. a ⊆ b}.

• The forbidden interactionsγf of γ is the set of the
interactions strictly contained in all the interactions of
γ. That isγf = γc − γ.

It is easy to see that for two connectorsγ1 and γ2, we have
(γ1 + γ2)

c = γc
1 + γc

2 and(γ1 + γ2)
f = (γ1 + γ2)

c − γ1 − γ2.
In our theory, a connector describes a set of interactions

and, by default, also those interactions in where only one
component can make progress. This assumption allows us to
define new increments in terms of existing interactions.

Definition 7 (Increments). Consider a connectorγ over
B and let δ ⊆ 2γ be a set of interactions. We sayδ is
an increment overγ if for any interactiona ∈ δ we have
interactionsb1, . . . , bn ∈ γ such that

⋃n
i=1 bi = a.

In practice, one has to make sure that existing interactions
defined by γ will not break the synchronizations that are
enforced by the incrementδ. For doing so, we remove from
the original connectorγ all the interactions that are forbidden
by δ. This is done with the operation ofLayering, which
describes how an increment can be added to an existing set
of interactions without breaking synchronization enforced by
the increment. Formally, we have the following definition.

Definition 8 (Layering). Given a connectorγ and an
incrementδ over γ, the new set of interactions obtained by
combining δ and γ, also called layering, is given by the
following setδγ = (γ − δf) + δ the incremental construction
by layering, that is, the incremental modification ofγ by δ.

The above definition describes one-layer incremental con-
struction. By successive applications of the rule, we can
construct a system with multiple layers. Besides the fusion
of interactions, incremental construction can also be obtained
by first combining the increments and then apply the result
to the existing system. This process is calledSuperposition.
Formally, we have the following definition.

Definition 9 (Superposition). Given two incrementsδ1, δ2

over a connectorγ, the operation of superposition betweenδ1

and δ2 is defined byδ1 + δ2.

Superposition can be seen as a composition between incre-
ments. If we combine the superposition of increments with
the layering proposed in Definition 8, then we obtain an
incremental construction from a set of increments. Formally,
we have the following proposition.

Proposition 1. Let γ be a connector overB, the incremental

construction by the superposition ofn increments{δi}1≤i≤n

is given by

(

n∑

i=1

δi)γ = (γ − (

n∑

i=1

δi)
f) +

n∑

i=1

δi (1)

The above proposition provides a way to transform incre-
mental construction by a set of increments into the separate
constituents, whereγ − (Σn

i=1δi)
f is the set of interactions

that are allowed during the incremental construction process.

III. I NVARIANT PRESERVATION IN INCREMENTAL DESIGN

In Section II-B, we have presented a methodology for the
incremental design of composite systems. In this section, we
study the concept ofinvariant preservation. More precisely, we
propose sufficient conditions to guarantee that already satisfied
invariants are not violated when new interactions are addedto
the design.

We start by introducing thelooser synchronization preorder
on connectors, which we will use to characterize invariant
preservation. As we have seen, interactions characterize the
behavior of a composite component. We observe that if two
interactions do not contain the same port, the execution of one
interaction will not block the execution of the other interaction.
Formally, we have the following definition.

Definition 10 (Conflict-free Interactions). Given a connector
γ, let a1, a2 ∈ γ, if a1 ∩ a2 = ∅, we say that there is no
conflict betweena1 anda2. If there is no conflict between any
interactions ofγ, we say thatγ is conflict-free.

We now propose a preorder relation that allows to guarantee
the absence of conflicts when new interactions are added.
Formally, we have the following definition.

Definition 11 (Looser Synchronization Preorder). We define
the looser synchronization preorder4⊆ 22P

× 22P

. For two
connectorsγ1, γ2, γ1 4 γ2 if for any interactiona ∈ γ2, there
exist interactionsb1, . . . , bn ∈ γ1, such thata =

⋃n
i=1 bi and

there is no conflict between anybi andbj , where1 ≤ i, j ≤ n

and i 6= j. We simply say thatγ1 is looser thanγ2.

The above definition requires that the stronger synchronization
should be obtained by the fusion of conflict-free interactions.
The reason is that the execution of interactions may be
disturbed by two conflict interactions, i.e., the executionof
one interaction could block the transitions issued from the
other interaction. However, if we fuse them together, it means
that the transitions of both interactions can be executed, which
violates the constraints of the previous behavior. It is easy to
see that ifγ1, γ2, γ3, γ4 are connectors such thatγ1 4 γ2,
andγ3 4 γ4, then we haveγ1 + γ3 4 γ2 + γ4.

We now propose the following proposition which establishes
a link between the looser synchronization preorder and invari-
ant preservation.

Proposition 2. Let γ1, γ2 be two connectors overB. If
γ1 4 γ2, we haveinv(γ1(B), I) ⇒ inv(γ2(B), I).

The above proposition, which will be used in the incremental
design, simply says that if an invariant is satisfied, then it
will remain when combinations of conflict-free interactions
are added (following our incremental methodology) to the
connector. This is not surprising as the tighter connector can
only restrict the behaviors of the composite system.

We now switch to the more interesting problem of providing
sufficient conditions to guarantee that invariants are preserved
by the incremental construction.

Proposition 3. Let γ be a connector overB and δ be an
increment ofγ such thatγ 4 δ, then we haveγ 4 δγ.

The above proposition, together with Proposition 2, says that
the addition of an increment preserves the invariant if the
initial connector is looser than the increment.

We continue our study and discuss the invariant preserva-
tion between the components obtained from superposition of
increments and separately applying increments over the same
set of components. We use the following definition.

Definition 12 (Interference-free Connectors). Given two
connectorsγ1, γ2, for any a1 ∈ γ1, a2 ∈ γ2, if either a1

and a2 are conflict-free ora1 = a2, we say thatγ1 and γ2

are interference-free.

This definition considers a relation between two connec-
tors. We observe that two interference-free connectors will
not break or block the synchronizations specified by each
other. Though we require that the interactions betweenγ1

and γ2 are conflict-free,γ1 or γ2 respectively can contain
conflict interactions. For example, consider two connectors
γ1 = p1 p2 + p2 p3, γ2 = p4 p5. γ1 is not conflict-free,
but γ1 andγ2 are interference-free.

We now present the main result of the section.

Proposition 4. Consider two incrementsδ1, δ2 over γ such
that γ 4 δ1 and γ 4 δ2, if δ1 and δ2 are interference-free,
and inv(δ1γ(B), I1), inv(δ2γ(B), I2), we haveinv((δ1 +
δ2)γ(B), I1 ∧ I2).

The above proposition considers a set of increments{δi}1≤i≤n

over γ that are interference-free. The proposition says that
if for any δi the separate application of increments over
componentδiγ(B) preserves the original invariants ofγ(B),
then the system obtained from considering the superposition of
increments overγ preserves the conjunction of the invariants
of individual increments.

We now briefly study the relation between the looser
synchronization preorder andproperty preservation. Figure 2
shows the three ingredients of the BIP language, that are (1)
priorities, which we will not use here, (2) interactions, and (3)
behaviors of components. We shall see that the looser synchro-
nization preorder preserves invariants (Proposition 4). This
means that the preorder preserves the so-called reachability
properties. On the other hand, the preorder does not preserve
deadlocks. Indeed, adding new interactions may lead to the
addition of new deadlock conditions. Given two connectors
γ1 andγ2 over componentB such thatγ2 is tighter thanγ1,

Behaviors

Interactions

invariant preservation

deadlock−free preservation

Priorities

4

γ

B γ(B)

Fig. 2. Invariant preservation for looser synchronizationrelation

i.e., γ1 4 γ2, we can conclude that ifγ2(B) is deadlock-free,
thenγ1(B) is deadlock-free. However, we can still reuse the
invariant of γ1(B) as an over-approximation of the one of
γ2(B).

Discussion.Though we can reuse invariants to save com-
putation time, the invariants of the system with a looser
connector may be too weak with respect to a new system
obtained with a tighter connector. Consider the example given
in Figure 1 and letγ = p1 + p2 + q1 + q2, δ1 = p1 p2,
andδ2 = q1 q2. By using the technique presented in the next
section, we shall see that the invariant forδ1γ(B) andδ2γ(B)
is (l1∨ l2)∧(l3∨ l4).By applying Proposition 4, we obtain that
this invariant is preserved for(δ1 + δ2)γ(B). This invariant is
weaker than the invariant(l1∨l2)∧(l3∨l4)∧(l1∨l4)∧(l2∨l3)
that is directly computed on(δ1 + δ2)γ(B). To overcome the
above problem, we will now propose an approach that can be
used to compute invariants in an incremental manner.

IV. EFFICIENT INCREMENTAL COMPUTATION OF

INVARIANTS

In Section II-B, we have proposed a methodology to build
a composite system by successive addition of increments. We
now propose a methodology that allows to reuse existing
interaction invariants when new interactions are added to the
system. The section is divided in two subsections. In the
first subsection, we recap the concept ofBoolean Behavioral
Constraints[2, 6], which can be used to characterize inter-
action invariants. In the second subsection, we propose our
incremental methodology.

A. Boolean Behavioral Constraints (BBCs)
In [2], we have presented a verification method for

component-based systems. The method uses a heuristic to
symbolically compute invariants of a composite component.
These invariants capture the interactions between components,
which are the cause of global deadlocks. For this, it is
sufficient to find an invariant that does not contain deadlock
states. In this section, we improve the presentation of the result
of [2] and prepare them for the incremental version that we
will present in the next subsection.

Interactions describe the communication between different
components, and transitions are the internal behavior of com-
ponents. Here we unify these two types of behavioral descrip-
tion by introducingBoolean Behavioral Constraints(BBCs).
We takeaτ = {{τi}i∈I | (∀i.τi ∈ Ti)∧ ({port(τi)}i∈I = a)}.

That is,aτ consists of sets of component transitions involved
in interaction a. As an example, consider the components
given in Figure 1. Givenγ = p1 p2 + q1 q2, we have
(p1 p2)τ = {{τ1, τ3}}, and(q1 q2)τ = {{τ2, τ4}}.

Locations of components will be viewed as Boolean vari-
ables. We useBool[L] to denote the free Boolean algebra
generated by the set of locationsL. We also extend the notation
•τ , τ• to interactions, that is•a = {•τ |τ ∈ Ti∧port(τ) ∈ a},
anda• = {τ• |τ ∈ Ti ∧ port(τ) ∈ a} .

Definition 13 (Boolean Behavioral Constraints (BBCs)).
Let γ be a connector over a tuple of componentsB =
(B1, · · · , Bn) with Bi = (Li, Pi, Ti) and L =

⋃n
i=1 Li. The

Boolean behavioral constraints for componentγ(B) are given
by the function| · | : γ(B) → Bool[L] such that

|γ(B)| =
∧

a∈γ

|a(B)|,

|a(B)| =
∧

{τi}i∈I∈aτ

(
∧

l∈{•τi}

(l ⇒
∨

l′∈{τ•
i
}

l′))

If γ = ∅, then |γ(B)| = true, which means that no
interactions between the components ofB will be considered.

Roughly speaking, one implicationl ⇒
∨

l′∈{τ•
i
} l′ in

|γ(B)| describes a constraint onl that is restricted by an
interaction ofγ issued froml.

In what follows, we usēl for the complement ofl, i.e.,¬l.

Example 2. Consider the components in Figure 1. Consider
also the following connectorγ = p1 + p2 + q1 + q2. Two
increments overγ are δ1 = p1 p2 and δ2 = q1 q2. According
to Definition 8, we haveδ1γ = p1 p2 + q1 + q2 when we
only consider incrementδ1 over γ. For δ1γ(B), the BBC
|p1 p2(B)|, |q1(B)| and |q2(B)| are respectively given by:

|p1p2(B)| = (l1 ⇒ l2 ∨ l4) ∧ (l3 ⇒ l2 ∨ l4),
|q1(B)| = (l2 ⇒ l1), |q2(B)| = (l4 ⇒ l3)

The BBC forδ1γ(B) is |δ1γ(B)| = |p1p2(B)| ∧ |q1(B)| ∧
|q2(B)| = (l1 ⇒ l2 ∧ l4) ∧ (l3 ⇒ l2 ∧ l4) ∧ (l2 ⇒ l1) ∧ (l4 ⇒
l3) = (l̄1 ∧ l̄2 ∧ l̄3 ∧ l̄4) ∨ (l̄4 ∧ l1 ∧ l2) ∨ (l̄2 ∧ l3 ∧ l4) ∨ (l1 ∧
l2 ∧ l3) ∨ (l1 ∧ l3 ∧ l4).

When we consider two increments together, we have(δ1 +
δ2)γ(B) = p1 p2 + q1 q2, according to Definition 8 and 9.
Because the BBC for interactionq1 q2 over B is (l2 ⇒ l1 ∨
l3)∧ (l4 ⇒ l1∨ l3), we obtain that the BBC for(δ1 + δ2)γ(B)
is |(δ1 + δ2)γ(B)| = |p1p2(B)| ∧ |q1q2(B)| = (l1 ⇒ l2 ∨
l4) ∧ (l2 ⇒ l1 ∨ l3) ∧ (l3 ⇒ l2 ∨ l4) ∧ (l4 ⇒ l1 ∨ l3) =
(l̄1 ∧ l̄2 ∧ l̄3 ∧ l̄4) ∨ (l1 ∧ l2) ∨ (l2 ∧ l3) ∨ (l1 ∧ l4) ∨ (l3 ∧ l4).

Example 2 shows that any BBC|γ(B)| can be rewritten
into a disjunctive normal form (DNF), where every conjunctive
form is called amonomial. Any satisfiable monomial of|γ(B)|
is a solution of|γ(B)|. In fact, the enumeration of the clause
of any monomial corresponds to an interaction invariant.

Theorem 1. Let γ be a connector over a set of components
B = (B1, · · · , Bn) with Bi = (Li, Pi, Ti) and L =

⋃n
i=1 Li,

and v : L → {true, false} be a Boolean valuation different
from false. Ifv is a solution of|γ(B)|, i.e., |γ(B)|(v) = true,
then

∨
v(l)=true l is an invariant ofγ(B).

The above theorem gives a methodology to compute interac-
tion invariants ofγ(B) directly from the solutions of|γ(B)|.
In the rest of the paper, we will often use the termBBC-
invariant to refer to the invariant that corresponds to a single
solution of the BBC.

Since locations are viewed as Boolean variables, a location
in a BBC is either a variable or the negation of a variable.
As an example,l is a positive variable and¬l is a negative
variable. However, as observed in Theorem 1, invariants are
derived from positive variables of the solution of|γ(B)|. This
suggests that all the negations should be removed. In general,
due to incremental design and implementation (see Proposition
6 and Section V), these valuations can be removed gradually.
We now propose a general mapping on removing variables
with negations that do not belong to a given set of variables.

Definition 14 (Positive Mapping). Given two sets of
variablesL and L′ such thatL′ ⊆ L, we define a mapping
p(L′) over a disjunctive normal form formula that removes
all the variables not inL′ and with negations from the
formula, such that

(
∧

li∈L

li ∧
∧

lj∈L′

l̄j ∧
∧

lk∈L−L′

l̄k)p(L′) =
∧

li∈L

li ∧
∧

lj∈L′

l̄j

(f1 ∨ f2)
p(L′) = f

p(L′)
1 ∨ f

p(L′)
2

wheref1 and f2 are in disjunctive normal form.

If L′ is empty, then the positive mapping will remove all the
negations from a DNF formulaf , which we will denote by
fp. Notice that(

∧
i∈I l̄i)

p = false.
We are now ready to propose an interaction invariant that

takes all the solutions of the BBCs into account. We first
introduce the notatioñf that stands for the dual off , by
replacing the AND operators with ORs (and vice versa) and
the constant0 with 1 (and vice versa). As we have seen, BBCs
can be rewritten as a disjunction of monomials. By dualizing
a monomial, one can obtain an interaction invariant. If one
wants the strongest invariant that takes all the solution into
account, one simply has to dualize the BBC. This is stated
with the following theorem.

Theorem 2. For any connectorγ applied to a tuple of
componentsB = (B1, · · · , Bn), the interaction invariant of
γ(B) can be obtained as the dual of|γ(B)|p, denoted by
˜|γ(B)|p.

Example 3. We consider the components, connectors, and
BBCs introduced in Example 2. The positive mapping removes
variables with negations from|δ1γ(B)| and |(δ1 + δ2)γ(B)|.

We obtain that ˜|δ1γ(B)|p = (l1 ∨ l2) ∧ (l3 ∨ l4), and
˜|(δ1 + δ2)γ(B)|p = (l1∨l2)∧(l3∨l4)∧(l1∨l4)∧(l2∨l3). If we

specifyInit = l1∧l3, every invariant of system〈δ1γ(B), Init〉
and 〈(δ1 + δ2)γ(B), Init〉 should contain eitherl1 or l3.
Therefore(l1 ∨ l2) ∧ (l3 ∨ l4) is the interaction invariant of
〈δ1γ(B), Init〉, and (l1 ∨ l2) ∧ (l3 ∨ l4) ∧ (l1 ∨ l4) ∧ (l2 ∨ l3)
is the interaction invariant of〈(δ1 + δ2)γ(B), Init〉.

p1

p1 p2

p2

q1

q1

q2

q2

p3

p3

q3

q3

p4

p4

q4

q4

l0

l1 l2

l3

l4

l5

l6

Fig. 3. Incremental construction example

B. Incremental Computation of BBCs
In the previous section, we have shown that interaction

invariants can be computed from the solutions of Boolean
Behavioral Constraints. In this section, we show how to reuse
existing invariants when new increments are added to the
system. We first give a decomposition form for BBC and then
show how this decomposition can be used to save computation
time.

Proposition 5. Let γ be a connector overB, the Boolean
behavioral constraint for the composite component obtained
by superposition ofn increments{δi}1≤i≤n can be written as

|(
n∑

i=1

δi)γ(B)| = |(γ − (

n∑

i=1

δi)
f)(B)| ∧

n∧

i=1

|δi(B)| (2)

Proposition 5 provides a way to decompose the computation
of BBCs with respect to increments. The decomposition is
based on the fact that different increments describe the interac-
tions between different components. To simplify the notation,
γ − (Σn

i=1δi)
f is represented byδ0. We have the following

example.

Example 4. [Incremental BBC computation] In the example
of Figure 3, letγ = p1 + p2 + p3 + p4 + q1 + q2 + q3 + q4.
Two increments overγ are δ1 = p1 p3 + q1 q3 and δ2 =
p2 p4+q2 q4. The new connector obtained by applyingδ1 and
δ2 to γ is given by(δ1 + δ2)γ = p1 p3 + q1 q3 +p2 p4 + q2 q4.
The BBC|δ1(B)| and |δ2(B)| are respectively given by:

|δ1(B)| = (l0 ⇒ l1 ∨ l4) ∧ (l1 ⇒ l0 ∨ l3)∧
(l3 ⇒ l1 ∨ l4) ∧ (l4 ⇒ l0 ∨ l3),

|δ2(B)| = (l0 ⇒ l2 ∨ l6) ∧ (l2 ⇒ l0 ∨ l5)∧
(l5 ⇒ l2 ∨ l6) ∧ (l6 ⇒ l0 ∨ l5)

Sinceγ−(δ1+δ2)
f = ∅, we have|(δ1+δ2)γ(B)| = |δ1(B)|∧

|δ2(B)|.

We now switch to the problem of computing invariants
while taking incremental design into account. We propose the
following definition that will help in the process of reusing
existing invariants.

Definition 15 (Common Location VariablesLc). The set of
common location variables of a set of connectors{γi}1≤i≤n is
defined byLc =

⋃
i,j∈[1,n]∧i6=j support(γi) ∩ support(γj),

wheresupport(γ) =
⋃

a∈γ
•a∪a•, the set of locations involved

in some interactiona of γ.

Our incremental method assumes that an invariant has
already been computed for a set of interactions (We useIδ

to denote the BBC-invariant of|δ(B)|). This information is
exploited to improve the efficiency. The idea is as follows. Ac-
cording to Equation 1, the superposition of a set of increments
{δi}1≤i≤n over a connectorγ can be regarded as separately
applying increments over theirs constituents. We propose the
following proposition, which builds on Equation 2.

Proposition 6. Consider a composite componentB. Letγ be
a connector forB and assume a set of increments{δi}1≤i≤n

over γ(B). Let δ0 = γ − (
∑n

i=1 δi)
f , Iδi

=
∧

k∈Ii
φk,

for i = 0, . . . , n, be the BBC-invariants for each|δi(B)|,
Sδi

=
∨

k∈Ii
mk, for i = 0, . . . , n, be the corresponding BBC-

solutions, and let

• Lφ be the set of location variables in invariantφ,
• Lc be the common location variables between

{δ0, δ1, . . . , δn}.

Then the interaction invariant of(Σn
i=1δi)γ(B) is obtained as

follows:

I =




n∧

i=0

∧

k∈Ii∧

Lc∩Lφk
=∅

φk


 ∧


 ∧

(ki1,...,kir)∈D

r∨

j=1

φkij




where
D = {(ki1, . . . , kir)| (∀j = 1 . . . r∧kij ∈ Iij)∧(Lφkij

∩Lc 6=

∅) ∧ (
∧r

j=1 mkij
6= false) ∧ ((ki1, . . . , kir) is maximal)}.

The proposition simply says that one can take the conjunctions
of BBC-invariants that do not share common variables, while
one has to take the disjunction of the remaining invariants.
This is to guarantee that common location variables will not
change the satisfiability of the formulae. Observe that each
non common variable occurs only in the solutions of one
BBC. This allows deleting the non common variables with
negations separately by using the positive mapping of common
variables in every BBC-solutions, which reduces complexity
of computation significantly.

Example 5. [Incremental invariant computation] In Example
4, we have computed the BBCs for the two increments. Here
we show how to compute the invariants from BBC-invariants
of the increments. By Definition 15, we obtain thatLc = {l0}.
Let Sδ1

, Sδ2
be the BBC-solutions for|δ1(B)| and |δ2(B)|

respectively, andIδ1
, Iδ2

be their BBC-invariants, we have:
Sδ1

= (l̄0 ∧ l̄1 ∧ l̄3 ∧ l̄4)∨ (l0 ∧ l1)∨ (l1 ∧ l3)∨ (l0 ∧ l4)∨ (l3 ∧ l4),

Sδ2
= (l̄0 ∧ l̄2 ∧ l̄5 ∧ l̄6)∨ (l0 ∧ l2)∨ (l2 ∧ l5)∨ (l0 ∧ l6)∨ (l5 ∧ l6),

Iδ1
= (l0 ∨ l1) ∧ (l0 ∨ l4) ∧ (l1 ∨ l3) ∧ (l3 ∨ l4),

Iδ2
= (l0 ∨ l2) ∧ (l0 ∨ l6) ∧ (l2 ∨ l5) ∧ (l5 ∨ l6)

BecauseI(δ1+δ2)γ(B) = I((γ−(δ1+δ2)f)+δ1+δ2)(B) and γ −
(δ1 + δ2)

f = ∅, we haveI(δ1+δ2)γ(B) = I(δ1+δ2)(B).
Among the BBC-invariants,(l1∨ l3), (l3∨ l4), (l2∨ l5), (l5∨

l6) do not contain any common location variables, so they
will remain in the global computation. BBC-invariants(l0 ∨
l1), (l0 ∨ l4), (l0 ∨ l2) and (l0 ∨ l6) contain l0 as the common
location variable, and the conjunction between every mono-
mial from two groups of solutions are not false. So the final

Fig. 4. D-Finder tool

result is (l0 ∨ l1 ∨ l2) ∧ (l0 ∨ l4 ∨ l6) ∧ (l0 ∨ l1 ∨ l6) ∧ (l0 ∨
l2 ∨ l4) ∧ (l1 ∨ l3) ∧ (l3 ∨ l4) ∧ (l2 ∨ l5) ∧ (l5 ∨ l6).

V. EXPERIMENTS

Our methodology for computing interaction invariants and
deciding invariant preservation has been implemented in the
D-Finder toolset [3].

In this section, we start with a brief introduction to the
the D-Finder tool and explain what are the modifications that
have. Then we show the experimental results obtained by
implementing the methods discussed in this paper.

A. D-Finder Structure
D-Finder is an extension of the BIP toolset [7] – BIP can

be used to define components and component interactions. D-
Finder can verify both safety and deadlock-freedom properties
of systems by using the techniques of this paper and of [2, 6].

We useglobal to refer to the method of [2],FP for the
incremental method of [6], andIncr to refer to our new
incremental technique.

The tool provides symbolic-representations-based methods
for computing interaction invariants, namely theIncr methods
presented in this paper, the fixed point based method and
its incremental methodFP proposed in [6] as well as the
global method presented in [2] and discussed in Section II.
D-Finder relies on the CUDD package [?] and represents
sets of locations by BDDs. D-Finder also proposes techniques
to compute component invariants. Those techniques, which
are described in [2], relies on the Yices [?] and Omega [?]
toolsets for the cases in where a component can manipulate
data. A general overview of the structure of the tool is given
in Figure 4.

D-Finder is mainly used to check safety properties of
composite components. In this paper, we will be concerned
with the verification of deadlock properites. We letDIS be the
set of global states in where a deadlock can occur. The tool will
progressively find and eliminate potential deadlocks as fol-
lows. D-Finder starts with an input a BIP model and computes
component invariantsCI by using the technique outlined in
[2]. From the generated component invariants, it computes an
abstraction of the BIP model and the corresponding interaction
invariantsII. Then, it checks satisfiability of the conjunction
II ∧CI ∧DIS. If the conjunction is unsatisfiable, then there

is no deadlock else either it generates stronger component
and interaction invariants or it tries to confirm the detected
deadlocks by using reachability analysis techniques1.

B. Implementation of the Incremental method

We build on the symbolic implementation of the method in
[2] that computes the interaction invariant of an entire system
with all the interactions within the connector. The implemen-
tation relies on the CUDD package [?] and represents sets of
locations by BDDs.

We have employed the following steps to integrate the
incremental computation into the D-Finder tool. First we
compute a set of common location variables from all the
increments. Then we compute the BBC-solutions for every
increment instead of computing the solutions for the connector
in global method, and apply positive mapping to remove the
location variables with negations that do not belong to the set
of common location variables, to reduce the size of BDDs
for BBC-solutions. We can either integrate existing solutions
from the already computed BBCs progressively or integrate
all the solutions when all the increments have been explored.
Finally we apply positive mapping to remove all the remaining
common location variables with negations and call the dual
operation to obtain interaction invariant.

C. Experimental Results
We have compared the performance of the three methods on

several case studies. All our experiments have been conducted
with a 2.4GHz Duo CPU Mac laptop with 2GB of RAM.

We started by considering verification of deadlock proper-
ties. The case studies we consider are the Gas Station [11],
the Smoker [13], the Automatic Teller Machine (ATM) [8]
and the classical example of Producer/Consumer. Regarding
the Gas Station example, we assume that every pump has 10
customers. Hence, if there are 50 pumps in a Gas Station,
then we have 500 customers and the number of components
including the operator is thus 551. In the ATM example,
every ATM machine is associated to one user. Therefore,
if we have 10 machines, then the number of components
will be 22 (including the two components that describe the
Bank). The computation times and memory usages for the
application of the three methods on these case studies are
given in Table I. Regarding the legend of the table,scale

is the “size” of examples;location denotes the total number
of control locations;interaction is for the total number of
interactions. The computation time is given in minutes. The
timeout, i.e., “-” is one hour. The memory usage is given in
Megabyte (MB). Our technique is always faster thanglobal.
This means that we are also faster than tools such as NuSMV
and SPIN that are known to be much slower thanglobal on
these case studies [2, 3]. OurIncr technique is faster than
FP except for the gas station2 and it always consumes less
memory.

1D-Finder is also connected to the state-space exploration tool of the BIP
platform, for finer analysis when the heuristic fails to prove deadlock-freedom.

2A more complex example for whichFP is faster thanIncr is proposed
in Appendix C.

TABLE I
COMPARISON FOR ACYCLIC TOPOLOGIES.

Component information Time (minutes) Memory (MB)
scale location interaction global FP Incr global FP Incr

Gas Station
50 pumps 2152 2000 0:50 0:17 0:49 48 53 47
100 pumps 4302 4000 2:58 0:52 1:51 76 52 47
200 pumps 8602 8000 11:34 1:55 2:26 135 65 47
400 pumps 17202 16000 47:38 3:51 5:43 270 93 76
500 pumps 21502 20000 - 4:43 7:21 - 101 86
600 pumps 25802 24000 - 5:53 9:05 - 115 97
700 pumps 30102 28000 - 7:14 11:44 - 138 107

Smoker
300 smokers 907 903 0:07 0:07 0:07 44 11 7
600 smokers 1807 1803 0:13 0:14 0:13 46 26 8
1500 smokers 4507 4503 1:38 0:44 0:34 65 54 18
3000 smokers 9007 9003 6:21 1:57 1:14 113 86 28
6000 smokers 18007 18003 27:03 5:57 3:24 222 172 55
7500 smokers 22507 22503 41:38 8:29 4:51 270 209 60
9000 smokers 27007 27003 - 11:36 6:34 319 247 96

ATM
50 machines 1104 902 10:49 2:20 1:23 81 86 22
100 machines 2204 1802 43:00 6:00 1:57 142 271 44
250 machines 5504 4002 - 17:16 4:46 - 670 65
350 machines 7704 6302 - 27:54 8:18 - 938 77
600 machines 13204 10802 - - 24:14 - - 119

Producer/Consumer
2000 consumers 4004 4003 0:27 0:33 0:31 57 16 11
4000 consumers 8004 8003 1:27 1:18 1:05 90 28 20
6000 consumers 12004 12003 3:01 2:32 2:03 126 37 31
8000 consumers 16004 16003 5:35 4:22 2:33 164 40 35
10000 consumers 20004 20003 8:44 6:12 3:15 218 66 56
12000 consumers 24004 24003 12:06 8:37 5:38 257 75 66

TABLE II
COMPARISON BETWEEN DIFFERENT METHODS ONDINING PHILOSOPHERS

Component information Time (minutes) Memory (MB)
scale location interaction global FP Incr global FP Incr

500 philos 3000 2500 4:01 9:18 0:34 61 60 29
1000 philos 6000 5000 17:09 - 2:04 105 - 60
1500 philos 9000 7500 39:40 - 3:09 148 - 74
2000 philos 12000 10000 - - 4:14 - - 96
4000 philos 24000 20000 - - 8:37 - - 192
6000 philos 36000 30000 - - 14:26 - - 382
9000 philos 53000 45000 - - 24:16 - - 581

In Table II, we also provide results on checking deadlock-
freedom for the dining philosopher algorithm. Contrary to the
above examples, the dining philosopher algorithm has a cyclic
topology, which cannot be efficiently managed withFP (this
is the only case for whichglobal was faster thanFP .

Our results have also been applied on a complex case
study that directly comes from an industrial application. More
precisely, we have been capable of checking safety and
deadlock-freedom properties on the modules in the functional
level of theDALA robot [5]. DALA is an autonomous robot
with modules described in the BIP language running at the
functional level. Every module is in a hierarchy of composite
components (see Appendix D for details).

All together the embedded code of DALA in the func-
tional level contains more than 500 000 lines of C code.
As illustrated in Appendix D, the topology of the modules
and the description of the behaviors of the components are
complex. This is beyond the scope of tools such as NuSMV
or SPIN. We first checked deadlock properties of individual
modules. Bothglobal and FP fails to check for deadlock-
freedom (Antenna is the only module that can be checked
by using global). However, by usingIncr , we can always
generate the invariants and check the deadlock-freedom of
all the modules. Table III shows the time consumption in
computing invariants for deadlock-freedom checking of seven
modules by the incremental method; it also gives the number
of states per module. In these modules we have successively

TABLE III
DEADLOCK-FREEDOM CHECKING ONDALA BY Incr METHOD

module component location interaction states time (minutes)
SICK 43 213 202 220

× 329
× 34 1:22

Aspect 29 160 117 217
× 323 0:39

NDD 27 152 117 222
× 314

× 5 8:16
RFLEX 56 308 227 234

× 335
× 1045 9:39

Battery 30 176 138 222
× 317

× 5 0:26
Heating 26 149 116 217

× 314
× 145 0:17

Platine 37 174 151 219
× 322

× 35 0:59

detected (and corrected) two deadlocks within Antenna and
NDD, respectively.

Aside from the deadlock-freedom requirement, some mod-
ules also have safety property requirements such as causality (a
service can be triggered only after a certain service has been
running successfully, i.e., only if the variable corresponding
to this service is set to true). In checking the causality
requirement between different services, we need to compute
invariants according to different causality requirement.In-
spired from the invariant preservation properties introduced in
Section III, we removed some tight synchronizations between
some components3 that would not synchronize directly with
the components involved in the property and obtained a
module with looser synchronized interactions. As the invariant
of the module with looser synchronizations is preserved by the
one with tighter synchronizations, if a property is satisfied in
the former, then it is satisfied in the latter. Based on this fact,
we could obtain the satisfied causality property in 17 seconds,
while it took 1003 seconds before using the preorder. A more
detailed description of DALA and other properties verified
with our Incr and invariant preservation methods can be found
in [4].

VI. CONCLUSION

We present new incremental techniques for computing in-
teraction invariants of composite systems defined in the BIP
framework. In addition, we propose sufficient conditions that
guarantee invariant preservation when new interactions are
added to the system. Our techniques have been implemented
in the D-Finder toolset and have been applied to complex case
studies that are beyond the scope of existing tools.

As we have seen in Section V, our new techniques and
the ones in [2, 6] are complementary. As a future work, we
plan to set up a series of new experiments to give a deeper
comparison between these techniques. This should help the
user to select the technique to be used depending on the case
study. Other future works include to extend our contribution
to liveness properties and abstraction.

Acknowledgment. We are grateful to the reviewers for their
careful work and their valuable and insightful comments and
suggestions.

REFERENCES

[1] A. Basu, M. Bozga, and J. Sifakis. Modeling heteroge-
neous real-time components in BIP. InSEFM ’06, pages
3–12, Washington, DC, USA, 2006.

3The latter can be seen as an abstraction of the component in where some
services have been removed.

[2] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis.
Compositional verification for component-based systems
and application. InATVA, pages 64–79, Seoul, 2008.

[3] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis.
D-Finder: A tool for compositional deadlock detection
and verification. InCAV, volume 5643 ofLNCS, pages
614–619. Springer, 2009.

[4] S. Bensalem, L. de Silva, M. Gallien, F. Ingrand, and
R. Yan. “Rock solid” software: a verifiable and correct-
by-construction controller for rover and spacecraft func-
tional levels. InISAIRAS, 2010.

[5] S. Bensalem, M. Gallien, F. Ingrand, I. Kahloul, and
T.-H. Nguyen. Toward a more dependable software
architecture for autonomous robots.IEEE Robotics and
Automation Magazine, 16(1):1–11, 2009.

[6] S. Bensalem, A. Legay, T.-H. Nguyen, J. Sifakis, and
R. Yan. Incremental invariant generation for composi-
tional design. InTASE, 2010.

[7] BIP – incremental component-based con-
struction of real-time systems. http://www-
verimag.imag.fr/∼async/bip.php.

[8] M. Chaudron, E. Eskenazi, A. Fioukov, and D. Ham-
mer. A framework for formal component-based software
architecting. InOOPSLA, pages 73–80, 2001.

[9] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
NuSMV: a new symbolic model checker.STTT, 2:410–
425, 2000.

[10] E. M. Clarke, O. Grumberg, and D. A. Peled.Model
checking. The MIT Press, 1999.

[11] D. Heimbold and D. Luckham. Debugging Ada tasking
programs.IEEE Softw., 2(2):47–57, 1985.

[12] J-P.Queille and J.Sifakis. Specification and verification
of concurrent systems in CESAR. InSymposium on
Programming, volume 137 ofLNCS. Springer, 1982.

[13] S. Patil. Limitations and Capabilities of Dijkstra’s
Semaphore Primitives for Coordination among Pro-
cesses. Cambridge, Mass.: MIT, Project MAC, Com-
putation Structures Group Memo 57, Feb, 1971.

APPENDIX A
PROOFS INSECTION III

Proof for Proposition 2.
We first introduce some concepts.
Intuitively, invariants are the predicates that should be true

in every state. Therefore, the relation between two sets of
reachable states, which are obtained by applying respectively
two connectors over the same set of components, provides a
way to reason their invariant preservation relation. We first
propose the formal definition on reachable states.

Definition 16. Given a componentγ(B) with a set of states
L, we definereach(ℓ, γ(B)) = {ℓi ∈ L |∃ai ∈ γ ∧ ℓ

ai−→
∗

ℓi}
the set of reachable states fromℓ ∈ L by interactions ofγ.

The above definition provides a notation to record the set of
reachable states from a stateℓ through all possible interactions
in γ(B). If there is no executable interaction fromℓ, we have
that reach(ℓ, γ(B)) = {ℓ}.

Lemma 1. Given two connectorsγ1, γ2 over B, if γ1 4 γ2,
we havereach(ℓ, γ2(B)) ⊆ reach(ℓ, γ1(B)) for any ℓ ∈ L.

Proof: Let ℓ
a1−→ ℓ1

a2−→ · · ·
am−−→ ℓm be an execution

sequence fromℓ ∈ L in γ2(B), where ai ∈ γ2. Because
γ1 4 γ2, for anyai, we have a set of interactionsbj ∈ γ1 such
that ai =

⋃k
j=1 bj . From any stateℓi in the sequence started

from ℓ in γ2(B), there exists a set of interactions
⋃k

j=1 bj such

that ℓi
b1−→ · · ·

bk−→ ℓi+1. Therefore, we conclude thatreach(ℓ,
γ2(B)) ⊆ reach(ℓ, γ1(B)) for any ℓ ∈ L.

This lemma shows that from the same state the set of
reachable states under a tighter connector is always a subset
of reachable states under a looser connector.

We are now ready to prove the proposition.
Let reach(ℓ, γ2(B)) be the set of reachable states from the

path started fromℓ ∈ L in γ2(B). Becausereach(ℓ, γ2(B)) ⊆
reach(ℓ, γ1(B)), for anyℓ′ ∈ reach(ℓ, γ2(B)), ℓ′ is reachable
in γ1(B). As inv(γ1(B), I) is true, we haveI(ℓ′). So we can
conclude thatinv(γ2(B), I) is true.
Proof for Proposition 3. Becauseγ 4 γ − δf , we haveγ 4

(γ − δf) + δ = δγ.
Proof for Proposition 4.

We first have the following lemma.

Lemma 2. Given two interference-free connectorsγ1, γ2, we
haveγ1∩γ

f
2 = ∅ andγ2∩γ

f
1 = ∅, and(γ1 +γ2)

f = γ
f
1 +γ

f
2 .

Proof: Sinceγ1 andγ2 are interference-free, ifγ1∩γ2 =
∅, we haveγ1 ∩ γ

f
2 = ∅ and γ2 ∩ γ

f
1 = ∅. If γ1 ∩ γ2 6= ∅,

for any a ∈ γ1 ∩ γ2, we know thata 6∈ γ
f
1 and a 6∈ γ

f
2 .

Therefore,γ1 ∩ γ
f
2 = ∅ and γ2 ∩ γ

f
1 = ∅ are still correct.

According to Definition 6, we have(γ1 + γ2)
f = γc

1 + γc
2 −

(γ1 + γ2) = (γc
1 − (γ1 + γ2)) + (γc

2 − (γ1 + γ2)). Becauseγ1

andγ2 are interference-free,γc
1 − (γ1 + γ2) = γc

1 − γ1 = γ
f
1

andγc
2 − (γ1 + γ2) = γ

f
2 . So we have(γ1 + γ2)

f = γ
f
1 + γ

f
2 .

We now prove the proposition.

We will show thatδ1γ 4 (δ1 + δ2)γ andδ2γ 4 (δ1 + δ2)γ,
then the conclusion can be obtained from Proposition 2.

Becauseδ1 and δ2 are interference-free, we have(δ1 +
δ2)

f = δ
f
1 + δ

f
2 , then γ − (δ1 + δ2)

f = γ − (δf
1 + δ

f
2). As

γ− (δf
1 +δ

f
2) ⊆ γ−δ

f
1 , we obtain thatγ−δ

f
1 4 γ− (δf

1 +δ
f
2)

andγ − δ
f
1 + δ1 4 γ − (δf

1 + δ
f
2) + δ1. Becauseδ1 andδ2 are

interference-free,δ2∩δ
f
1 = ∅ andγ 4 δ2, we haveγ−δ

f
1 4 δ2.

Soγ − δ
f
1 + δ1 4 γ − (δf

1 + δ
f
2) + δ1 + δ2. The same rule can

be applied toδ2γ. Therefore, we haveδ1γ 4 (δ1 + δ2)γ and
δ2γ 4 (δ1 + δ2)γ, thusinv((δ1 + δ2)γ(B), I1 ∧ I2).

APPENDIX B
PROOFS INSECTION IV

Proof for Theorem 1. According to Definition 13, the con-
straints are the conjunction of all the implications for interac-
tions ofγ. Consider a valuationv such that|γ(B)|(v) = true.
In order to prove that

∨
v(l)=true l is an invariant, assume that

for some global state(l1, · · · , ln), there existsli such that
v(li) = true. If from li there is an interactiona such that
li ∈ •a, then there existsl′j ∈ a•, such thatv(l′j) = true

by Definition 13. So any successor state of(l1, · · · , ln) by an
interactiona satisfies

∨
v(l)=true l.

Proof for Theorem 2. (Sketch).|γ(B)| can be written in the
disjunctive normal form, that is|γ(B)| =

∨
i∈I mi, where

mi is of the formmi =
∧

j∈I lj ∧
∧

k∈I∧k 6=j lk. According
to Theorem 1, for any solutionmi of |γ(B)|, we have that

m̃
p
i =

∨
j∈I lj is an invariant ofγ(B). Hence ˜|γ(B)|p =

˜(
∨

i∈I mi)p =
∨̃

i∈I m
p
i =

∧
m̃

p
i is the interaction invariant

of γ(B).
Proof for Proposition 5.

We start with the following lemma.

Lemma 3. Consider two connectorsγ1, γ2 over B, we have

|(γ1 + γ2)(B)| = |γ1(B)| ∧ |γ2(B)|

Proof: By Definition 13, we have|(γ1 + γ2)(B)| =∧
a∈(γ1+γ2)

|a(B)| =
∧

a∈γ1
|a(B)| ∧

∧
a∈γ2

|a(B)| =
|γ1(B)| ∧ |γ2(B)|.

By Equation 1, the union ofγ−(Σn
i=1δi)

f andΣn
i=1δi is the

result of the superposition of a set of increments{δi}1≤i≤n

over γ. The proof can be concluded by applying Lemma 3.
Proof for Proposition 6. In everySδi

, there exists a solution
m0i without any variables in the positive form, which has
no BBC-invariant corresponding to. For anyφk, k ∈ Ii,
there existsmk such thatφk = m̃

p
k. According to Proposi-

tion 5, the BBC-solution of|(Σn
i=1δi)γ(B)| is

∧n
i=0 Sδi

=∧n
i=0

∨
k∈Ii

mk =
∨

k0∈I0,...,kn∈In

∧n
i=0 mki.

• If an mki does not contain any common location vari-
ables, there exists solutionm0j containing only nega-
tions in Sδj

such that i 6= j and (
∧n

j=0∧j 6=i mki ∧
m0j)

p = m
p
ki, so φki is one of the BBC-invariants of

|(Σn
i=1δi)γ(B)|.

• If there is a maximal set{mki1
, . . . , mkir

}, ∀j = 1 . . . r∧
kij ∈ Iij such that all of them contain common location
variables, and

∧r
j=1 mkij

= false, it is not a solution

TABLE IV
COMPARISON BETWEEN DIFFERENT INVARIANT COMPUTATION METHODS

ON THE UTOPAR CASE STUDY.

Component information Time (minutes) Memory (MB)
scale location interaction global FP Incr global FP Incr

100 UC, 400 CU 1503 41404 3:35 0:56 2:15 50 42 59
200 UC, 400 CU 2203 82404 8:05 1:45 4:13 56 42 59
300 UC, 400 CU 2303 123404 13:38 2:29 7:12 67 42 59
400 UC, 400 CU 2903 164404 20:32 3:46 8:02 79 42 59
100 UC, 900 CU 2503 91904 17:52 2:44 9:56 64 66 50
200 UC, 900 CU 3203 182904 38:41 4:59 19:47 82 66 50
300 UC, 900 CU 3903 273904 - 7:18 31:29 - 66 50
100 UC, 1600 CU 3903 162604 59:30 5:53 33:02 96 160 73
200 UC, 1600 CU 4603 323604 - 17:46 - - 160 -

Service

Controller

Control Service

Activity

Message Box

Execution Service

Service

Controller

Activity

Execution Service

InterfaceServer

Timer

Module

. . .

Timer

. . .
Control Service

. . .

Lock Poster

Scheduler

Poster

Task Controller

. . .

Permanent

Execution Task

Scheduler

TimerTask Controller

Execution Task

Permanent

Timer

Fig. 5. Module structure in functional level

of |(Σn
i=1δi)γ(B)|. If

∧r
j=1 mkij

6= false, we have

˜(
∧r

j=1 mkij
)p =

˜∧r
j=1 φ̃kij

=
∨r

j=1 φkij
.

APPENDIX C
UTOPAR

Utopar4, an automated transportation system, is one of the
two main case studies of the European project COMBEST [?
]. Rougly speaking, the Utopar system is the composition
of three types of components that are: (1) autonomous vehi-
cles, called U-cars (UC), (2) a centralized Automatic Control
System, and (3) Calling Units (CU). The centralized Auto-
matic Control System and the Calling Units have (almost
exclusively) discrete behavior. On the other hand, U-cars are
equipped with a local controller, responsible for handlingthe
U-car sensors and performing various routing and driving
computations depending on users’ requests. The system is
deadlock-free if there always exists some U-car that can
respond a request from either a Calling Unit, the Automatic
Control System or a Customer inside the U-car. In this paper,
we have analyzed a simplified version of Utopar by abstracting
from data exchanged between components as well as from
continuous dynamics of the U-cars. In this version, each U-
car is modeled by a component having7 control locations
and 6 integer variables. The Automatic Control System has
3 control locations and2 integer variables. The Calling Units
have2 control locations and no variables. In Table IV, one
can see thatFP is always faster thanIncr on this case study.

APPENDIX D
MODULES IN THE FUNCTIONAL LEVEL OF DALA ROBOT

There are eight modules described with the BIP language
that are running in DALA. Their functions are (1) collecting
data from the laser sensors (SICK), (2) generating an obstacle

4A succinct description of the Utopar case study can be found at
http://www.combest.eu/home/?link=Application2.

send_final_report

trigger

fa
il

fin
is

he
d

ex
ec

in
te

r

send_final_report

codel_is_executed

ETHER

REPORT

INTERR

ETHER START

exec

codel_is_executed
inter

internal_inter

internal_start

STARTP

Service

control

control

codel_is_executed

getStatus

getStatus

internal_exec

SLEEP

EXECP

FAILR

send_final_report

start

finished

fail

exec

codel_is_executed

internal_exec

internal_fail

internal_finished

start
internal_fail

codel_is_executed

se
nd

_f
in

al
_r

ep
or

t

startabort

finished
inter

fail

trigger

error

getStatus

TROL
CON−

EXEC

getStatusgetStatus

exec

abortWithReport

abort

finished

fail

getStatus

inter

send_final_report

abort

send_final_report

getStatus

getStatus

start

control

abortWithReport

trigger

abortWithReport

error
Controller Activity

error

ENDP

ENDR

abortWithReport

internal_start

abort

ABORT

STARTR

ABORT

FAILP

EXECR

codel_is_executed

internal_inter
internal_finished

send_final_report finish codel_is_executedinter startfail exec

Fig. 6. An Execution Service in DALA

map (Aspect), (3) navigating using the near diagram approach
(NDD), (4) managing the low level robot wheel controller
(RFLEX), (5) emulating the communication with an orbiter
(Antenna), (6) providing power and energy for the robot (Bat-
tery), (7) heating the robot in a low temperature environment
(Heating) and (8) controlling the movement of two cameras
(Platine).

As shown in Figure 5, a module in the functional level
of DALA can be regarded as a three-hierarchy composite
component mainly with (1) Execution Tasks, each of which
includes a Task Controller controls to trigger, block and stop
a service and a Scheduler executes the activities of services
in a cyclic manner, (2) Execution Services, each of which
consists of a controller controls the validity of the parame-
ters and the execution of its corresponding activity, and an
activity executes the commands inside the service, (3) Control
Services, each of which takes negligible time to execute and
is responsible for setting and returning variable values, (4)
Interface Server, which is responsible for receiving requests
from some external source, and then forwarding the requests
to the associated service, (5) Posters, which are produced by
the corresponding module and can be read by other modules,
and (6) Lock, which is a semaphore that ensures the mutual
exclusion between different Execution Tasks, Services when
manipulating Posters.

Each Execution Task and Interface Server has a Timer to
control the period of its execution. Also there is a Timer for
the posters of a module to control the freshness of the data in
the posters.

Observe that the topology of a module in DALA is more
complex than those of the other benchmarks we considered.
It is well known that a good variable ordering will improve
performance greatly in the symbolic implementation. How-
ever, the topology is so complex that we cannot always find a
good variable ordering for the integration of invariants inthe
incremental method. Second, the components inside a module
are more sophisticated than those in the benchmarks. In Figure
6 we present a composite component for execution service
template for the modules in functional level. Usually one
module contains several services. And the size of Execution
Task is proportional to the number of services, which results
in more common location variables.

