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1. Introduction
Let K be an e�ective �eld of constants of characteristic zero, so that all �eld operations
can be carried out by algorithms. Given an indeterminate x and the derivation � = x @,
where @=@/@x, it is well known [26, 8, 12, 28, 29] that the skew polynomial ring K(x)[�]
behaves very much like an ordinary polynomial ring: there are skew analogues for each of
the classical operations of division with remainder, greatest common divisors, least common
multiples, etc. In this paper, we will study the complexity of these operations. For this
purpose, it will be more appropriate to work in the ring K[x; �] instead of K(x)[�]. In
analogy with the commutative case, we will give bounds for the computational complexities
of the various operations in terms of the complexity of operator multiplication.

For our complexity measures, we make the customary assumption that all �eld opera-
tions inK can be carried out in constant time O(1). We will try to express the complexities
of our algorithms in terms of the following standard complexities:

� The time M(n) required for the multiplication of two polynomials of degrees <n
and coe�cients in K. It is classical [32, 31, 9] that M(n)=O(n log n log log n) and
M(n)=O (n logn) if K admits su�ciently many 2p-th roots of unity [10].

� The complexity O(r!) of multiplying two r � r matrices with entries in K. It is
classical [34, 30, 11, 13] that !< 2.376, although !� 3 in practice.

We will denote by K[x]n the subset of K[x] of polynomials of degree <n. Likewise, we
denote by K[x; �]n;r the set of operators L2K[x; �] of degree degxL<n in x and degree
deg�L<r in �.

Now consider two linear di�erential operators K;L2K[x; �]n;r. We start with studying
the following complexities:

� The complexity SM(n; r) of multiplying K and L.

�. This work has been supported by the ANR-09-JCJC-0098-01 MaGiX project, as well as a Digiteo 2009-
36HD grant and Région Ile-de-France.
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� The complexity SV(n; r) of applying L to a vector of r polynomials in K[x]n.

� The cost SF(n; r) to compute a fundamental system of r solutions to the monic
equation (�r+L) f = 0 in K[[x]], up to order O(xn), while assuming the existence
of such a fundamental system.

� Given a vector V of r truncated power series inK[x], the cost SA(n; r) of computing
a monic operator in A= �r+K[x; �]n;r with A(V )=O(xn).

The special case n= r was �rst studied in [20], where it was shown that SM(n;n)=O(n!),
using evaluation-interpolation techniques. The inverse bound n!=O(SM(n; n)) has been
proved in [5]; this paper also contains detailed information on the constant factors involved
in these bounds. Recently (and after the writing of a �rst version of this paper), the quasi-
optimal bound SM(n; r)=O~(n r (n r)!¡2) was proved in [2].

For �xed constants �; � >0, one has M(� n)=O(M(n)), (� r)!=O(r!), SM(�n; � r)=
O(SM(n;r)), etc., by splitting the multiplicands in a �nite number of pieces. In this paper,
we will freely use this remark without further mention. In order to simplify our complexity
estimates, it will be convenient to make a few additional assumptions. First of all, we will
assume that ! > 2, whence in particular M(n) log n=O(n!¡1). We will also assume that
the function M(n)/n is increasing and that SM(n; r)/(n r) is increasing in both n and r.
This will indeed be the case for the complexity bounds for SM(n; r) that will be given in
Section 3.

In Section 2, we will �rst prove (see Theorems 2 and 3) that the problems of multipli-
cation and operator-vector application are essentially equivalent when n>r. We also recall
the best existing bounds for operator multiplication.

In Section 3, we show that the problems of computing fundamental systems of solutions
and its inverse can be reduced to operator multiplication modulo a logarithmic overhead
(see Theorems 7 and 8). This provides a dual way to perform operations on di�erential
operators by working on their fundamental systems of solutions. In Section 3 and all sub-
sequent sections, we always assume that n> r. This is indeed required for the truncations
of the fundamental systems of solutions at order O(xn) to be linearly independent.

In Section 4, we start with the operations of exact right division and right division
with remainder. In Section 5, we consider greatest common right divisors (gcrds) and
least common left multiples (lclms). Again, we will show how to express the complexities
of these operations essentially in terms of the complexity SM(n; r) of multiplication (see
Theorems 13, 15, 18 and 21).

For several of our algorithms, we need to work at a point where certain operators are
non singular. If we only need the input operators to be non singular, then it is easy to �nd
a point where this is the case. If we also need the output operators or certain auxiliary
operators to be non singular (as in Section 5), then we resort to picking random points,
which are non singular with probability 1. In Section 5.2 we present additional techniques
for turning algorithms which rely on random point picking into randomized algorithms of
Las Vegas type and into fully deterministic algorithms.

For technical reasons, we found it convenient to work with respect to the Euler deriva-
tion � instead of @. Nevertheless, operators L in K[x; �] can be converted e�ciently into
operators in K[x; @] and vice versa, modulo an increase of the degree n in x with the
degree r in � or @ (see Lemma 6). Using our assumption that n > r, such increases of
the degree n by r only gives rise to constant overheads in the complexity bounds. Hence,
the complexity bounds for our main algorithms from Sections 3, 4 and 5 still hold when
replacing � by @. In addition, some of the algorithms can be adapted to directly use @
instead of �, without the need for any conversions (see Remark 11).
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To the best of our knowledge, the idea to perform operations on linear di�erential
operators via power series solutions was �rst proposed (but only partially worked out)
in [4, Chapter 10]. In this paper, we use a slightly di�erent technique: instead of a single
power series solution, we prefer to consider a fundamental system of solutions. This has
the advantage of forcing a clean bijection between operators and solution spaces, thereby
avoiding part of the randomness in the proposals from [4, Chapter 10].

It is also possible to mimic classical divide and conquer algorithms for right division,
greatest common right divisors and least common left multiples, while using adjoints in
order to perform the recursive operations on the appropriate side. Such algorithms were
partially implemented inside Mathemagix [24] and we plan to analyze this technique in
more details in a forthcoming paper.

Various complexity results for computations with linear di�erential operators and other
skew polynomials were previously obtained [17, 14, 15, 25, 16, 4]. Especially the compu-
tation of greatest common right divisors and least common left multiples of two or more
operators has received particular attention. After the publication of a �rst version of this
paper [23], the complexities of several classical algorithms [19, 33, 25] for the computation
of least common right multiples were studied in great detail in [6], and new improvements
were proposed there.

The complexities of most of the algorithms in this paper are stated in terms of the input
and output sizes. The uncerti�ed randomized algorithms for gcrds and lclms are optimal up
to logarithmic factors from this perspective, which yields an improvement with respect to
the previously known complexity bounds. In the context of certi�ed randomized algorithms
(i.e. of Las Vegas type), the complexity bounds remain quasi-optimal in terms of the size
of a suitable certi�cate. From the deterministic point of view, the new algorithms for gcrds
and lclms are suboptimal.

Acknowledgment. We are grateful to the second referee whose questions and remarks
have lead to several improvements with respect to the �rst version of this paper.

2. Evaluation and interpolation

The key argument behind the proof from [20] that SM(n; n) = O(n!) is the observa-
tion that an operator L 2 K[x; �]n;r is uniquely determined by its images on the vector
x;r=(1; :::; xr¡1). This makes it possible to use a similar evaluation-interpolation strategy
for the multiplication of di�erential operators as in the case of FFT-multiplication of
commutative polynomials. More precisely, given L 2K[x; �]n;r, let �L

r+n;r be the matrix
of the mapping K[x]r!K[x]r+n;P 7!L(P ) with respect to the bases x;r and x;r+n:

�L
r+n;r =

0B@ L(1)0 ��� L(xr¡1)0
��� ���

L(1)r+n¡1 ��� L(xr¡1)r+n¡1

1CA:
The evaluation and interpolation steps can be done e�ciently using the following lemma,
which is essentially contained in [5]:

Lemma 1. Let L2K[x; �]n;r. Then

a) We may compute �L
r+n;r as a function of L in time O(nM(r) log r).

b) We may recover L from �L
r+n;r in time O(nM(r) log r).

Joris van der Hoeven 3



Proof. Consider the expansion of L with respect to x

L(x; �) = L0(�)+ ���+xn¡1Ln¡1(�):

For all i; j, we have

L(x; �)(xj)i+j = [xiLi(�)](x
j)i+j

= [xi+jLi(�+ j)(1)]i+j

= Li(j):

In other words, �L
r+n;r is a lower triangular band matrix

�L
r+n;r =

0BBBB@
L0(0)
��� ���

Ln¡1(0) L0(r¡ 1)
��� ���

Ln¡1(r¡ 1)

1CCCCA
of bandwidth 6n. The coe�cients on the i-th subdiagonal of �L

r+n;r are exactly the result
of a multipoint evaluation of Li at 0; :::; r ¡ 1. It is classical [27, 35, 3] that both
multipoint evaluation and the inverse operation of interpolation can be performed in time
O(M(r) log r). Doing this for each of the polynomials L0; :::; Ln¡1 yields the result. �

Theorem 2. If n> r, then

SM(n; r) = O(SV(n; r)+nM(r) log r) (1)

Proof. Let K;L2K[x; �]n;r and assume that we want to compute KL. We may evaluate
L(x;2r) in time SV(max (n; 2 r); 2 r) = O(SV(n; r)). We may also evaluate K(L(x;2r)) in
time SV(n+2 r; 2 r)=O(SV(n; r)). Using Lemma 1, we may recover KL from K(L(x;2r))
in time O(nM(r) log r). This completes the proof. �

Theorem 3. If n> r, then

SV(n; r) = O(SM(n; r)+nM(r) log r): (2)

Proof. Assume now that we are given K(x; �) 2 K[x; �]n;r, as well as a vector V =
(V0; :::; Vr¡1)2K[x]n

r and that we want to evaluate K(V ) = (K(V0); :::; K(Vr¡1)). This is
equivalent to evaluating the operator K�=K(x; �¡ r) at the vector xr V . It is classical [1]
thatK� can be computed in time O(nM(r)). Using Lemma 1, we may compute the unique
operator L2K[x;�]n+r;r with L(x;r)=xr V in timeO((n+r)M(r) logr)=O(nM(r) logr).
We may next compute the product K� L in time SM(n+ r; r) = O(SM(n; r)). Lemma 1
�nally allows us to evaluate K�L at x;r in time O(nM(r) log r), thereby yielding K(V ). �

The above results immediately imply the bound SM(n; n) = O(n!) from [20] by the
computation of a product KL to the computation of a matrix product

�KL
2r+2n;2r = �K

2r+2n;2r+n�L
2r+n;2r:

After the publication of a �rst version of this paper, the following quasi-optimal bound
for SM(n; r) was established in [2, Theorems 3 and 5].

Theorem 4.

i. For r>n, we have SM(n; r)=O(n!¡1 r+nM(r) log r).
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ii. For n> r, we have SM(n; r)=O(r!¡1n+ rM(n) logn).

The inverse bound n!=O(SM(n; n)) from [5] can also be generalized:

Theorem 5. If n > r, then the product of an r � n matrix and an r � r matrix with
coe�cients in K can be computed in time O(SM(n; r)).

Proof. By the result from [5], the problem is equivalent to the computation of k= dn/re
operators K0; :::; Kk¡1 in K[x; �]r;r with a �xed operator L 2 K[x; �]r;r. Setting K =

K0 + x2rK1 + ��� + x2r(k¡1)Kk¡1, we may compute K L in time O(SM(n; r)). We may
directly read o� the products K0L; :::;Kk¡1L from the result. �

In this paper, we have chosen to work with respect to the derivation � instead of @. The
following result from [5, Section 3.3] can be used to e�ciently convert between operators
in K[x; �] and K[x; @] (in [20], we proved a somewhat weaker result which would also
su�ce for the purposes of this paper). We have written K[x; @]n;r for the set of operators
of degree <n in x and degree <r in @.

Lemma 6.

a) Any operator in K[x; �]n;r can be converted into an operator in K[x;@]n+r;r in time
O((n+ r)M(r) log r).

b) Any operator in xrK[x; @]n;r can be converted into an operator in K[x; �]n+r;r in
time O ((n+ r)M(r) log r).

3. Local solutions

From now on, we will assume that n> r. We recall that an operator L2K[x; @] of order r
is said to be non singular at x0, if its leading coe�cient Lr does not vanish at x0. We will
say that an operator L2K[x; �] of order r is non singular (at the origin) if x¡rL2K[x; @]
and x¡rL is non singular as an operator in @.

Given a non singular di�erential operator L 2 K[x; �]n;r+1 of order r, the equation
L(H)=0 admits a canonical fundamental systemH=(H0; :::;Hr¡1) of solutions inK[[x]]r,
with the property that (Hi)i=1 and (Hi)j=0 for all i; j < r with i=/ j. Conversely, given
a K-linearly independent vector of power series H 2K[[x]]r, there exists a unique monic
operator L2 �r+K[[x]][�] of order r with L(H)=0. Let us show how to convert e�ciently
between these two representations.

Theorem 7. Let L 2K[x; �]n;r+1 be a di�erential operator of order r 6 n, which is non
singular at the origin, and let H be its canonical fundamental system of solutions. Then
we may compute H up to order O(xn) in time O(SV(n; r) logn). In other words,

SF(n; r) = O(SM(n; r) logn): (3)

Proof. Modulo multiplying L on the left by Lr
¡1, we may assume without loss of generality

that L is monic. Since L is non singular at the origin, we have x¡rL2K[x; @]. Rewritten
in terms of �, this means that L is of the form

L = �r(�)+xCr¡1�r¡1(�)+ ���+xrC0�0(�):

�k(�) = � (�¡ 1) ��� (�¡ k+1);

Joris van der Hoeven 5



for certain C0; :::; Cr¡12K[x]. Setting R=�r(�)¡L2 xK[x; �]n¡1;r, we observe that R
maps K[[x]] into xrK[[x]]. We now compute H using the �recursive� formula

H =

0B@ 1
���

xr¡1

1CA+�r(�)
¡1(R(H)); (4)

where

�r(�)¡1
 X
k>r

Akx
k

!
=
X
k>r

Ak

�r(k)
xk:

The equation (4) is a schoolbook example for applying the strategy of relaxed resolution of
power series equations [21, 22]. Since �r(�)

¡1 operates coe�cientwise, it can be computed
in linear time. The main cost of the computation therefore reduces to the relaxed evaluation
of R(H). Using fast relaxed multiplication, this amounts to a cost

SF(n; r) = 2SV(dn/2e; r)+4SV(dn/4e; r)+ ���+nSV(1; r):

Using the monotonicity assumption and Theorem 3, the result follows. �

In what follows, given a non zero series Y in x, we denote by v(Y ) its valuation. Given
a vector V of elements in a K-vector space, we will also denote by Vect(V ) the subvector
space generated by the entries of V , and

vmax(V ) = max fv(Y ):Y 2Vect(V ) n f0gg:

Notice that vmax(V )> dim(Vect(V ))¡ 1.

Theorem 8. Let H=(H0; :::;Hr¡1)2K[[x]]r be K-linearly independent. Then there exists
a unique monic operator L = ann(H) 2 �r + K[[x]][�]r with L(H) = 0. Moreover, given
the truncation of H at order O(xn), we may compute L at order O(xn¡v

max(H)) in time
O(SM(n; r) log r). In other words,

SA(n; r) = O(SM(n; r) log r): (5)

Proof. Modulo a triangularization of H , we may assume without loss of generality that
v(H0)< ���<v(Hr¡1)= vmax(H). We de�ne operators L[0]; :::; L[r] by

L[0] = 1

L[i+1] =

 
�¡ �L[i](Hi)

L[i](Hi)

!
L[i]:

Then L=L[r] annihilatesH and for any other operator L~2�r+K[[x]][�]r with L~(H)=0, we
would have (L~¡L)(H)=0, which is in contradiction with the fact that dimker(L~¡L)<r.
Moreover, by induction over i, we observe that the coe�cient of x0 in L[i] is given by
(�¡ v(H0)) ��� (�¡ v(Hi¡1)) and the coe�cients of x0; :::; xn¡1 in L[i] can be expressed in
terms of the coe�cients of x0; :::;xn¡1+v(Hi¡1) inH0; :::;Hi¡1. In particular, the truncation
of L at order O(xn¡v

max(H)) is uniquely determined by the truncation of H at order O(xn).
In order to explicitly compute L up to a given order, it is more e�cient to use a divide

and conquer approach. More precisely, given H 2 (H0; :::; Hr¡1) 2 K[x]n
r we compute

annn(H)2 �r+K[x; �]n;r using the following method:

� If r=1, then we take annn(H)= �¡ (�H0/H0)modxn.

� Otherwise, let r= a+ b with a= dr/2e.

6 On the complexity of skew arithmetic



� Compute A := annn(H0; :::;Ha¡1).

� Evaluate I := (A(Ha); :::; A(Hr¡1))modxn.

� Compute B := annn(I0; :::; Ib¡1).

� Return L=BAmodxn.

If n > vmax(H), then it is easy to check that annn(H)(H) = O(xn¡v
max(H)). For a �xed

constant C, we thus have

SA(n; 2 r) 6 2SA(n; r)+C SM(n; r):

The result now follows from the monotonicity assumption. �

Remark 9. If SM(n; r) /r1+� is increasing in r for some � > 0, then the bound further
simpli�es to SA(n; r)=O(SM(n; r)).

Remark 10. We notice that the operator L in Theorem 8 is singular if and only if
vmax(H)= r¡ 1, and if and only if fv(Y ):Y 2Vect(H) n f0gg= f0; :::; r¡ 1g.

Remark 11. The algorithm from the proof can be adapted so as produce a vanishing
operator in xr @r+K[[x]][@]r instead of �r+K[[x]][�]r. Indeed, for this, it su�ces to take

L[i+1] = x

 
@ ¡ @L[i](Hi)

L[i](Hi)

!
L[i];

and carefully adapt the truncation orders.

Although a general operator L2K[x; �] can be singular at the origin, many operations
on operators (such as right division and greatest common right divisors) commute with
translations x 7!x+x0, and Lemma 6 may be used in conjunction with the following lemma
in order to reduce to the case when L is non singular at the origin.

Lemma 12. Given a non zero operator L 2K[x; @]n;r, we may �nd a point x0 2K where
L is non singular in time O(M(n)).

Proof. Let Lk be the leading coe�cient of L. Since degxLk<n, we have Lk(x0) =/ 0 for
some x02 f0; :::; ng. Using fast multipoint evaluation [7], we may �nd such a point x0 in
time O(M(n)). �

4. Right division

From the formula (3) it is clear that both the degrees in x and � are additive for the
multiplication of operators K;L2K[x; �]. In particular, if K;L2K[x; �]n;r and L is left
or right divisible by K, then the quotient is again in K[x; �]n;r.

Theorem 13. Let K;L2K[x; �]n;r be such that L=QK for some Q2K[x; �] and n> r.
Then we may compute Q in time O(SM(n; r) logn).

Proof. By Lemmas 12 and 12, and modulo a shift x 7! x+ x0, we may assume without
loss of generality that K and L are non singular at the origin. We now use the following
algorithm:

� We �rst compute the canonical fundamental system of solutions H to L(H)= 0 up
to order O(xn+r). By Theorem 7, this can be done in time O(SM(n; r) logn).

Joris van der Hoeven 7



� We next evaluate I=K(H) and compute a K-basis G for Vect(I) at order O(xn+r).
This can be done in time O(SM(n; r)), by Theorems 3 and 5, and using linear
algebra. Since K is non singular, we have v(Y )>deg�K) v(K(Y ))= v(Y ) for all
Y 2K[[x]]. In particular, the deg�Q=deg�L¡deg�K elements of H of valuations
deg�K; :::; deg� L ¡ 1 are mapped to set which spans a vector space of dimension
deg�Q. This shows that s= dim (Vect(I)modxr)=deg�Q.

� We now compute the monic annihilator 
= ann(G) of G at order O(xn). This can
be done in time O(SM(n; r) log r)=O(SM(n; r) logn), by Theorem 8.

� We return the truncation of Qs
 at order O(xn), where Qs=Ldeg�L/Kdeg�K.

Since each of the steps can be carried out in time O(SM(n; r) logn), the result follows. �

It is classical that euclidean division generalizes to the skew polynomial ring K(x)[�].
In other words, given operators A;B 2K(x)[�] where B =/ 0, there exist unique operators
Q= quo(A;B) and R= rem(A;B) in K(x)[�] with

A = QB+R;

and deg�R< deg�B. If A; B 2K[x; �] and I is the leading term of B with respect to �,
then left multiplication of A by Ideg�A¡deg�B+1 allows us to remain in the domain K[x; �]:
there exist unique Q=pquo(A;B) and R=prem(A;B) in K[x; �] with

Ideg�A¡deg�B+1A = QB+R; (6)

and deg� R < deg� B. The operators Q and R are usually called pseudo-quotients and
pseudo-remainders. In some cases, a non trivial polynomial can be factored out in the
relation (6). Let J be monic, of maximal degree, such that J¡1 QB;J¡1R2K[x; �]. Then
we call J¡1Q= quo�(A;B) and J¡1R= rem�(A;B) the �simpli�ed� pseudo-quotient and
pseudo-remainder of A and B.

Lemma 14. Let H = (H0; :::; Hr¡1) 2 K[[x]]r be K-linearly independent and de�ne
p=vmax(Vect(H))+1. Given G2 (xpK[[x]])r, there exists a unique operator L2K[[x]][�]r
of order <r with L(H)=G and we may compute its �rst n terms with respect to x in time
O(SM(n+ p; r) logn).

Proof. Let �i= v(Hi) for each i. Modulo a base change, we may assume without loss of
generality that �0< ���<�r¡1. Let �:K[[x]]r!K[[x]]r be the operator with

�(V0; :::; Vr¡1) = (x�0V0; :::; x
�r¡1Vr¡1);

and let �¡1 denote the inverse operator. Let 	:K[[x]][�]r!K[[x]]r be the operator with

	(K) = �¡1(K(�(1))):

Writing K =
P

i;kKi;kx
k �i and 	(K)i;k=(	(K)i)k, we have0B@ 	(K)0;k

���
	(K)r¡1;k

1CA =

0B@ 1 k+�0 ��� (k+�0)
r¡1

��� ��� ���
1 k+�r¡1 ��� (k+�r¡1)

r¡1

1CA
0B@ K0;k

���
Kr¡1;k

1CA:
In other words, 	 and its inverse 	¡1 operate coe�cientwise and n coe�cients can be
computed in time O(r!n).

Putting Hi = x�i + Ei with Ei = o(x�i) for each i, we may rewrite the equation
L(H)=G as

L = 	¡1(�¡1(G¡L(E)))

8 On the complexity of skew arithmetic



and we observe that the coe�cient of xk in the righthand side of (8) only depends on earlier
coe�cients of 1; :::; xk¡1 in L. In particular, we may solve the equation using a relaxed
algorithm. Then the main cost is concentrated in the relaxed evaluation of L(E). As in
the proof of Theorem 7, this evaluation can be done in time O(SM(n+ p; r) logn). �

Theorem 15. Let K;L2K[x; �]n;r with n> r and s= deg�K > 0. Right pseudo-division
of L by K and simpli�cation yields a relation

AL = QK+R;

where A; Q = quo�(L; K); R = rem�(L; K) 2 K[x; �]. If n0 > n is such that A; Q;R 2
K[x; �]n0;r, then A; Q and R can be computed in time O(SM(n0; r) logn0).

Proof. Modulo a shift x 7!x+x0, we may assume without loss of generality that K and L
are non singular at the origin. We now use the following algorithm:

� We compute the canonical fundamental system H of solutions to K(H) = 0 up to
order O(x2n

0+r). This requires a time O(SM(n0; s) logn0).

� We computeG=L(H) withR(H)=AG up to orderO(x2n
0+r). This requires a time

O(SM(n0; r)).

� We determine the operator 
2K[[x]][�]s with 
(H)=xsG up to order O(x2n
0+r).

Lemma 14 shows that this can be done in time O(M(n0; s) logn0).

� By Theorem 8, we have R = x¡s A 
 and x¡s 
 is known up to order O(x2n
0
).

Now x¡s 
0; :::; x
¡s 
s¡1 are truncated rational functions, for which the degrees

of the numerators and denominators are bounded by n0. Using rational function
reconstruction [18], we may thus compute Nk/Dk=x

¡s
k with gcd(Nk;Dk)=1 in
time sO(M(n) logn). Taking A= lcm(D0; :::; Ds¡1), we �nd R.

� Once A and R are known, we compute Q using the algorithm from Theorem 13.

The total complexity of this algorithm is bounded by O(SM(n0; r) logn0). �

Remark 16. In the above proof, we have assumed that n0 is known beforehand. In general,
we may still apply the above algorithm for a trial value n�. Then the algorithm may either
fail (for instance, if deg lcm(D0; :::; Ds¡1)> n�), or return the triple (A; Q; R) under the
assumption that A; Q;R2K[x; �]n�;r. We may then check whether the triple is correct in
time O(SM(n�; r)). Applying this procedure for successive guesses n�= n; 2n; 4n; :::, the
algorithm ultimately succeeds for an n� with n�62 n0. Using the monotonicity hypothesis,
the total running time thus remains bounded by O(SM(n�; r) logn�)=O(SM(n0; r) logn0).

5. Euclidean operations

5.1. Randomized algorithms
It is classical that greatest common right divisors and least common left multiples exist
in the skew euclidean domain K(x)[�]: given two operators K;L2K(x)[�], the greatest
common right divisor ¡= gcrd(K;L) and the least common left multiple �= lclm(K; L)
are the unique monic operators with

K(x)[�] ¡ = K(x)[�]K+K(x)[�]L

K(x)[�] � = K(x)[�]K \K(x)[�]L:
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Assume now that K; L 2 K[x; �] and let A and B be monic polynomials of minimal
degrees, such that A ¡ and B � are in K[x; �]. Then we call ¡�= gcrd�(K; L) =A ¡ and
��= lclm�(K;L)=B � the (simpli�ed) pseudo-gcrd and pseudo-lclm of K and L.

Lemma 17. Let K;L2K[x; �]n;r be such that K and L are non singular at the origin, as
well as gcrd�(K; L) or lclm�(K; L). Let G and H be the canonical fundamental systems
of solutions to K(G)=0 and L(H)=0. Then

deg� lclm�(K;L) = dim([Vect(G)+Vect(H)]modx2r)
deg� gcrd�(K;L) = dim([Vect(G)\Vect(H)]modx2r):

Proof. Let ¡� = gcrd�(K; L), �� = lclm�(K; L), s = deg� ¡� and t = deg� �� 6 2 r. If
�� is non singular, then it admits a canonical fundamental system of solutions M =
(M0; :::; Mt¡1) with (Mi)i = 1 and (Mi)j = 0 for all i; j < t with i =/ j. In particular,
dim (Vect(M)modx2r)= t. Since �� is the least common left multiple of K and L, we also
have Vect(M)=Vect(G)+Vect(H), which completes the proof of the �rst equality. If ¡�

is non singular, then we obtain the second equality in a similar way.
If �� is non singular, then we also have dim (Vect(K) mod x2r) = deg� K and

dim (Vect(L) mod x2r) = deg� L, since K and L are non singular. Now dim([Vect(G) \
Vect(H)] mod x2r) = dim (Vect(K) mod x2r) + dim (Vect(L) mod x2r) ¡ dim([Vect(G) +
Vect(H)] mod x2r), whence dim([Vect(G) \ Vect(H)] mod x2r) = deg� K + deg� L ¡
deg���=deg�¡�. If ¡� is non singular, then we obtain the �rst equality in a similar way. �

Theorem 18. Let K;L2K[x; �]n;r and n0>n be such that ¡�= gcrd�(K;L)2K[x; �]n0;r
and n> r. Assume that K, L and gcrd�(K; L) (or lclm�(K; L)) are non singular at the
origin. Then we may compute ¡� in time O(SM(n0; r) logn0).

Proof. We compute ¡� using the following algorithm:

� We compute the canonical fundamental systems of solutions G and H to K(G)=0
and L(H)=0 at order O(x2n

0+r). This can be done in time O(SM(n0; r) logn0).

� Using linear algebra, we compute a basis B for V = Vect(G) \ Vect(H) at order
O(x2n

0+r). This can be done in time O(n0 r!¡1). By Lemma 17, we have s :=
dim(V modx2r)= deg� ¡�. We also notice that vmax(B)<r.

� We compute 
= ann(B)= gcrd(K;L) at order O(x2n
0
). By Theorem 8, this can be

done in time O(SM(n0; r) logn0).

� We compute ¡� from 
modx2n
0
using rational function reconstruction.

This algorithm requires a total running time O(SM(n0; r) logn0). �

Remark 19. In the above proof, we have again assumed that n0 is known beforehand.
Below, we will discuss ways to check the correctness of the computed result for a trial
value n�, after which a similar strategy as in remark 16 can be applied. During the relaxed
computation of G and H , we may also check whether V =? at each next coe�cient. In
the particular case when ¡=1, the running time of the algorithm will then be bounded by
O(SM(n�; r) log n�), where n� is the smallest order at which common solutions no longer
exist. This kind of early termination only works for this very special case.

Remark 20. Notice that ¡� might be singular at the origin, even if K, L and lclm�(K;L)
are not. This happens for instance when K is the minimal annihilator of the vector (1; x)
and L the minimal annihilator of the vector (ex; x), so that ¡= �¡ 1.
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Theorem 21. Let K;L2K[x; �]n;r and n0>n be such that ��= lclm�(K;L)2K[x; �]n0;2r
and n> r. If K, L and lclm�(K;L) (or gcrd�(K;L)) are non singular at the origin, then
we may compute �� in time O(SM(n0; r) logn0).

Proof. Similar to the proof of Theorem 18, by taking V =Vect(K) +Vect(L) instead of
V =Vect(K)\Vect(L). �

5.2. Certifying correctness
The assumption that lclm�(K; L) should be non singular is still a bit unsatisfactory in
Theorems 18 and 21, even though the probability that a randomly chosen point is singular
is in�nitesimal. If we drop this assumption, then we still have s > deg� ¡� in the proof
of Theorem 18. Consequently, �candidate� pseudo-gcrds ¡� found by the algorithm are
genuine pseudo-gcrds whenever ¡� pseudo-divides both K and L. Using the right division
algorithms from the previous section, this can be checked in time O(SM(n0 r; r) log n0) in
the case of gcrds and O(SM(n r; r) logn0) in the case of lclms.

Remark 22. Using the polynomial linear algebra techniques from [17, 6], it is likely that
one may prove that PK =A¡� for some P 2K[x]nr and A2K[x; �]nr;r. If this is indeed
the case, then the trial divisions of K and L by ¡� can actually be carried out in time
O(SM(n r; r) logn0).

An alternative way to check whether candidate gcrds and lclms are correct is to compute
Bezout and Ore relations. More precisely, given K; L 2K(x)[�] with L 2/ Q(x)K, there
exist operators A;B;C;D2K(x)[�] with�

¡
0

�
=

�
A B
C D

��
K
L

�
;

deg� A K; deg� B L < deg� � and C K = ¡D L = �. The 2 � 2 matrix at the righthand
side will be called the Euclidean matrix E=Eucl(K; L) of K and L. In a similar way as
above, we may de�ne a (simpli�ed) pseudo-Euclidean matrix E�=Eucl�(K;L) with entries
A�; B�; C�;D� in K[x; �], whenever K; L 2 K[x; �]. We will say that Eucl(K; L) is non
singular at x0, if the denominators of A;B;C and D do not vanish at x0.

Theorem 23. Let K;L2K[x; �]n;r and n0>n be such that E�=Eucl�(K;L)2K[x; �]n0;r
2�2

and n> r. If K, L, lclm�(K; L) and Eucl(K; L) are non singular at the origin, then we
may compute �� in time O(SM(n0; r) logn0)=O~(n0 r!¡1).

Proof. Assuming n0 known, we compute Eucl(K;L)=
�
A B
C D

�
at order O(x2n

0
) as follows:

� We compute the canonical fundamental systems of solutions G and H to K(G)=0
and L(H)=0 at order O(x2n

0+3r).

� We compute a basis X for Vect(G) \ Vect(H) at order O(x2n
0+3r), together with

bases Ĝ and Ĥ for the supplements of Vect(X) in Vect(G) resp. Vect(H). We also
compute ¡= ann(X) at order O(x2n

0+2r).

� We solve the systems A(K(Ĥ))=¡(Ĥ) and B(L(Ĝ))=¡(Ĝ) in A resp. B at order
O(x2n

0
), using Lemma 14.

� We compute a basis Y for Vect(G)+Vect(H) at order O(x2n
0+2r), as well as bases

H~ and G~ for the vector spaces Vect(K(Y )) resp. Vect(L(Y )) at order O(x2n
0+2r).

� We compute C =Kdeg�K
¡1 ann(H~) and D=¡Ldeg�L ann(G~) at order O(x

2n0).
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We �nally compute E� from A; B; C and D using rational function reconstruction. The
complexity analysis and the remainder of the proof is done in a similar way as in the proofs
of Theorems 15 and 18. �

With the above techniques, we may at least verify whether computed pseudo-gcrds or
pseudo-lclms are correct. For a fully deterministic algorithm, we still need a way to �nd
a point where lclm�(K; L) is non singular. This can be done by brute force. Let us state
the result in the most general setting of pseudo-Euclidean matrices.

Theorem 24. Let K;L2K[x; �]n;r and n0>n be such that E�=Eucl�(K;L)2K[x; �]n0;r
2�2

and n> r. Then we may compute E� in time O(SM(n0; r) logn0+n0 (M(n) r+ r! log r))=
O~(n0 (r!+n r)).

Proof. Let k=deg�K, l=deg�L, and assume �rst that we know n0. Let x0; :::; xn0+n be
n0+ n+ 1 be pairwise distinct, randomly chosen points in K at which K and L are non
singular. At each xi, we compute canonical fundamental systems of solutions G and H

for K and L at order O(xk+l). We claim that this can be done in time O(M(n0) r logn0+
n0 (M(n) r+ r! log r)).

Indeed, it requires a time O((n+ r)M(r) log r) to rewrite each operator with respect
to @. We next perform a multipoint evaluation of the coe�cients of these operators to
obtain the shifted operators at x0; :::; xn0+n (this requires a time O(M(n0) r log n0)).
The truncations of these operators at order O(xk+l+r) are then converted back to the
respresentation with respect to �. This can be done in time O(n0 r M(r) log r). Using
Theorem 7, we �nally compute the required fundamental systems of solutions in time
O(n0SM(r; r) log r)=O(n0 r! log r).

From E�2K[x; �]n0;r
2�2, we get ��= lclm�(K;L)2K[x; �]n0+n;2r. Since we assumed n0 to

be su�ciently large, it follows that ��= lclm�(K;L) is non singular at one of the points xi.
At such a point xi, the canonical fundamental systems of solutions G and H generate
a vector space V =Vect(G)+Vect(H) of maximal dimension s :=deg���, and with a basis
y0; :::; ys¡1 such that v(yk) = k for all 06 k < s. We �nally apply Theorem 23 in order to
obtain E�. If n0 is unknown, then we use a sequence of guesses n0=n;2n;4n; :::, as in the
previous proofs. �

Remark 25. In the case of least common left multiples, we may directly compute �� using
Theorem 21 and certify the result using trial division by K and L. This allows us to use
the weaker assumption ��2K[x; �]n0;2r instead of E�2K[x; �]n0;r

2�2, whereas the complexity

bound becomes O(SM(n r; r) logn0+n0 (M(n) r+ r! log r))=O~(n0 (r!+n r)).

5.3. Summary of the complexity bounds for Euclidean operations

We have summarized our complexity bounds for Euclidean operations on two operators
K; L 2K[x; �]n;r in Table 1. We systematically write n0 for the degree in x of the result.
We also write n� for the degree of the Euclidean matrix in x.

The algorithms in the �rst line correspond to applying Theorems 18, 21 and 23 at
a randomly chosen point, without checking the result. The second line corresponds to the
Las Vegas randomized algorithm for which the answers are certi�ed through trial division
(the bound for gcrds might further drop to O~(n r!) in view of Remark 22; more generally,
the bounds can be restated in terms of sizes of certi�cates). In the third line, we rather
use Euclidean matrices for the certi�cation. The fourth line shows complexity bounds for
the deterministic versions of our algorithms.
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In comparison, several randomized Las Vegas algorithms were given in [6] that achieve
the complexity bound O~(n r!) for lclms. This is in particular the case for He�ter's algo-
rithm [19], when using Theorem 4. The non determinism is due to the use of a fast Las
Vegas randomized algorithm for the computation of kernels of matrices with polynomial
entries [6, Theorem 2]. Grigoriev established complexity bounds for gcrds which rely on
a similar reduction to polynomial linear algebra. Along the same lines as in [6], this should
lead to a Las Vegas randomized algorithm of complexity O~(n r!), although we did not
check this in detail.

In summary, the new algorithms do not achieve any improvements in the worst case.
Nevertheless, the uncerti�ed versions of our algorithms admit optimal running times up to
logarithmic factors in terms of the combined input and output size. The certi�ed random-
ized versions satisfy similar complexity bounds in terms of the size of a suitable certi�cate;
such bounds can sometimes be better than the previously known worst case bounds. When
performing our expansions at a randomly chosen point in K, we also recall that the prob-
ability of failure is exponentially small as a function of the bitsize of this point.

Algorithm gcrd lclm Euclidean matrix
Randomized, uncerti�ed O~(n0 r!¡1) O~(n0 r!¡1) O~(n0 r!¡1)

Certi�ed via division O~(n0 r!) O~(n r!)

Euclidean certi�cation O~(n� r!¡1) O~(n� r!¡1) O~(n0 r!¡1)

Deterministic O~(n� (r!+n r)) O~(n0 (r!+n r)) O~(n0 (r!+n r))

Table 1. Complexity bounds for the Euclidean operations on two operators K and L.

5.4. Generalizations
The algorithms from Section 5.1 extend in a straightforward way to the computation of
greatest common right divisors and least common left multiples of more than two oper-
ators. For instance, using obvious notations, we obtain the following generalizations of
Theorems 21 and 18.

Theorem 26. Let L1; :::; Lk2K[x; �]n;r with n> r and r 0> r, n0>max (n; r 0) be such that
�� = lclm�(L1; :::; Lk) 2 K[x; �]n0;r 0. Assume that L1; :::; Lk and �� are all non singular
at the origin. Then we may compute �� in time O(SM(n0; r 0) log n0+ k SM(n0; r) logn0+
k r (r 0)!¡2n0).

Proof. We compute �� using the following algorithm:

� We �rst compute the canonical fundamental systems of solutions Hi to Li(Hi) = 0

at order O(x2n
0+r 0). This can be done in time O(k SM(n0; r) logn0).

� Let Vi;j =Vect(Hi) + ���+Vect(Hj) for all 16 i6 j 6 k. Using linear algebra, we
may recursively compute a basis Bi;j for Vi;j from bases Bi;m and Bm+1;j for Vi;m
and Vm+1;j, where m= b(i+ j)/2c. This algorithm yields a basis B for V1;k in time
O(k r (r 0)!¡2n0). Using a suitable generalization of Lemma 17, we also notice that
dim(V modxr

0
)=deg���.

� We compute 
 = ann(B) = lclm(L1; :::; Lk) at order O(x2n
0
). By Theorem 8, this

can be done in time O(SM(n0; r 0) logn0).

� We compute �� from 
modx2n
0
using rational function reconstruction.

We obtain the result by adding up all complexity bounds. �

Joris van der Hoeven 13



Remark 27. When taking r 0 = k r 6 n0 and using [2], the complexity bound simpli�es
to O(SM(n0; k r) logn0)=O(k!¡1 r!¡1n0 log n0+ k rM(n0) log2n0). By [6, Theorem 6], we
may always take n0=n r k2, after which the bound further reduces to O~(k!+1 r! n). In our
randomized setting, this improves upon the bounds from [6, Figure 1].

Remark 28. If we also require a certi�cation of the result, then we may use the trial
division technique. This amounts to k exact divisions of operators in K[x; �]n0+nr 0;r 0 by
L1; :::; Lk. Using the division algorithm from Section 4, and taking r 0 = k r 6 n0 and
n0=n r k2 as above, this can be done in time

O(k SM(n0+n r 0; r 0) log (n r 0))=O~(k (n0+n r 0) (r 0)!¡1)=O~(k!+2 r!n):

This is slightly better than the new bound from [6].

Theorem 29. Let L1; :::;Lk2K[x; �]n;r and n0>n>r be such that ¡�=gcrd�(L1; :::; Lk)2
K[x; �]n0;r. Assume that L1; :::; Lk and ¡� are all non singular at the origin. Then we may
compute ¡� in time O(SM(n0; r) logn0+ k SM(r; r) log r).

Proof. The proof is similar to the one of Theorem 26, except for the way how we compute
a basis for V = Vect(H1) \ ��� \ Vect(Hk). Indeed, we �rst compute a basis B mod xr for
V mod xr. This requires a time O(k SM(r; r) log r) for the computation of H1; :::; Hk

modulo xr and a time O(k r!) for the remaining linear algebra. We next compute the
unique constant matrix C such that B = C H1 modulo xr. Since ¡� is non singular, we
have B = C H1 at any order, so it su�ces to compute H1 up to order x2n

0+r in order to
obtain B up to order x2n

0+r. �

Remark 30. An interesting question is whether there exists a faster algorithm to com-
pute the orders s and t of ¡� = gcrd�(L1; :::; Lk) and �� = lclm�(L1; :::; Lk), without
computing ¡� and �� themselves. For this, it suffices to compute the dimensions of
Vect(H1) \ ��� \ Vect(Hk) and Vect(H1) + ��� + Vect(Hk). Assuming that we are at
a �non singular point�, the answer is therefore yes: using the techniques from the proofs
of Theorems 29 and 26, we may compute s in time O(k SM(r; r) log r) = O~(k r!)

and t in time O(k SM(t; r) log t+ k r t!¡1)=O~(k r t!¡1).
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