
HAL Id: hal-00557792
https://hal.science/hal-00557792

Submitted on 16 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From High-Level Component-Based Models to
Distributed Implementations

Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, Joseph
Sifakis

To cite this version:
Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, Joseph Sifakis. From High-
Level Component-Based Models to Distributed Implementations. 10th International conference
on Embedded software (EMSOFT 2010), Oct 2010, Scottsdale, AZ, United States. pp.209-218,
�10.1145/1879021.1879049�. �hal-00557792�

https://hal.science/hal-00557792
https://hal.archives-ouvertes.fr

From High-Level Component-Based Models to Distributed Implementations∗

Borzoo Bonakdarpour Marius Bozga Mohamad Jaber
Jean Quilbeuf Joseph Sifakis

VERIMAG

Centre Équation
2 avenue de Vignate, 38610

Gières, France

Abstract

Constructing correct distributed systems from their high-

level models has always been a challenge and often subject

to serious errors because of their non-deterministic and non-

atomic structure. Thus, it is highly desirable if designers can

automatically transform high-level models (where high atom-

icity is assumed through global state semantics and distribu-

tion details are omitted via employing high-level synchroniza-

tion primitives) into implementations in a systematic and cor-

rect fashion. In this paper, we propose such a transforma-

tion in the context of the BIP modeling formalism [5]. Our

transformation preserves observational equivalence and al-

lows parallelism between components even though these com-

ponents interact through multi-party synchronization primi-

tives in the corresponding high-level model. In particular,

our method, (1) transforms a high-level BIP model into an-

other BIP model that operates using asynchronous message

passing, (2) constructs a set of distributed schedulers, and (3)

transforms the intermediate BIP model and schedulers into

actual C++ distributed code. Our experiments show that the

distributed code generated using our method exhibits close

to ideal level of parallelism and communication overhead.

We also illustrate that in some cases, the performance of the

generated code is competitive with the performance of hand-

written parallel code.

Keywords: Component-based modeling, Automated

transformation, Distributed systems, BIP, Correct-by-

construction.

1. Introduction

Analysis and design of computing systems often starts with
developing a high-level model of the system. Constructing
models is beneficial, as designers can abstract away imple-
mentation details and validate the model with respect to a set
of intended requirements through different techniques such as

∗This work is sponsored by the COMBEST European project.

formal verification, simulation, and testing. However, deriv-
ing a correct implementation from a model is always chal-
lenging, since adding implementation details involves many
subtleties that can potentially introduce errors to the result-
ing system. In the context of distributed systems, these sub-
tleties are magnified significantly because of inherently con-
current, non-deterministic, and non-atomic structure of dis-
tributed systems, as well as the occurrence of unanticipated
physical and computational events such as faults. Thus, it is
highly advantageous if designers can somehow derive imple-
mentations in a systematic and ideally automated correct fash-
ion from high-level models. It is, nonetheless, unclear how
to transform an abstract model (where high atomicity is as-
sumed through global state semantics and distribution details
are omitted via employing high-level synchronization primi-
tives) into a real distributed implementation.

In this paper, we present a method to transform high-level
models in BIP [5] into distributed implementations. The BIP
(Behavior, Interaction, Priority) language is based on a se-
mantic model encompassing composition of heterogeneous
components. The behavior of atomic components is de-
scribed as a Petri net extended by data and functions given
in C++. Transitions of the Petri net are labeled by port names
and functions computing data transformations when they are
executed. BIP uses a composition operator for obtaining com-
posite components from a set of atomic components. The
operator is parametrized by a set of interactions between the
composed components. An interaction is a strong synchro-
nization (rendezvous) among a set of ports of the composed
components. Thus, an interaction is enabled, if all of its par-
ticipating ports are available. BIP has a formal operational
semantics implemented by a Scheduler which coordinates ex-
ecution of composite components by sequentially executing
interactions. The Scheduler orchestrates the behavior of a
composite component as follows:

• An atomic component can execute a transition labeled by
a port only if it is notified by the Scheduler to do so. For
this, it sends to the Scheduler the name of ports labeling
its enabled transitions from a given state.

1

C1 C2 C3 C4 C5

I1 I2 I3

Figure 1. A simple high-level model.

• When the Scheduler receives the sets of enabled ports
from all the atomic components, it computes the set of
possible interactions, that is the set of interactions whose
ports label only enabled transitions. The Scheduler then
chooses one amongst the possible interactions and exe-
cutes it. The execution of an interaction may involve data
transfer between the interacting components followed by
notification about its completion. The notified compo-
nents can continue independently their computation.

In order to understand the subtleties of transformation
from sequential models to distributed models, consider the
BIP model in Figure 1. In this model, atomic components
C1 · · ·C5 synchronize through three rendezvous interactions
I1 · · · I3. In sequential models, interactions are executed
atomically by a single scheduler. To the contrary, introducing
concurrency and distribution (and possibly multiple sched-
ulers) to this model requires dealing with more complex is-
sues:

• (Partial observability) Suppose interaction I1 (and,
hence, components C1 · · ·C3) is being executed. If com-
ponent C3 completes its computation before C1 and C2,
and, C4’s port is available, then interaction I2 is enabled.
In such a case, a distributed scheduler must be designed
so that concurrent execution of interactions does not in-
troduce behaviors that were not allowed by the high-level
model.

• (Resolving conflicts) Suppose interactions I1 and I2 are
enabled simultaneously. Since these interactions share
component C3, they cannot be executed concurrently.
We call such interactions conflicting. Obviously, a dis-
tributed scheduler must ensure that conflicting interac-
tions are executed mutually exclusive.

• (Performance) On top of correctness issues, a real chal-
lenge is to ensure that a transformation does not add con-
siderable overhead to the implementation. After all, one
crucial goal of developing distributed and parallel sys-
tems is to exploit their computing power.

We address the issue of partial observability by breaking
the atomicity of execution of interactions, so that a compo-
nent can execute unobservable actions once a corresponding
interaction is being executed [4]. Resolving conflicts leads us
to solving the committee coordination problem [9], where a
set of professors organize themselves in different committees
and two committees that have a professor in common cannot
meet simultaneously. The original distributed solution to the
committee coordination problem assigns one manager to each
interaction [9]. Conflicts between interactions are resolved

by reducing the problem to the dining or drinking philoso-
phers problems [8], where each manager is mapped onto a
philosopher. Bagrodia [2] proposes an algorithm where mes-
sage counts are used to solve synchronization and exclusion
is ensured by using a circulating token. In a follow-up pa-
per [3], Bagrodia modifies the solution in [2] by combining
the use of message counts to ensure synchronization and re-
ducing the conflict resolution problem to dining or drinking
philosophers problems. Also, Perez et al [10] propose an ap-
proach that essentially implements the same idea using a lock-
based synchronization mechanism.

As Bagrodia notes [3], a family of solutions to the com-
mittee coordination problem is possible, ranging over fully
centralized to fully decentralized ones, depending upon map-
ping managers to the sets of committees. In the context of our
transformation problem, each family of solutions results in a
different implementation of the Scheduler. We classify these
families into three broad categories:

• (Centralized) This category represents transformations
where a concurrent model is managed by a single cen-
tralized scheduler (see Figure 2-a) no matter how the
components are distributed.

• (Partially decentralized) This category refers to transfor-
mations where a set of schedulers collaborate in order
to resolve conflicts in a distributed fashion (e.g., Figures
2-b and 2-c)). In addition to the solutions in [2, 3, 9],
one can also reduce our problem in this category to dis-
tributed construction of an independent set (set of ver-
tices that do not share an edge) of the graph whose ver-
tices represent interactions and edges connect conflict-
ing interactions. Thus, one can exploit solutions to dis-
tributed independent set in the literature.

• (Fully decentralized) This category represents solutions
where each component acts as a partial scheduler and
reaches an agreement with other components based on
which non-conflicting interaction(s) can be executed (see
Figure 2-d). In addition to the solutions in [2,3,9], other
potential solutions to this category include algorithms
for distributed graph (respectively, hypergraph) match-

ing, i.e., a set of edges that do not share a common ver-
tex, where each vertex represents a component and each
edge represents a binary (respectively, n-ary) interaction.

We expect that each category of solutions exhibits advan-
tages and disadvantages and, hence, fits a specific type of
concrete applications on a target architecture and platform.
For instance, multi-threaded systems running on a stand-alone
platform managed by a central scheduler is an example of
centralized solutions. A potential example of fully decentral-
ized transformations is peer-to-peer file sharing applications,
where execution of interactions requires significantly longer
time than communication for scheduling.

Although the algorithms in [2, 3, 9] cover all the above
categories, transforming a high-level model into a concrete
distributed implementation involves other details that have
to be taken into account. Examples include observational

2

C1 C2 C3 C4 C5

I1 I2 I3

I1, I2, I3
Scheduler

(a) Centralized

C1 C2 C3 C4 C5

I1 I2 I3

I1

Scheduler

I3

Scheduler

I2

Scheduler

(b) Partially decentralized

C1 C2 C3 C4 C5

I1 I2 I3

I1, I2

Scheduler

I2, I3

Scheduler

(c) Partially decentralized

I1 I2 I3

C1

Sched

C2

Sched Sched

C3

Sched Sched

C4 C5

(d) Fully decentralized

Figure 2. Spectrum of transformations.

equivalence, execution of the code associated with interac-
tions and components, data transfer, maximum concurrency,
fairness, fault-tolerance, combination of scheduling policies,
efficiency, and performance. These issues can significantly
change the dynamics and performance of a distributed imple-
mentation and each deserves rigorous research beyond the al-
gorithms and preliminary simulations in [2, 3, 9]. We believe
we currently lack a deep understanding of the impact of these
issues and their correlation in transforming high-level models
into concrete distributed implementations.

Contributions. With this motivation, in this paper, we
propose a transformation from a high-level sequential BIP
model into a distributed implementation that allows paral-
lelism between components as well as parallel execution of
non-conflicting interactions. Our method utilizes the fol-
lowing sequence of transformations preserving observational

equivalence:

1. First, we transform the given BIP model into another BIP
model that (1) operates in partial state semantics, and
(2) expresses multi-party interactions in terms of asyn-
chronous message passing (send/receive primitives).

2. We replace the Scheduler of the original model by a set
of Schedulers, each handling a subset of conflicting in-
teractions (e.g., Figure 2-c) - for maximal parallelism
one Scheduler per interaction is needed.

3. We transform the intermediate BIP model into actual
C++ code that employs TCP sockets for communication.

We also conduct a set of experiments to analyze the be-
havior and performance of the generated code. Our experi-
ments show that depending upon the structure of the model,
the distributed code generated using our method exhibits close
to ideal level of parallelism and communication overhead.
We also illustrate that in some cases, the performance of the
generated code is competitive with the performance of hand-
written code developed using the Message Passing Interface
(MPI) [?].

Organization. In Section 2, we present the global state se-
quential operational semantics of BIP. Then, in Section 3, we
present our BIP to BIP transformation. Section 4 describes
transformation of the intermediate send/receive BIP model
into C++ distributed code. Section 5 presents the results of
our experiments. Finally, in Section 6, we make concluding
remarks and discuss future work.

2. Basic Semantic Models of BIP

In this section, we present operational global state seman-
tics of BIP. BIP is a component framework for constructing
systems by superposing three layers of modeling: Behavior,
Interaction, and Priority. Since the issue of priorities is irrele-
vant to this paper, we omit it.
Atomic Components We define atomic components as tran-
sition systems with a set of ports labeling individual transi-
tions. These ports are used for communication between dif-
ferent components.

Definition 1 (Atomic Component). An atomic component B
is a labeled transition system represented by a triple (Q,P,→
) where Q is a set of states, P is a set of communication ports,

→⊆ Q × P × Q is a set of possible transitions, each labeled

by some port.

For any pair of states q, q′ ∈ Q and a port p ∈ P , we write

q
p
→ q′, iff (q, p, q′) ∈→. When the communication port is

irrelevant, we simply write q → q′. Similarly, q
p
→ means that

there exists q′ ∈ Q such that q
p
→ q′. In this case, we say that

p is enabled in state q.

In practice, atomic components are extended with vari-
ables. Each variable may be bound to a port and modified
through interactions involving this port. We also associate a
guard and an update function to each transition. A guard is a
predicate on variables that must be true to allow the execution
of the transition. An update function is a local computation
triggered by the transition that modifies the variables. Fig-
ure 3-a shows an atomic component B, where Q = {s, t},
P = {p, q, r}, and →= {(s, p, t), (t, q, s), (t, r, t)}.
Interaction For a given system built from a set of n atomic
components {Bi = (Qi, Pi,→i)}

n
i=1

, we assume that their
respective sets of ports are pairwise disjoint, i.e., for any two

p

q

r

s t
p

q

r

(a) Atomic component

B0

p0

q0

r0

B1

p1

q1

r1

(b) Composite component

Figure 3. BIP composite component

3

i 6= j from {1..n}, we have Pi ∩ Pj = ∅. We can therefore
define the set P =

⋃n

i=1
Pi of all ports in the system. An

interaction is a set a ⊆ P of ports. When we write a =
{pi}i∈I , we suppose that for i ∈ I , pi ∈ Pi, where I ⊆
{1..n}.

As for atomic components, real BIP extends interactions
by associating a guard and a transfer function to each of them.
Both the guard and the function are defined over the variables
that are bound to the ports of the interaction. The guard must
be true to allow the interaction. When the interaction takes
place, the associated transfer function is called and modifies
the variables.

Definition 2 (Composite Component). A composite com-
ponent (or simply component) is defined by a composition

operator parametrized by a set of interactions γ ⊆ 2P .

B
def
= γ(B1, . . . , Bn), is a transition system (Q, γ,→), where

Q =
⊗n

i=1
Qi and → is the least set of transitions satisfying

the rule

a = {pi}i∈I ∈ γ ∀i ∈ I. qi
pi
→i q′i ∀i 6∈ I. qi = q′i

(q1, . . . , qn)
a
→ (q′

1
, . . . , q′n)

The inference rule says that a composite component B =
γ(B1, . . . , Bn) can execute an interaction a ∈ γ, iff for each
port pi ∈ a, the corresponding atomic component Bi can ex-
ecute the transition labeled with pi; the states of components
that do not participate in the interaction stay unchanged. Fig-
ure 3-b illustrates a composite component γ(B0, B1), where
each Bi is identical to component B in Figure 3-a and γ =
{{p0, p1}, {r0, r1}, {q0}, {q1}}.

3. Transformation from High-Level BIP to
Send/Receive BIP

As mentioned in the introduction, the first step of our solu-
tion is an intermediate transformation from a high-level BIP
model into a message passing BIP model. More specifically,
we transform a composite component B = γ(B1, . . . , Bn)
in global state semantics with multi-party interactions into
another BIP composite component BSR in partial state se-
mantics that only involves binary “Send/Receive” interac-
tions. To this end, we transform each atomic component Bi

into an atomic Send/Receive component BSR
i (described in

Subsection 3.1). We also add a set of atomic components
SSR

1
, . . . , SSR

m that act as schedulers. To this end, first, we de-
scribe how we build a centralized scheduler in Subsection 3.2.
We construct the interactions between Send/Receive compo-
nents in Subsection 3.3. Correctness of our transformation
method is proved in Subsection 3.4. Finally, we replace the
centralized scheduler by a set of distributed schedulers in Sub-
section 3.5.

Definition 3. We say that BSR = γSR(BSR
1

, . . . , BSR
n) is

a Send/Receive BIP composite component iff we can parti-

tion the set of ports in B into three sets Ps, Pr, Pu that are

respectively the set of send-ports, receive-ports and unary in-
teraction ports, such that:

• Each interaction a ∈ γSR, is either a Send/Receive in-

teraction a = (s, r) with s ∈ Ps and r ∈ Pr, or a unary

interaction a = {p} with p ∈ Pu.

• If s is a port in Ps, then there exists one and only one

receive-port r, such that (s, r) ∈ γSR. We say that r is

the receive-port associated to s.

• If (s, r) is a send/receive interaction in γSR and s is en-

abled at some global state of BSR, then r is also enabled

at that state.

Notice that the second condition requires that only one
component can receive a “message” sent by another compo-
nent. The last condition ensures that every Send/Receive in-
teraction can take place as soon as the sender is enabled, i.e.

the sender can send the message immediately.

3.1. Transformation of Atomic Components

Let Bi be an atomic component. We now present how
we transform Bi into a Send/Receive atomic component BSR

i

that is capable of communicating with the scheduler. There
are two types of Send/Receive interactions: request and re-

sponse. A request interaction from component BSR
i informs

the scheduler that BSR
i is ready to interact through a set of

enabled ports. When the scheduler selects an interaction in-
volving BSR

i for execution, it notifies the component by a re-
sponse interaction that includes the port chosen.

Definition 4. Let Bi = (Qi, Pi,→i) be an atomic component

and s be a state in Qi. The request associated to s is the set

of ports reqs = {p ∈ Pi|s
p

−→i}. We denote the set of all

requests from Bi by REQ i = {reqs|s ∈ Qi}.

Since each response triggers an internal computation, fol-
lowing [4], we split each state s into two states, namely, s
itself and a busy state ⊥s. Intuitively, reaching ⊥s marks the
beginning of an unobservable internal computation. We are
now ready to define the transformation from Bi into BSR

i .

Definition 5. Let Bi = (Qi, Pi,→i) be an atomic compo-

nent. The corresponding Send/Receive atomic component is

BSR
i = (QSR

i , P SR
i ,→SR

i), where

• QSR
i = Qi ∪ Q⊥

i , where Q⊥
i = {⊥s |s ∈ Qi}.

• P SR
i = Pi ∪ REQ i where, as we will see later, Pi are

receive-ports and REQ i are send-ports.

• For each transition (s, p, t) ∈→i, we include the follow-

ing two transitions in →SR
i : (s, p,⊥t) and (⊥t, req

t, t).

Figure 4 illustrates transformation of the component in
Figure 3-a into its corresponding Send/Receive component.
Since there are two states in B, we have two request ports in
BSR: one for the request reqs = {p} and one for the request
reqt = {q, r}.

4

reqs
reqt p q r

t

s

⊥s

reqs

q

⊥t

reqt

r

p reqs = {p}
req t = {q, r}

Figure 4. Send/Receive atomic component of

Figure 3-a.

3.2. Building the Scheduler Component

In order to implement interactions, we add a new atomic
component S, called the scheduler component. This com-
ponent receives request messages sent by the Send/Receive
atomic components. Based on the request messages received,
the scheduler calculates the set of enabled interactions and se-
lects one of them for execution. Then, it sends a response to
each component involved in the selected interaction, so that
they start their internal computations. Since we would like
to allow local concurrency in the scheduler component, we
define it as a Petri net.

Definition 6. A 1-Safe Petri net is defined by a triple S =
(L,P, T) where L is a set of places, P is a set of ports and

T ⊆ 2L × P × 2L is a set of transitions. A transition τ is a

triple (•τ, p, τ•), where •τ is the set of input places of τ and

τ• is the set of output places of τ .

We represent a Petri net as an oriented bipartite graph G =
(L ∪ T,E). Places are represented by circular vertices and
transitions are represented by rectangular vertices. The set of
oriented edges E is the union of the edges {(l, τ) ∈ L×T |l ∈
•τ} and the edges {(τ, l) ∈ T × L|l ∈ τ•}.

p1

p4

p2

p5

p3

t1

t2

t3

p1

p4

p2

p5

p3

t1

t2

t3

Figure 5. An example of a simple Petri net

We depict the state of a Petri net by marking some places
with tokens. We say that a place is marked if it contains a
token. A transition τ can be executed if all its input places
•τ contain a token. Upon the execution of τ , tokens in input
places •τ are removed and output places in τ• are marked.
Formally, let −→S be the set of triples (m, p,m′) such that
∃τ = (•τ, p, τ•) ∈ T , where •τ ⊆ m and m′ = (m\•τ) ∪
τ•. The behavior of a Petri net S can be defined by a labeled
transition system (2L, P,−→S).

Figure 5 shows an example of a Petri net in two succes-
sive markings. This Petri net has five places {p1, . . . , p5} and
three transitions {t1, t2, t3}. The places containing a token
are depicted with gray background. The right figure shows

the resulting state of the left Petri net when transition t1 is
fired.

Intuitively, the Petri net that defines a scheduler compo-
nent is constructed as follows. We associate a token with each
request. This token circulates through three types of places:
waiting places, received places, and response places. A tran-
sition from a waiting place to a received place occurs when
a request is received. The set of marked received places de-
termines the received requests and, thus, the enabled inter-
actions. Transitions from received places to response places
correspond to interactions. The execution of an interaction
transition collects the required tokens in received places and
puts them in appropriate response places. A transition from
a response place to a waiting place sends the corresponding
response.

Let a = {pi}i∈I be an interaction. We say that a set of
requests {req i}i∈I enables a iff ∀i ∈ I , pi ∈ req i, that is, if
for each port in a, there is one request of the set that provides
this port. For each set of requests that enables a, we add a
transition from the received to response places. Definition 7
formalizes the construction of the scheduler.

Definition 7. Let B = γ(B1, . . . , Bn) be a BIP composite

component, REQ =
⋃n

i=1
REQ i be the set of all requests

and RES =
⋃n

i=1
Pi, where Pi is the set of ports of Bi, be

the set of all responses. We define the centralized scheduler S
as a Petri net (L,P, T) where:

• The set L of places is the union of the following:

1. The set {wreq |req ∈ REQ} of waiting places.

2. The set {rreq |req ∈ REQ} of received places.

3. The set {sp.req |req ∈ REQ , p ∈ req} of response
places.

• The set P of ports is RES ∪REQ ∪γ, which are respec-

tively send-ports, receive-ports and unary ports.

• The set T of transitions consists of the following:

1. (waiting to received) For each request req ∈ REQ ,

T contains the request transition (wreq , req , rreq),

2. (received to response) For each interaction

a ∈ γ and each set of requests {reqj}j∈J

that enables a, T contains the transi-

tions ({rreqj
}j∈J , a, {spj .reqj

}j∈J), where

∀j ∈ J, {pj} = reqj ∩ a.

3. (response to waiting) For each request req ∈
REQ , T contains the set of response transitions

{(sp.req , p, wreq)|p ∈ req}.

Figure 6 depicts the scheduler constructed for the compos-
ite component presented in Figure 3. The dotted places are
the waiting places redrawn here for the sake of readability.
Initially, all waiting places contain a token. In the depicted
state, we assume that both request reqs

0
and reqs

1
have been

received. Then, the execution of transition p0p1 is possible
and brings the tokens associated to reqs

0
and reqs

1
in response

places. Then, these tokens return to their initial places by
sending the responses p0 and p1.

5

reqs
0

p0

reqt
0

q0

q0 r0

reqs
1

p1

reqt
1

q1

q1r1

p0p1 r0r1

Waiting

Received

Interactions

Response

Waiting

Figure 6. A scheduler component for Figure 3

.

3.3. Interactions between Send/Receive
Atomic Components and the Scheduler

The next step of our transformation is to construct the set
γSR of interactions between Send/Receive atomic compo-
nents and the scheduler. To avoid confusion between ports
of the scheduler and atomic components, we prefix the ports
that appear in the scheduler by S : and we leave the ports of
atomic components as they are.

Definition 8. Let B = γ(B1, . . . , Bn) be a composite com-

ponent, BSR
1

, . . . , BSR
n be the corresponding Send/Receive

atomic components, and S be the scheduler constructed for

B. The set of interactions γSR is the union of the following:

• The set of all request interactions from components to

scheduler {(req , S :req)|req ∈ REQ},

• The set of all response interactions from scheduler to

components {(S :p, p)|p ∈ RES}, and

• The set of all unary interactions {{S : a}|a ∈ γ} corre-

sponding to interaction transitions in the scheduler.

Observe that by construction of γSR the request ports are
send-ports in atomic components and receive-ports in the
scheduler S. Likewise, the response ports are send-ports in
the scheduler and receive-ports in atomic components. The
unary ports of the scheduler (that are labeled by original in-
teractions from γ) remain unary interactions.

BSR
0

reqs
0 reqt

0
p0 q0 r0

BSR
1

reqs
1 reqt

1
p1 q1 r1

S
p0p1 r0r1q0 q1

reqs
0 reqt

0 p0 q0 r0 reqs
1 reqt

1 p1 q1 r1

Figure 7. A composite Send/Receive compo-

nent

Figure 7 shows the Send/Receive composite component by
transforming the composite component in Figure 3-b. We use
arrows to denote the direction of communications. For the
sake of clarity, we have omitted the prefixes for naming the
scheduler ports. Non-connected ports of the scheduler are
unary interactions, that is interactions not subject to synchro-
nization constraints.

3.4. Correctness of the Transformation

In this section, we first show that the composite compo-
nent BSR we built thus far is a well-formed Send/Receive
component. In particular, we have to verify that for each
Send/Receive interaction, a receive-port is enabled when its
corresponding send-port becomes enabled. Then, we show
that the composite component BSR is observationally equiv-
alent to the composite component B.

A state of the composite component B is given by the n-
tuple s = (s1, s2, . . . , sn) where si is the state of the compo-
nent Bi. A state of the composite component BSR also takes
into account the state of the Scheduler which is described by
its marking, denoted m. Thus, we will denote the state of
BSR by s⊥ = (s⊥

1
, s⊥

2
, . . . , s⊥n ,m) . We also denote by Q the

set of all possible states of the composite component B and
by QSR the set of all possible states of BSR.

Lemma 1. Let BSR be the Send/Receive transformation of

B. Then, for each Send/Receive interaction (s, r) ∈ γSR,

whenever a sender port s becomes enabled, the associated

receiver port r is already enabled.

Proof : Intuitively, this property holds since each compo-
nent starts listening to any response by the time it sends a
request. Dually, the scheduler starts listening again to any re-
quest as soon as it sends the corresponding response.

Let BSR
i be a Send/Receive atomic component. We show

that all Send/Receive interactions involving BSR
i meets the

proposition. We abstract the state of S by considering only the
information related to Bi and S. We distinguish the following
cases, according to the state (s⊥i ,m):

i) s⊥i =⊥s0
,m ⊇ {wreqs |s ∈ Qi}, where ⊥s0

is a state of
BSR

i , and m contains all places wreqs associated to re-
quests from BSR

i . The send-port reqs0 is enabled as well
as the receive-port S : reqs0 . Thus, the property holds
for the initial configuration, and in general for configu-
rations of this form. Moreover, by executing this request
interaction, we fall into the second situation.

ii) s⊥i = s0,m ⊇ {rreqs0 }∪{wreqs |s ∈ Qi, s 6= s0}. From
this configuration, no send-port is enabled.

iii) s⊥i = s0,m ⊇ {sp.reqs} ∪ {wreqs |s ∈ Qi, s 6= s0}.
Such a configuration is reached whenever the scheduler
executes an interaction involving BSR

i . The send-port p
is enabled in S as well as the receive-port p in BSR

i so the
response interaction is enabled. Moreover, by executing
this response interaction, this case is reduced to the first
case.

6

�

Now, we show that if we observe only the unary interac-
tions in BSR, that correspond to the original interactions in B,
these two composite components B and BSR are observation-
ally equivalent. Let us fix some notations. Let s⊥, t⊥ ∈ QSR

be two states of BSR and a ∈ γSR be an interaction such

that s⊥
a

−→SR t⊥. We rewrite s⊥
β

−→SR t⊥ if a is a
Send/Receive interaction, otherwise a is a unary interaction
and is observable in BSR. It can be shown that the relation

β
−→SR is terminating and confluent. Formally, for any state
s⊥ there is a unique state [s⊥] that can be reached by exe-
cuting all the possible Send/Receive interactions, after a finite

number of steps, that is, s⊥
β∗

−→SR [s⊥] and [s⊥]
β

6→SR.

Proposition 1. Let B be a composite component and BSR

be its Send/Receive version. B and BSR are observationally

equivalent when hiding all Send/Receive interactions in BSR.

Proof : We define the relation R = {(s, s⊥) ∈ Q ×
QSR|∀1 ≤ i ≤ n [s⊥]i = si}. It can be shown that R is an
observational equivalence as follows. Let s, t ∈ Q be some
states of B, s⊥, t⊥ ∈ QSR be some states of BSR, and a ∈ γ
an interaction. It follows that:

i) If (s, s⊥) ∈ R and s⊥
β

−→SR t⊥, then (s, t⊥) ∈ R.

ii) If (s, s⊥) ∈ R and s⊥
a

−→SR t⊥,f then ∃t ∈ Q such that

s
a

−→ t and (t, t⊥) ∈ R

iii) If (s, s⊥) ∈ R and s
a

−→ t then ∃t⊥ ∈ QSR, such that

s⊥
β∗a
−→ t⊥ and (t, t⊥) ∈ R

All these conditions can be checked depending on the
structure of the state in a similar way to [4].. �

3.5. Decentralized Scheduler

The idea behind decentralization is to decompose the cen-
tralized scheduler component into a set of “disjoint” scheduler
components. Let S = (L,P, T) be a centralized scheduler. A
decomposition of S =

⋃m

j=1
Si, is a set of 1-safe Petri nets

Si = (Li, Pi, Ti) such that L =
⋃m

j=1
Lj , P =

⋃m

j=1
Pj and

T =
⋃m

j=1
Tj . We say that a decomposition is disjoint if both

L =
⋃m

j=1
Lj and T =

⋃m

j=1
Tj are disjoint unions.

Reconsider the Petri net depicted in Figure 6. As shown
in Figure 8, it can be decomposed into two disjoint Petri nets,
the gray one and the black one. Thus, we build one scheduler
for each of these Petri nets.

Since the overall structure of the system changes, we need
to redefine the Send/Receive interactions. Let first consider
the situation of request ports req ∈ REQ . Since there is only
one req labeled transition in the centralized scheduler S, there
is only one decentralized scheduler Si that contains this tran-
sition and the associated port req . We denote this port by
Sjreq

: req . The situation of response ports p ∈ RES is dif-
ferent. The same response port p ∈ RES can label multiple

transitions in S, thus there might be more than one scheduler
Sj that triggers the port p. If the response port p is contained
in the decentralized scheduler Sj , we denote it Sj : p. The
formal definition is provided below.

Definition 9. Let γSR(BSR
1

, . . . , BSR
n , S) be a Send/Receive

composite component and S1, . . . , Sm be a decomposition of

S. The set of interactions γSR
2

is the union of the following :

• The set of all requests from components to schedulers

{(req , Sjreq
:req)|req ∈ REQ}

• The set of all responses from schedulers to components

{(Sj :p, p)|p ∈ Pj}

• The set of all unary interactions {{S :a}|a ∈ γ}

Then we define the decentralized Send/Receive version of
B, denoted BSR

2
= γSR

2
(BSR

1
, . . . , BSR

n , S1, . . . , Sm). Fig-
ure 9 presents the decentralized version of the composite com-
ponent originally presented in Figure 3. The gray Petri net
from Figure 8 is S1 and the black one is S2.

Theorem 1. BSR
2

is observationally equivalent to BSR.

Proof : The centralized scheduler S in BSR is the jux-
taposition of the decentralized schedulers S1, . . . , Sm. Thus,
we can say that a state of BSR and a state of BSR

2
are equiv-

alent if the marked places are the same. This relation is an
observational equivalence since the marked places enable the
same interactions in both models. �

4. Transformation from Send/Receive BIP into
C++

In this section, we describe how we generate for a sched-
uler and a Send/Receive BIP atomic component pseudo C++
code. Notice that since the behavior of these components are
formalized as Petri nets, we only present generation of C++
code for a Petri net whose transitions are labeled by send-
ports, receive-ports, or internal actions (see C++ Pseudo Code
1).

Initially, each component creates a TCP socket and estab-
lishes reliable connections with all components that it needs

reqs
0

p0

reqt
0

q0

q0 r0

reqs
1

p1

reqt
1

q1

q1r1

p0p1 r0r1

Figure 8. Splitting the scheduler

7

BSR
0

reqs
0 reqt

0
p0 q0 r0

BSR
1

reqs
1 reqt

1
p1 q1 r1

S2S1 p0p1 r0r1q0 q1

reqs
0 reqs

1p0 p1 reqt
0 q0 r0 reqt

1 q1 r1

Figure 9. A Send/Receive composite compo-

nent with Decentralized Scheduler

to interact (Lines 1-2). These interactions and their corre-
sponding physical connections are determined according to
the complete Send/Receive BIP model and a configuration

file. This file specifies the IP address and port number of all
components for final deployment. We assign one Boolean
variable to each place of the given Petri net, which shows
whether or not the place contains the token. Thus, the initial
state of the Petri net is determined by an initial assignment of
these variables (Line 3).

After initializations, the code enters an infinite loop that
executes the transitions of the Petri net as follows. For each
step, the code scans the list of all possible transitions and gives
priority to transitions that are labeled by a send-port (Lines 6-
10) or unary ports of the given Petri net (Lines 11-15). Actual
emission of data is performed by an invocation of the TCP
sockets system call send() in Line 7. Once data transmission
or an internal computation is completed, tokens are removed
from input places and put to output places of the correspond-
ing transitions (Lines 8 and 13).

Finally, if no send-port is enabled and all internal compu-
tations are completed, execution stops and waits for messages
from other components (Line 17). Once one of the sockets
contains a new message, the component resumes its execu-
tion and receives the message (Line 18). Note that based
on the structure of Send/Receive components and schedulers
developed in Section 3, it is straightforward to observe that
our code avoids creating deadlocks by giving priority to send-
ports and internal computations.

5. Experimental Results

We have implemented and integrated the transformations
described in Sections 3 and 4 in the BIP toolset. The tool
takes a composite BIP model in the global state semantics and
a network configuration file as input and generates the cor-
responding C++ executable for each atomic component and
scheduler. Each executable can be run independently on a
different machine or a processor core.

We now present the results of our experiments for two sort-
ing algorithms often used as parallel computing bechmarks.
The structure and behavior of the two benchmarks are consid-
erably different in terms of conflicting interactions, number
of schedulers, and the required computation and communica-
tion times. All experiments in this section are run on (single
or dual-core) 2.2 GHz Intel machines running under Debian

C++ Pseudo Code 1 Petri net
Input: A Petri net of a Send/Receive BIP component and a config-

uration file.

Output: C++ code that implements the given Send/Receive Petri

net

// Initializations

1: CreateTCPSocket();

2: EstablishConnections();

3: PrepareInitialState();

4: while true do

5: // Handling send-ports and internal computations

6: if there exists an enabled transition labeled by a send-port

then

7: send(...);

8: PrepareNextState();

9: continue;

10: end if

11: if there exists an enabled internal transition then

12: DoInternalComputation();

13: PrepareNextState();

14: continue;

15: end if

16: // Handling receiving messages

17: select(...);

18: recv(...);

19: PrepareNextState();

20: end while

Linux connected through a dedicated 100 Mb/s Ethernet net-
work. We consider five different configurations: 1c, 2c, 2c′,
4c and 4c′, which denote respectively, one single-core ma-
chine, one dual-core machine, two single-core machines, two
dual-core machines, and four single-core machines.

Moreover, for each experiment we compare the perfor-
mance of the BIP generated code against a handwritten MPI
program, implementing the same sorting algorithm and de-
ployed on the same configuration.

5.1. Network Sorting Algorithm [1]

We consider 2n atomic components, each of them contain-
ing an array of N items. The goal is to sort all the items, so
that the items in the first component are smaller than those
of the second component and so on. Figure 10-a shows the
high-level model of the Network Sorting Algorithm for n = 2
using incremental and hierarchical composition of compo-
nents1. The atomic components B1 . . . B4 are identical. Each
atomic component computes independently the minimum and
the maximum values of its array. Once this computation com-
pletes, interaction γ1 compares the maximum value of B1

1We note that a composite component obtained by composition of a set of

atomic components (as described in Section 2) can be composed with other

components in a hieracical and incremental fashion using the same opera-

tional semantics. It is also possible to flatten a composite component and

obtain a non-hierarchical one [7].

8

...

γ3

B1 B2 B3 B4

γ5

γ2
γ1

γ4

(a) High-level BIP model

... ...

......

Scheduler

BSR
3

BSR
1

BSR
2

BSR
4

(b) Send/Receive BIP model

Figure 10. Network Sorting Algorithm.

with the minimum value of B2 and swaps them if the max-
imum of B1 is greater than the minimum of B2. Otherwise,
the corresponding arrays are correctly sorted and interaction
γ2 gets enabled. This interaction exports the minimum of B1

and the maximum of B2 to interaction γ5. The same principle
is applied in components B3 and B4 and interactions γ3 and
γ4. Finally, interaction γ5 works in the same way as inter-
action γ1 and swaps the minimum and the maximum values,
if they are not correctly sorted. Notice that all interactions
in Figure 10-a are in conflict and, hence, our transformation
constructs a single scheduler that encompasses all these inter-
actions (see Figure 10-b), and which cannot be decomposed.
Moreover, let us remark that the handwritten MPI program
has an identical structure, that is several components and one
scheduler to deal with communications. We run two sets of
experiments for n = 1 (2 atomic components) and n = 2 (4
atomic components).

Case n = 1. We consider three different configurations: 1c,
2c and 2c′. For 1c, we use a one single-core machine, which
runs the two atomic components and the scheduler. For 2c, we
use one dual-core machine, where each core runs an atomic
component and one of the cores runs also the scheduler. The
component distribution is similar for 2c′, except that the cores
now are in different machines.

The results are reported in Table 1 for arrays of size k×104

elements, for k = 20, 40, 80, 160. In general, the generated
BIP code outperforms the equivalent MPI program. For in-
stance, the execution time for sorting an array of size 80×104,
for the configuration 2c is: 669 seconds for MPI, and 600 sec-
onds for BIP. Moreover, the difference is more important for
an array of size 160 × 104, for the configuration 2c′: 3090
seconds for MPI and only 2601 seconds for BIP. As expected,
in the configuration 2c′, we gain less speedup compared to
2c, both for MPI and BIP, because of the network commu-
nication overhead (for this example the number of messages
sent by each component is equal to the size of the array ×2).
Furthermore, for the configuration 1c, we notice an important
overhead due to context switching between processes which
appears to be more significant in the case of MPI.

Case n = 2. Again, we consider three configurations: 1c, 4c,
4c′. For 1c, we use one single-core machine, where the four
atomic components run along with the scheduler. For 4c, we
use two dual-core machines and place each atomic compo-
nent on a different core. The scheduler is placed arbitrarily on
one of the cores. For 4c′, the distribution of components and
scheduler is similar to 4c.

The results are reported in Table 1 for arrays of size k ×

k MPI BIP

1c 2c 2c′ 1c 2c 2c′

20 118 40 60 105 34 100

40 497 157 198 409 133 256

80 1936 669 764 1526 600 758

160 8259 2833 3090 5819 2343 2601

Table 1. Performance of network sorting algo-

rithm (n = 1).

k MPI BIP

1c 4c 4c′ 1c 4c 4c′

20 224 70 107 217 168 217

40 808 176 240 795 392 502

80 3239 655 789 3071 1792 1264

160 12448 2775 3217 11358 4621 3726

Table 2. Performance of network sorting algo-

rithm (n = 2).

104 elements, for k = 20, 40, 80, 160. We remark that the
MPI program outperforms the corresponding BIP program.
As can be seen in Table 2 the execution time for sorting an
array of size 160 × 104, for the configuration 4c is: 2775
seconds for handwritten MPI, and 4621 seconds for BIP. This
overhead is essentially due to communication. The number
of messages exchanged is now four times bigger than for the
case n = 1 and MPI provides a more efficient implementation
for communication.

5.2. Bitonic Sorting [6]

Bitonic sorting is one of the fastest sorting algorithm suit-
able for distributed implementation in hardware or in parallel
processor arrays. A sequence is called bitonic if it is initially
strictly increasing then it is strictly decreasing. The first step
of the algorithm consists in constructing a bitonic sequence.
Then, by applying a logarithmic number of bitonic merges,
the bitonic sequence is transformed into totally ordered se-
quence. We provide an implementation of the bitonic sort-
ing algorithm in BIP using four atomic components, each one
handling one part of the array. These components are con-
nected as shown in the Figure 11. The six connectors are non
conflicting. Hence, we use six schedulers for the distributed
implementation. In this example each component sends only
three messages, each one containing its own array. We run
experiments for three configurations: 1c, 4c, 4c′. For 1c, we
use one single-core machine, where the four atomic compo-
nents along with the schedulers run. For 4c, we use two dual-
core machines and place each atomic component on a differ-
ent core. We also distribute the schedulers over the four cores,
such as to reduce the network communication overhead. For

9

......
B3B2B1 B4

(a) High-level BIP model

... ...

......
BSR

4

BSR
1

BSR
3

BSR
2

(b) Send/Receive BIP model

Figure 11. Bitonic Sorting Algorithm.

4c′, we use the same distribution for components and sched-
ulers. The results are reported in Table 1 for arrays of size
k × 104 elements, and k = 20, 40, 80, 160. As can be seen
in Table 3 the overall performance of MPI and BIP imple-
mentations are quite similar. For example, the execution time
for sorting an array of size 80 × 104, for the configuration 4c
is: 240 seconds for MPI, and 390 seconds for BIP. The over-
head of BIP is due to extra communication between atomic
components and the schedulers. This overhead is not present
in MPI where schedulers are not explicitly implemented and
messages are sent and received directly between components.

k MPI BIP

1c 4c 4c′ 1c 4c 4c′

20 80 14 14 96 23 24

40 327 59 60 375 96 100

80 1368 240 240 1504 390 397

160 5605 1007 958 6024 1539 1583

Table 3. Performance of bitonic sorting algo-

rithm.

6. Conclusion

In this paper, we proposed a method for transforming high-
level models in BIP [5] into distributed implementations. The
BIP (Behavior, Interaction, Priority) language is based on a
semantic model encompassing composition of heterogeneous
components. Our transformation consists of three steps: (1)
we transform the given BIP model into another BIP model
that operates in partial state semantics and expresses multi-
party interactions in terms of asynchronous message passing
using send/receive primitives, (2) we construct a set of Sched-
ulers each executing a subset of conflicting interactions, and
(3) we transform the intermediate BIP model into actual C++
distributed code that employs TCP sockets for communica-
tion.

We presented a set of experiments that validates the effec-
tiveness of our approach in achieving parallelism regardless
of the platform and architecture. Our experiments illustrated
that depending upon the structure of the model, the distributed
code generated using our method exhibits close to ideal level
of parallelism and communication overhead. We also showed

that in some cases, the performance of the generated code is
competitive with the performance of hand-written code devel-
oped using the Message Passing Interface (MPI).

For future work, we plan to pursue several directions. One
direction is introducing the notion of time in distributed se-
mantics of BIP. Providing timing guarantees in a distributed
setting has always been a challenge and BIP is not an excep-
tion. Another avenue to explore is to build a library of trans-
formations based on different solutions to the conflict resolu-
tion problem. As mentioned in the introduction, one can re-
duce our problem to distributed graph matching, distributed
independent set, and distributed clique. These approaches
would construct a wide range of designs for the distributed
Scheduler, each appropriate for a particular application do-
main and platform. Thus, another future task is to identify a
mapping from each transformation to an application domain
and platform. Yet another research direction is to generate
other types of code and communication mechanisms. For in-
stance, one can exploit the communication and synchroniza-
tion mechanisms provided in the Message Passing Interface
(MPI). Of course, a central issue that needs to be rigorously
studied for each type of transformation and target language
or platform is performance analysis and communication over-
head.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c log n

parallel steps. Combinatorica, 3(1):1–19, 1983.
[2] R. Bagrodia. A distributed algorithm to implement n-party ren-

devouz. In Foundations of Software Technology and Theoret-

ical Computer Science, Seventh Conference (FSTTCS), pages

138–152, 1987.
[3] R. Bagrodia. Process synchronization: Design and perfor-

mance evaluation of distributed algorithms. IEEE Transactions

on Software Engineering (TSE), 15(9):1053–1065, 1989.
[4] A. Basu, P. Bidinger, M. Bozga, and J. Sifakis. Distributed

semantics and implementation for systems with interaction and

priority. In Formal Techniques for Networked and Distributed

Systems (FORTE), pages 116–133, 2008.
[5] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous

real-time components in BIP. In Software Engineering and

Formal Methods (SEFM), pages 3–12, 2006.
[6] K. E. Batcher. Sorting networks and their applications. In

AFIPS ’68 (Spring): Proceedings of the April 30–May 2, 1968,

spring joint computer conference, pages 307–314, New York,

NY, USA, 1968. ACM.
[7] M. Bozga, M. Jaber, and J. Sifakis. Source-to-source archi-

tecture transformation for performance optimization in BIP.

In Symposium on Industrial Embedded Systems (SIES), pages

152–160, 2009.
[8] K. M. Chandy and J. Misra. The drinking philosophers prob-

lem. ACM Transactions on Programming Languages and Sys-

tems (TOPLAS), 6(4):632–646, 1984.
[9] K. M. Chandy and J. Misra. Parallel program design: a

foundation. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1988.
[10] Ewing and R. Thakur. Using MPI-2: Advanced Features of the

Message Passing Interface. MIT Press, 1999.
[11] J. A. Pérez, R. Corchuelo, and M. Toro. An order-

based algorithm for implementing multiparty synchronization.

Concurrency and Computation: Practice and Experience,

16(12):1173–1206, 2004.

10

