
HAL Id: hal-00557750
https://hal.science/hal-00557750v2

Preprint submitted on 28 Mar 2012 (v2), last revised 2 Jul 2015 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the complexity of skew arithmetic
Joris van der Hoeven

To cite this version:

Joris van der Hoeven. On the complexity of skew arithmetic. 2011. �hal-00557750v2�

https://hal.science/hal-00557750v2
https://hal.archives-ouvertes.fr


On the complexity of skew arithmetic
∗

Joris van der Hoeven

LIX, CNRS
École polytechnique

91128 Palaiseau Cedex
France

Email: vdhoeven@lix.polytechnique.fr

Web: http://lix.polytechnique.fr/~vdhoeven

September 9, 2011

In this paper, we study the complexity of several basic operations on linear differential
operators with polynomial coefficients. As in the case of ordinary polynomials, we
show that these complexities can be expressed in terms of the cost of multiplication.

Keywords: Linear differential operators, algorithm, complexity, multiplication, local
solution, division, gcd, lcm

A.M.S. subject classification: 68W30, 68Q15, 34M03, 12E15

1. Introduction

LetK be an effective field of constants of characteristic zero, so that all field operations can
be carried out by algorithms. Given an indeterminate x and the derivation δ=x ∂, where
∂=∂/∂x, we will study various operations in the skew ring K[x, δ], such as multiplication,
division, greatest common divisors, series solutions, etc. In analogy with the commutative
case, we will give bounds for the computational complexities of these operations in terms
of the complexity of operator multiplication.

For our complexity measures, it is convenient to assume that all field operations can be
carried out in constant time O(1). We will try to express the complexities of our algorithms
in terms of the following standard complexities:

• The time M(n) required for the multiplication of two polynomials of degrees <n

and coefficients in K. It is classical [6] that M(n) = O(n log n log log n) and
M(n)=O (n logn) if K admits sufficiently many 2p-th roots of unity [7].

• The complexity O(rω) of multiplying two r × r matrices with entries in K. It is
classical [13, 11, 8] that ω < 2.376, although ω≈ 3 in practice.

We will denote by K[x]n the subset of K[x] of polynomials of degree <n. Likewise, we
denote by K[x, δ]n,r the set of operators L∈K[x, δ] of degree degxL<n in x and degree
degδL<r in δ.

Now consider two linear differential operators K,L∈K[x, δ]n,r. We start with studying
the following complexities:

• The complexity SM(n, r) of multiplying K and L.

• The complexity SV(n, r) of applying L to a vector of r polynomials in K[x]n.

∗. This work has been supported by the ANR-09-JCJC-0098-01 MaGiX project, as well as a Digiteo 2009-

36HD grant and Région Ile-de-France.

1

http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68W30&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=68Q15&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=34M03&submit=Search
http://www.ams.org/mathscinet/search/mscbrowse.html?sk=default&sk=12E15&submit=Search


• The cost SF(n, r) to compute a fundamental system of r solutions to the monic
equation (δr +L) f = 0 in K[[x]], up to order O(xn), while assuming the existence
of such a fundamental system.

• Given a vector V of r truncated power series inK[x], the cost SA(n, r) of computing
a monic operator in A= δr+K[x, δ]n,r with A(V )=O(xn).

The special case n= r was first studied in [15], where it was shown that SM(n,n)=O(nω),
using evaluation-interpolation techniques. The inverse bound nω=O(SM(n, n)) has been
proved in [5]; this paper also contains detailed information on the constant factors involved
in these bounds.

For fixed constants α, β > 0, we notice that M(α n) = O(M(n)), (β r)ω = O(rω),
SM(αn, β r) = O(SM(n, r)), etc. In this paper, we will freely use this remark without
further mention. In order to simplify our complexity estimates, it will be convenient to
make a few additional assumptions. First of all, we will assume that ω > 2, whence
in particular M(n) log n = O(nω−1). We will also assume that the function M(n)/n is
increasing and that SM(n, r)/(n r) is increasing in both n and r. This will indeed be the
case for the complexity bounds for SM(n, r) that will be given in section 3.

In section 2, we will first prove (see theorems 2 and 3) that the problems of multipli-
cation and operator-vector application are essentially equivalent when n> r. In section 3,
we recall the best available bounds in the case when n � r. It remains an open question
whether these bounds are optimal.

In section 4, we show that the problems of computing fundamental systems of solution
and its inverse can be reduced to operator multiplication modulo a logarithmic overhead
(see theorems 13 and 14). This provides a dual way to perform operations on differential
operators by working on their fundamental systems of solutions. In section 5, we start with
the operations of exact division and division with remainder. In section 6, we consider
greatest common divisors and least common multiples. Again, we will show how to express
the complexities of these operations essentially in terms of the complexity SM(n, r) of
multiplication (see theorems 19, 21, 23 and 26).

To the best of our knowledge, the idea to perform operations on linear differential
operators via power series solutions was first proposed (but only partially worked out)
in [3, Chapter 10]. We were independently aware of this possibility and prefer the use
of fundamental systems of solutions (so as to force a clean bijection between operators
and solution spaces). It is also possible to mimic classical divide and conquer algorithms
for division, greatest common divisors and least common multiples, while using adjoints
in order to perform the recursive operations on the appropriate side. Such algorithms
were implemented inside Mathemagix [18] and we plan to analyze them in a forth-
coming paper.

2. Evaluation and interpolation

The key argument behind the proof from [15] that SM(n, n) = O(nω) is the observa-
tion that an operator L ∈ K[x, δ]n,r is uniquely determined by its images on the vector
x;r= (1,	 , xr−1). This makes it possible to use a similar evaluation-interpolation strategy
for the multiplication of differential operators as in the case of FFT-multiplication of
commutative polynomials. More precisely, given L ∈K[x, δ]n,r, let ΦL

r+n,r be the matrix
of the mapping K[x]r→K[x]r+n;P � L(P ) with respect to the bases x;r and x;r+n:

ΦL
r+n,r =







L(1)0 
 L(xr−1)0� �
L(1)r+n−1 
 L(xr−1)r+n−1





.

2 On the complexity of skew arithmetic



Lemma 1. Let L∈K[x, δ]n,r. Then

a) We may compute ΦL
r+n,r

as a function of L in time O(nM(r) log r).

b) We may recover L from ΦL
r+n,r

in time O(nM(r) log r).

Proof. Consider the expansion of L with respect to x

L(x, δ) = L0(δ)+
 +xn−1Ln−1(δ).

For all i, j, we have

L(x, δ)(xj)i+j = [xiLi(δ)](x
j)i+j

= [xi+jLi(δ+ j)(1)]i+j

= Li(j).

In other words, ΦL
r+n,r is a lower triangular band matrix

ΦL
r+n,r =













L0(0)� 

Ln−1(0) L0(r− 1)
 �

Ln−1(r− 1)













of bandwidth 6n. The coefficients on the i-th subdiagonal of ΦL
r+n,r are exactly the result

of a multipoint evaluation of Li at 0, 	 , r − 1. It is classical [10, 14, 2] that both
multipoint evaluation and the inverse operation of interpolation can be performed in time
O(M(r) log r). Doing this for each of the polynomials L0,	 , Ln−1 yields the result. �

Theorem 2. If n> r, then

SM(n, r) = O(SV(n, r)+nM(r) log r) (1)

Proof. Let K,L∈K[x, δ]n,r and assume that we want to compute KL. We may evaluate
L(x;2r) in time SV(max (n, 2 r), 2 r) = O(SV(n, r)). We may also evaluate K(L(x;2r)) in
time SV(n+2 r, 2 r)=O(SV(n,r)). Using the lemma, we may recoverKL fromK(L(x;2r))
in time O(nM(r) log r). This completes the proof. �

Theorem 3. If n> r, then

SV(n, r) = O(SM(n, r)+nM(r) log r). (2)

Proof. Assume now that we are given K(x, δ) ∈ K[x, δ]n,r, as well as a vector V =
(V0,	 , Vr−1)∈K[x]n

r and that we want to evaluate K(V ) = (K(V0),	 , K(Vr−1)). This is
equivalent to evaluating the operator K∗=K(x, δ− r) at the vector xr V . It is classical [1]
thatK∗ can be computed in timeO(nM(r)). Using the lemma, we may compute the unique
operator L∈K[x,δ]n+r,r with L(x;r)=xr V in timeO((n+r)M(r) logr)=O(nM(r) logr).
We may next compute the product K∗L in time SM(n+ r, r)=O(SM(n, r)). The lemma
finally allows us to evaluate K∗L at x;r in time O(nM(r) log r), thereby yielding K(V ). �

3. Basic complexity bounds

Let us review the best know algorithms (asymptotically speaking, and up to constant
factors) for the multiplication of linear differential operators and for the evaluation of linear
differential operators at vectors of polynomials. We will treat the cases n > r and r > n

separately.

Joris van der Hoeven 3



3.1. Large degrees n> r

Theorem 4. If n> r, then

SM(n, r) = O(M(n r) r).

Proof. Consider two operators K =
∑

i,j
Ki,j x

j δi, L=
∑

i,j
Li,j x

j δi ∈K[x, δ]n,r. Then
we may compute their operator product using the formula

KL =
∑

k

1
k!

(

∂

∂δ

)

k

K∗

(

x∂

∂x

)

k

L, (3)

attributed to Takayama, where

K∗L =
∑

i,j ,i′,j ′

Ki,jLi′,j ′ x
j+j ′ δi+i′

denotes the commutative product of K and L. Commutative products can be computed
in time O(M(n r)) using Kronecker substitution [12, 9], whence the result follows.

In practice, it is often possible and best to compute the commutative products using
bivariate FFT multiplication. In that case several of the FFT-transforms can be shared.
For instance, if n> r, then the most expensive step is to compute the r2 transforms with
respect to x of the r coefficients in δ of the first r derivatives (x ∂/∂x)kL. For large n, this
optimization yields an algorithm of complexity ∼(1/3)M(n) r2. �

Theorem 5. If n> r, then

SV(n, r) = O(M(n r)min (n, r)).

Proof. This is a direct consequence of theorems 3 and 4.
In practice, in the domain where FFT-multiplication is most efficient, it is better to

use a more direct method to obtain this result. Given L∈K[x, δ]n,r and V ∈K[x]n
r , we use

the following algorithm:

• Compute the r2 FFT-transforms of δjVi with i, j < r and the r FFT-transforms of
the coefficients of L with respect to δ.

• From these values, deduce the FFT-transforms of the r entries of L(V ) using 2 n−1
scalar r× r matrix-vector multiplications.

• Recover L(V ) using r inverse transforms.

This algorithm has a complexity ∼(1/3)M(n) r2, for large n. �

If n=O(r4−ω), then the following result becomes more efficient for the evaluation of
linear differential operators at vectors of polynomials:

Theorem 6. If n> r, then we have

SV(n, r) = O(n2 rω−2).

Proof. We may cut both L and V into O(n/r) pieces in K[x, δ]r,r and K[x]r
r. Hence

SV(n, r) = O((n/r)2 SV(r, r)) = O(n2 rω−2). Here we repeatedly use the commutation
rule L(x, δ)xk= xkL(x, δ+ k), when considering L(x, δ) and xk as operators. The twist
L(x, δ)� L(x, δ+ k) can be computed in time O(rM(r)), for L∈K[x, δ]r,r [1]. �

4 On the complexity of skew arithmetic



If both n=O(r4−ω), this yields the following more efficient algorithm for the multipli-
cation of linear differential operators:

Theorem 7. If n> r, then we have

SM(n, r) = O(n2 rω−2).

Proof. Direct consequence of theorems 2 and 6. �

We recall from [5] that nω=O(SM(n, n)). More generally, we have:

Theorem 8. If n > r, then the product of an r × n matrix and an r × r matrix with

coefficients in K can be computed in time O(SM(n, r)).

Proof. By the result from [5], the problem is equivalent to the computation of k= ⌈n/r⌉
operators K0, 	 , Kk−1 in K[x, δ]r,r with a fixed operator L ∈ K[x, δ]r,r. Setting K =

K0 + x2r K1 + 
 + x2r(k−1) Kk−1, we may compute K L in time O(SM(n, r)). We may
directly read off the products K0L,	 ,Kk−1L from the result. �

Remark 9. An interesting open problem at the time of writing concerned the existence
of a better bound for SM(n, r) than the one given in theorem 7. In collaboration with
Benoit and Bostan, we have recently been able to prove the sharper bound SM(n, r) =
O(rω−1n+ rM(n) logn) for the case when n> r.

3.2. Large orders r>n

Theorem 10. If r>n, then

SM(n, r) = O(M(r)n2).

Proof. Let K,L∈K[x, δ]n,r and consider the expansion

L(x, δ) = L0(δ)+
 +xn−1Ln−1(δ)

of L in δ. Then we have

K(x, δ)L(x, δ) =
∑

k<n

K(x, δ) (xkLk(δ))

=
∑

k<n

xkK(x, δ+ k)Lk(δ)

For each k, both the Taylor shift K(x, δ + k) and the product K(x, δ + k) Lk(δ) can be
computed in time O(M(r)n) [1]. �

Theorem 11. If r>n, then

SV(n, r) = O(nω−1 r).

Proof. Let L∈K[x,δ]n,r and V ∈K[x]n
r . We may compute L(x;n) in time O(nω−1 r), since

this really amounts to the computation of O(r/n) matrix products of size n×n. Writing
V =Mx;r for a constant n× r matrix M , we may thus compute L(V )=ML(x;n) in time
O(nω−1 r). �

Theorem 12. If r>n, then

SM(n, r) = O(nω−1 r+nM(r) log r)

Joris van der Hoeven 5



Proof. Let K,L∈K[x, δ]n,r. By lemma 1, we may compute ΦK
2r+2n,2r+n and ΦL

2r+n,2r in
time O(nM(r) log r). Since both of these matrices are band matrices of bandwidths 6n,
we may compute the product

ΦKL
2r+2n,2r = ΦK

2r+2n,2r+nΦL
2r+n,2r

in time O(nω−1 r). Again by lemma 1, we may reconstruct K L from ΦKL
2r+2n,2r in time

O(nM(r) log r). �

4. Local solutions

From now on, we will assume that n> r. We recall that an operator L∈K[x, ∂] of order r
is said to be non singular at x0, if its leading coefficient Lr does vanishes at x0. We will
say that an operator L∈K[x, δ] of order r is non singular (at the origin) if x−rL∈K[x, ∂]
and x−rL is non singular as an operator in ∂.

Given a non singular differential operator L ∈ K[x, δ]n,r+1 of order r, the equation
L(H)=0 admits a canonical fundamental systemH=(H0,	 ,Hr−1) of solutions inK[[x]]r,
with the property that (Hi)i=1 and (Hi)j=0 for all i, j < r with i� j. Conversely, given
a K-linearly independent vector of power series H ∈K[[x]]r, there exists a unique monic
operator L∈ δr+K[[x]][δ] of order r with L(H)=0. Let us show how to convert efficiently
between these two representations.

Theorem 13. Let L ∈ K[x, δ]n,r+1 be a differential operator of order r, which is non

singular at the origin, and let H be its canonical fundamental system of solutions. Then

we may compute H up to order O(xn) in time O(SV(n, r) logn). In other words,

SF(n, r) = O(SM(n, r) logn). (4)

Proof. Modulo multiplying L on the left by Lr
−1, we may assume without loss of generality

that L is monic. Since L is non singular at the origin, we have x−rL∈K[x, ∂]. Rewritten
in terms of δ, this means that L is of the form

L = ∆r(δ)+xCr−1∆r−1(δ)+
 +xrC0∆0(δ).

∆k(δ) = δ (δ− 1)
 (δ− k+1),

for certain C0,	 , Cr−1∈K[x]. Setting R=∆r(δ)−L∈ xK[x, δ]n−1,r, we observe that R
maps K[[x]] into xrK[[x]]. We now compute H using the “recursive” formula

H =







1�
xr−1





+∆r(δ)
−1(R(H)), (5)

where

∆r(δ)−1

(

∑

k>r

Akx
k

)

=
∑

k>r

Ak

∆r(k)
xk.

The equation (5) is a schoolbook example for applying the strategy of relaxed resolution of
power series equations [16, 17]. Since ∆r(δ)

−1 operates coefficientwise, it can be computed
in linear time. The main cost of the computation therefore reduces to the relaxed evaluation
of R(H). Using fast relaxed multiplication, this amounts to a cost

SF(n, r) = 2 SV(⌈n/2⌉, r)+ 4 SV(⌈n/4⌉, r)+
 +n SV(1, r).

6 On the complexity of skew arithmetic



Using the monotonicity assumption and theorem 3, the result follows. �

In what follows, given a non zero series Y in x, we denote by v(Y ) its valuation. Given
a vector V of elements in a K-vector space, we will also denote by Vect(V ) the subvector
space generated by the entries of V , and

vmax(V ) = max {v(Y ):Y ∈Vect(V ) \ {0}}.

Theorem 14. Let H = (H0, 	 , Hr−1) ∈ K[[x]]r be K-linearly independent. Then there

exists a unique monic operator L=ann(H)∈δr+K[[x]][δ]r with L(H)=0. Moreover, given

the truncation of H at order O(xn), we may compute L at order O(xn−vmax(H)) in time

O(SM(n, r) log r). In other words,

SA(n, r) = O(SM(n, r) log r). (6)

Proof. Modulo a triangularization of H , we may assume without loss of generality that
v(H0)<
 <v(Hr−1)= vmax(H). We define operators L[0],	 , L[r] by

L[0] = 1

L[i+1] =

(

δ−
δL[i](Hi)

L[i](Hi)

)

L[i].

Then L=L[r] annihilatesH and for any other operator L̃∈δr+K[x,δ]n,r with L̃(H)=0, we
would have (L̃−L)(H)=0, which is in contradiction with the fact that dimker (L̃−L)<r.

Moreover, by induction over i, we observe that the coefficient of x0 in L[i] is given by
(δ − v(H0))
 (δ − v(Hi−1)) and the coefficients of x0,	 , xn−1 in L[i] can be expressed in
terms of the coefficients of x0,	 ,xn−1+v(Hi−1) inH0,	 ,Hi−1. In particular, the truncation
of L at order O(xn−vmax(H)) is uniquely determined by the truncation of H at order O(xn).

In order to explicitly compute L up to a given order, it is more efficient to use a divide
and conquer approach. More precisely, given H ∈ (H0, 	 , Hr−1) ∈ K[x]n

r we compute
annn(H)∈ δr+K[x, δ]n,r using the following method:

• If r=1, then we take annn(H)= δ− (δH0/H0)modxn.

• Otherwise, let r= a+ b with a= ⌈r/2⌉.

• Compute A7 annn(H0,	 ,Ha−1).

• Evaluate I7 (A(Ha),	 , A(Hr−1))modxn.

• Compute B7 annn(I0,	 , Ib−1).

• Return L=BAmodxn.

If n > vmax(H), then it is easy to check that annn(H)(H) = O(xn−vmax(H)). For a fixed
constant C, we thus have

SA(n, 2 r) 6 2 SA(n, r)+C SM(n, r).

The result now follows from the monotonicity assumption. �

Remark 15. If SM(n, r)/r1+ǫ is increasing in r for some ǫ > 0, then the bound further
simplifies to SA(n, r)=O(SM(n, r)).

Remark 16. We notice that the operator L in theorem 14 is singular if and only if
vmax(H)= r− 1, and if and only if {v(Y ):Y ∈Vect(H) \ {0}}= {0,	 , r− 1}.

Joris van der Hoeven 7



Although a general operator L∈K[x, δ] can be singular at the origin, many operations
on operators (such as division and greatest common divisors) commute with translations
x� x+ x0, and the following lemmas can be used in order to reduce to the case when L

is non singular at the origin.

Lemma 17. Any operator L∈K[x, δ]n,r can be rewritten as an operator in K[x, ∂]n+r,r in

time O(SM(n, r)). Similarly, an operator L ∈ xr K[x, ∂] may be rewritten as an operator

in K[x, δ]n+r,r in time O(SM(n, r)).

Proof. In [15, 5], it is shown how to perform these rewritings using matrix products, so
that the result follows from theorem 8. �

Lemma 18. Given a non zero operator L ∈K[x, ∂]n,r, we may find a point x0 ∈K where

L is non singular in time O(M(n)).

Proof. Let Lk be the leading coefficient of L. Since degxLk < n, we have Lk(x0) � 0 for
some x0∈ {0,	 , n}. Using fast multipoint evaluation [4], we may find such a point x0 in
time O(M(n)). �

5. Division

From the formula (3) it is clear that both the degrees in x and δ are additive for the
multiplication of operators K,L∈K[x, δ]. In particular, if K,L∈K[x, δ]n,r and L is left
or right divisible by K, then the quotient is again in K[x, δ]n,r.

Theorem 19. Let K,L∈K[x, δ]n,r be such that L=QK for some Q∈K[x, δ]. Then we

may compute Q in time O(SM(n, r) logn).

Proof. By lemmas 17 and 18, and modulo a shift x� x+x0, we may assume without loss of
generality thatK and L are non singular at the origin. We now use the following algorithm:

• We first compute the canonical fundamental system of solutions H to L(H)= 0 up
to order O(xn+r). By theorem 13, this can be done in time O(SM(n, r) logn).

• We next evaluate I=K(H) and compute a K-basis G for Vect(I) at order O(xn+r).
This can be done in timeO(SM(n,r)), by theorems 3 and 8, and using linear algebra.
Since K is non singular, we have v(Y )>degδK⇒v(K(Y ))=v(Y ) for all Y ∈K[[x]].
In particular, the degδQ= degδL− degδK elements of H of valuations degδK,	 ,

degδL− 1 are mapped to set which spans a vector space of dimension degδQ. This
shows that s= dim (Vect(I)modxr)= degδQ.

• We now compute the monic annihilator Ω= ann(G) of G at order O(xn). This can
be done in time O(SM(n, r) log r)=O(SM(n, r) logn), by theorem 14.

• We return the truncation of QsΩ at order O(xn), where Qs=LdegδL/KdegδK.

Since each of the steps can be carried out in time O(SM(n, r) logn), the result follows. �

It is classical that euclidean division generalizes to the skew polynomial ring K(x)[δ].
In other words, given operators A,B ∈K(x)[δ] where B � 0, there exist unique operators
Q= quo(A,B) and R= rem(A,B) in K(x)[δ] with

A = QB+R,

8 On the complexity of skew arithmetic



and degδ R< degδ B. If A, B ∈K[x, δ] and I is the leading term of B with respect to δ,
then left multiplication of A by IdegδA−degδB+1 allows us to remain in the domain K[x, δ]:
there exist unique Q=pquo(A,B) and R=prem(A,B) in K[x, δ] with

IdegδA−degδB+1A = QB+R, (7)

and degδ R < degδ B. The operators Q and R are usually called pseudo-quotients and
pseudo-remainders. In some cases, a non trivial polynomial can be factored out in the
relation (7). Let J be monic, of maximal degree, such that J−1 QB,J−1R∈K[x, δ]. Then
we call J−1 Q= quo∗(A,B) and J−1R= rem∗(A,B) the “simplified” pseudo-quotient and
pseudo-remainder of A and B.

Lemma 20. Let H = (H0, 	 , Hr−1) ∈ K[[x]]r be K-linearly independent and define

p=vmax(Vect(H))+1. Given G∈ (xpK[[x]])r, there exists a unique operator L∈K[[x]][δ]r
of order <r with L(H)=G and we may compute its first n terms with respect to x in time

O(SM(n+ p, r) logn).

Proof. Let αi= v(Hi) for each i. Modulo a base change, we may assume without loss of
generality that α0<
 <αr−1. Let Φ:K[[x]]r→K[[x]]r be the operator with

Φ(V0,	 , Vr−1) = (xα0V0,	 , xαr−1Vr−1),

and let Φ−1 denote the inverse operator. Let Ψ:K[[x]][δ]r→K[[x]]r be the operator with

Ψ(K) = Φ−1(K(Φ(1))).

Writing K =
∑

i,k
Ki,kx

k δi and Ψ(K)i,k=(Ψ(K)i)k, we have






Ψ(K)0,k�
Ψ(K)r−1,k





 =







1 k+α0 
 (k+α0)
r−1� � �

1 k+αr−1 
 (k+αr−1)
r−1













K0,k�
Kr−1,k





.

In other words, Ψ and its inverse Ψ−1 operate coefficientwise and n coefficients can be
computed in time O(rωn).

Putting Hi = xαi + Ei with Ei = o(xαi) for each i, we may rewrite the equation
L(H)=G as

L = Ψ−1(Φ−1(G−L(E)))

and we observe that the coefficient of xk in the righthand side of (8) only depends on earlier
coefficients of 1, 	 , xk−1 in L. In particular, we may solve the equation using a relaxed
algorithm. Then the main cost is concentrated in the relaxed evaluation of L(E). As in
the proof of theorem 13, this evaluation can be done in time O(SM(n+ p, r) logn). �

Theorem 21. Let K,L∈K[x, δ]n,r with n> r and s= degδK > 0. Skew pseudo-division

of L by K and simplification yields a relation

AL = QK +R,

where A, Q = quo∗(L, K), R = rem∗(L, K) ∈ K[x, δ]. If n′ > n is such that A, Q,R ∈
K[x, δ]n′,r, then A, Q and R can be computed in time O(SM(n′, r) logn′).

Proof. Modulo a shift x� x+x0, we may assume without loss of generality that K and L

are non singular at the origin. We now use the following algorithm:

• We compute the canonical fundamental system H of solutions to K(H) = 0 up to
order O(x2n′+r). This requires a time O(SM(n′, s) logn′).

Joris van der Hoeven 9



• We computeG=L(H) withR(H)=AG up to orderO(x2n
′+r). This requires a time

O(SM(n′, r)).

• We determine the operator Ω∈K[[x]][δ]s with Ω(H)=xsG up to order O(x2n
′+r).

The lemma shows that this can be done in time O(M(n′, s) logn′).

• By theorem 14, we have R = x−s A Ω and x−s Ω is known up to order O(x2n
′

).
Now x−s Ω0, 	 , x−s Ωs−1 are truncated rational functions, for which the degrees
of the numerators and denominators are bounded by n′. Using rational function
reconstruction [9], we may thus compute Nk/Dk= x−sΩk with gcd (Nk, Dk)= 1 in
time sO(M(n) logn). Taking A= lcm(D0,	 , Ds−1), we find R.

• Once A and R are known, we compute Q using the algorithm from theorem 19.

The total complexity of this algorithm is bounded by O(SM(n′, r) logn′). �

Remark 22. In the above proof, we have assumed that n′ is known beforehand. In general,
we may still apply the above algorithm for a trial value n∗. Then the algorithm may either
fail (for instance, if deg lcm(D0, 	 , Ds−1)> n∗), or return the triple (A, Q, R) under the
assumption that A, Q,R∈K[x, δ]n∗,r. We may then check whether the triple is correct in
time O(SM(n∗, r)). Applying this procedure for successive guesses n∗= n, 2n, 4n,	 , the
algorithm ultimately succeeds for an n∗ with n∗62 n′. Using the monotonicity hypothesis,
the total running time thus remains bounded by O(SM(n∗, r) logn∗)=O(SM(n′, r) logn′).

6. Euclidean operations

It is classical that greatest common divisors and least common multiples exist in the
skew euclidean domain K(x)[δ]: given two operators K,L∈K(x)[δ], the greatest common
divisor Γ=gcd (K,L) and the least common multiple Λ= lcm(K,L) are the unique monic
operators with

K(x)[δ] Γ = K(x)[δ]K +K(x)[δ]L

K(x)[δ] Λ = K(x)[δ]K ∩K(x)[δ]L.

Assume now that K, L ∈ K[x, δ] and let A and B be monic polynomials of minimal
degrees, such that A Γ and B Λ are in K[x, δ]. Then we call Γ∗ = gcd∗ (K, L) =A Γ and
Λ∗= lcm∗(K,L)=B Λ the (simplified) pseudo-gcd and pseudo-lcm of K and L.

Theorem 23. Let K,L∈K[x, δ]n,r and n′>n be such that Γ∗= gcd∗ (K,L)∈K[x, δ]n′,r.

Assume that K, L and lcm∗(K,L) are non singular at the origin. Then we may compute Γ∗

in time O(SM(n′, r) logn′).

Proof. We compute Γ∗ using the following algorithm:

• We compute the canonical fundamental systems of solutions G and H to K(G)=0
and L(H)= 0 at order O(x2n′+2r). This can be done in time O(SM(n′, r) logn′).

• Using linear algebra, we compute a basis B for V = Vect(G) ∩ Vect(H) at order
O(x2n′+2r). This can be done in time O(n′ rω−1). Since Λ∗ = lcm∗(K, L) is non
singular, we have dim ([Vect(G) + Vect(H)] mod x2r) = degδ Λ∗ = degδ G +

degδ H − degδ Γ∗. Hence, s = dim (V mod x2r) = dim (Vect(G) mod x2r) +

dim (Vect(H)modx2r)−dim ([Vect(G)+Vect(H)]modx2r)= degδ Γ∗.

• We compute Ω=ann(B)= gcd (K,L) at order O(x2n
′

). By theorem 14, this can be
done in time O(SM(n′, r) logn′).

10 On the complexity of skew arithmetic



• We compute Γ∗ from Ωmodx2n′

using rational function reconstruction.

This algorithm requires a running time O(SM(n′, r) logn′). �

Remark 24. In the above proof, we have again assumed that n′ is known beforehand.
Below, we will discuss ways to check the correctness of the computed result for a trial
value n∗, after which a similar strategy as in remark 22 can be applied. During the relaxed
computation of G and H , we may also check whether V =∅ at each next coefficient. In
the particular case when Γ=1, the running time of the algorithm will then be bounded by
O(SM(n∗, r) log n∗), where n∗ is the smallest order at which common solutions no longer
exist. This kind of early termination only works for this very special case.

Remark 25. Notice that Γ∗ might be singular at the origin, even if K, L and lcm∗(K,L)
are not. This happens for instance when K is the minimal annihilator of the vector (1, x)
and L the minimal annihilator of the vector (ex, x), so that Γ= δ − 1.

Theorem 26. Let K,L∈K[x, δ]n,r and n′>n be such that Λ∗= lcm∗(K,L)∈K[x, δ]n′,r.

If K, L and lcm∗(K, L) are non singular at the origin, then we may compute Λ∗ in time

O(SM(n′, r) logn′).

Proof. Similar to the proof of theorem 23, by taking V =Vect(K) + Vect(L) instead of
V =Vect(K)∩Vect(L). �

Remark 27. The above algorithms can be generalized to gcds and lcms of more than two
operands. This is usually more efficient than the repeated computation of gcds or lcms
of pairs.

The assumption that lcm∗(K,L) should be non singular is still a bit unsatisfactory in
theorems 23 and 26, even though the probability that a randomly chosen point is singular
is infinitesimal. If we drop this assumption, then we still have s> degδ Γ∗ in the proof of
theorem 23. Consequently, “candidate” pseudo-gcds Γ∗ found by the algorithm are genuine
pseudo-gcds whenever Γ∗ pseudo-divides bothK and L. Using the division algorithms from
the previous section, this can be checked in time O(SM(n′ r, r) log n′) in the case of gcds
and O(SM(n r, r) logn′) in the case of lcms.

An alternative way to check whether candidate gcds and lcms are correct is to compute
Bezout and Ore relations. More precisely, given K, L ∈K(x)[δ] with L � Q(x)K, there
exist operators A,B,C,D∈K(x)[δ] with

(

Γ
0

)

=

(

A B

C D

)(

K

L

)

,

degδ A K, degδ B L < degδ Λ and C K = −D L = Λ. The 2 × 2 matrix at the righthand
side will be called the Euclidean matrix E=Eucl(K, L) of K and L. In a similar way as
above, we may define a (simplified) pseudo-Euclidean matrix E∗=Eucl∗(K,L) with entries
A∗, B∗, C∗,D∗ in K[x, δ], whenever K, L ∈ K[x, δ]. We will say that Eucl(K, L) is non
singular at x0, if the denominators of A,B,C and D do not vanish at x0.

Theorem 28. Let K,L∈K[x, δ]n,r and n′>n be such that E∗=Eucl∗(K,L)∈K[x, δ]n′,r
2×2.

If K, L, lcm∗(K,L) and Eucl(K,L) are non singular at the origin, then we may compute

Λ∗ in time O(SM(n′, r) logn′).

Proof. Assuming n′ known, we compute Eucl(K,L)=
(

A B

C D

)

at order O(x2n
′

) as follows:

• We compute the canonical fundamental systems of solutions G and H to K(G)=0
and L(H)= 0 at order O(x2n′+3r).

Joris van der Hoeven 11



• We compute a basis X for Vect(G) ∩ Vect(H) at order O(x2n
′+3r), together with

bases Ĝ and Ĥ for the supplements of Vect(X) in Vect(G) resp. Vect(H). We also
compute Γ= ann(X) at order O(x2n

′+2r).

• We solve the systems A
(

K
(

Ĥ
))

= Γ
(

Ĥ
)

and B(L(Ĝ)) = Γ(Ĝ) in A resp. B at
order O(x2n′

), using lemma 20.

• We compute a basis Y for Vect(G)+Vect(H) at order O(x2n
′+2r), as well as bases

H̃ and G̃ for the vector spaces Vect(K(Y )) resp. Vect(L(Y )) at order O(x2n
′+2r).

• We compute C =KdegδK
−1 ann(H̃ ) and D=−LdegδL ann(G̃) at order O(x2n′

).

We finally compute E∗ from A, B, C and D using rational function reconstruction. The
complexity analysis and the remainder of the proof is done in a similar way as in the proofs
of theorems 21 and 23. �

With the above techniques, we may at least verify whether computed pseudo-gcds or
pseudo-lcms are correct. For a fully deterministic algorithm, we still need a way to find
a point where lcm∗(K, L) is non singular. This can be done by brute force. Let us state
the result for pseudo-gcds; similar deterministic results hold for pseudo-lcms and pseudo-
Euclidean matrices.

Theorem 29. Let K,L∈K[x, δ]n,r and n′>n be such that Γ∗= gcd∗ (K,L)∈K[x, δ]n′,r.

Then we may compute Γ∗ in time O(SM(n′ r, r) logn′+n′ (M(n) r+ rω)).

Proof. Let k=degδK, l=degδL, and assume first that we know n′. Then, at n′+1 distinct
random points where K and L are non singular, we compute canonical fundamental sys-
tems of solutions G and H at order O(xk+l). This can be done in time O(n′ (M(n) r+ rω)).
We now pick a point at which the dimension of (Vect(G)+Vect(H))modxk+l is maximal
and apply the algorithm from theorem 23 in order to find Γ∗. If n′ is unknown, then we
use a sequence of guesses n′=n, 2n, 4n,	 , as in the previous proofs. �

Bibliography

[1] A.V. Aho, K. Steiglitz and J.D. Ullman. Evaluating polynomials on a fixed set of points. SIAM Journ.

of Comp., 4:533–539, 1975.

[2] A. Borodin and R.T. Moenck. Fast modular transforms. Journal of Computer and System Sciences ,
8:366–386, 1974.

[3] A. Bostan. Algorithmique efficace pour des opérations de base en calcul formel . PhD thesis, École
polytechnique, 2003.

[4] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets of points. Journal
of Complexity , 21(4):420–446, August 2005. Festschrift for the 70th Birthday of Arnold Schönhage.

[5] Alin Bostan, Frédéric Chyzak and Nicolas Le Roux. Products of ordinary differential operators by
evaluation and interpolation. In J. Rafael Sendra and Laureano González-Vega, editors, ISSAC ,
pages 23–30. Linz/Hagenberg, Austria, July 2008. ACM.

[6] D.G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta
Informatica , 28:693–701, 1991.

[7] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier series.
Math. Computat., 19:297–301, 1965.

[8] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. In Proc. of the

19th Annual Symposium on Theory of Computing , pages 1–6. New York City, may 25–27 1987.

[9] J. von zur Gathen and J. Gerhard. Modern Computer Algebra . Cambridge University Press, 2-nd
edition, 2002.

12 On the complexity of skew arithmetic



[10] R.T. Moenck and A. Borodin. Fast modular transforms via division. In Thirteenth annual IEEE

symposium on switching and automata theory , pages 90–96. Univ. Maryland, College Park, Md.,
1972.

[11] V. Pan. How to multiply matrices faster , volume 179 of Lect. Notes in Math. Springer, 1984.

[12] V. Pan and D. Bini. Polynomial and matrix computations . Birkhauser, 1994.

[13] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:352–356, 1969.

[14] V. Strassen. Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Inter-
polationskoeffizienten. Numer. Math., 20:238–251, 1973.

[15] J. van der Hoeven. FFT-like multiplication of linear differential operators. JSC , 33(1):123–127, 2002.

[16] J. van der Hoeven. Relax, but don’t be too lazy. JSC , 34:479–542, 2002.

[17] J. van der Hoeven. Relaxed multiplication using the middle product. In Manuel Bronstein, editor,
Proc. ISSAC ’03 , pages 143–147. Philadelphia, USA, August 2003.

[18] J. van der Hoeven, G. Lecerf, B. Mourain et al. Mathemagix. 2002. http://www.mathemagix.org.

Joris van der Hoeven 13


