On the complexity of skew arithmetic

Joris van der Hoeven

To cite this version:

Joris van der Hoeven. On the complexity of skew arithmetic. 2011. hal-00557750v1

HAL Id: hal-00557750 https://hal.science/hal-00557750v1
Preprint submitted on 19 Jan 2011 (v1), last revised 2 Jul 2015 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE COMPLEXITY OF SKEW ARITHMETIC*

Joris van der Hoeven
LIX, CNRS
École polytechnique
91128 Palaiseau Cedex
France
Email: vdhoeven@lix.polytechnique.fr
Web: http://lix.polytechnique.fr/~vdhoeven

January 19, 2011

Abstract

In this paper, we study the complexity of several basic operations on linear differential operators with polynomial coefficients. As in the case of ordinary polynomials, we show that these complexities can be expressed in terms of the cost of multiplication. KEYWORDS: Linear differential operators, algorithm, complexity, multiplication, local solution, gcd, lcm A.M.S. subject classification: 68W30, 68Q15, 34M03, 12E15

1. INTRODUCTION

Let \mathbb{K} be an effective field of constants of characteristic zero, so that all field operations can be carried out by algorithms. Given an indeterminate x and the derivation $\delta=x \partial$, where $\partial=\partial / \partial x$, we will study various operations in the skew ring $\mathbb{K}[x, \delta]$, such as multiplication, division, greatest common divisors, series solutions, etc. In analogy with the commutative case, we will give bounds for the computational complexities of these operations in terms of the complexity of operator multiplication.

For our complexity measures, it is convenient to assume that all field operations can be carried out in constant time $O(1)$. We will try to express the complexities of our algorithms in terms of the following standard complexities:

- The time $\mathrm{M}(n)$ required for the multiplication of two polynomials of degrees $<n$ and coefficients in \mathbb{K}. It is classical [4] that $\mathrm{M}(n)=O(n \log n \log \log n)$ and $\mathrm{M}(n)=O(n \log n)$ if \mathbb{K} admits sufficiently many 2^{p}-th roots of unity [5].
- The complexity $O\left(r^{\omega}\right)$ of multiplying two $r \times r$ matrices with entries in \mathbb{K}. It is classical [10, 8, 6] that $\omega<2.376$, although $\omega \approx 3$ in practice.

We will denote by $\mathbb{K}[x]_{n}$ the subset of $\mathbb{K}[x]$ of polynomials of degree $<n$. Likewise, we denote by $\mathbb{K}[x, \delta]_{n, r}$ the set of operators $L \in \mathbb{K}[x, \delta]$ of degree $\operatorname{deg}_{x} L<n$ in x and degree $\operatorname{deg}_{\delta} L<r$ in δ.

Now consider two linear differential operators $K, L \in \mathbb{K}[x, \delta]_{n, r}$. We start with studying the following complexities:

- The complexity $\mathrm{SM}(n, r)$ of multiplying K and L.
- The complexity $\mathrm{SV}(n, r)$ of applying L to a vector of r polynomials in $\mathbb{K}[x]_{n}$.

[^0]- The cost $\operatorname{SF}(n, r)$ to compute a fundamental system of r solutions to the monic equation $\left(\delta^{r}+L\right) f=0$ in $\mathbb{K}[[x]]$, up to order $O\left(x^{n}\right)$, while assuming the existence of such a fundamental system.
- Given a vector V of r truncated power series in $\mathbb{K}[x]$, the cost $\mathrm{SA}(n, r)$ of computing a monic operator in $A=\delta^{r}+\mathbb{K}[x, \delta]_{n, r}$ with $A(V)=O\left(x^{n}\right)$.
The special case $n=r$ was first studied in [11], where it was shown that $\operatorname{SM}(n, n)=O\left(n^{\omega}\right)$, using evaluation-interpolation techniques. The inverse bound $n^{\omega}=O(\mathrm{SM}(n, n))$ has been proved in [3]; this paper also contains detailed information on the constant factors involved in these bounds.

In section 2, we will first prove (see theorems 3 and 4) that the problems of multiplication and operator-vector application are essentially equivalent when $n \geqslant r$. In section 3 , we recall the best available bounds in the case when $n \neq r$. It remains an open question whether these bounds are optimal.

In section 4, we show that the problems of computing fundamental systems of solution and its inverse can be reduced to operator multiplication modulo a logarithmic overhead (see theorems 11 and 12). This provides a dual way to perform operations on differential operators by working on their fundamental systems of solutions. In section 5, we start with the operations of exact division and division with remainder. In section 6 , we consider greatest common divisors and least common multiples. Again, we will show how to express the complexities of these operations essentially in terms of the complexity $\operatorname{SM}(n, r)$ of multiplication (see theorems 17, 19, 20 and 23).

The idea to perform operations on linear differential operators via the corresponding fundamental systems of solutions has been proposed independently by A. Bostan, F. Chyzak and B. Salvy, but we are not aware of a work where this idea has been worked out in detail. It is also possible to mimic classical divide and conquer algorithms for division, greatest common divisors and least common multiples, while using adjoints in order to perform the recursive operations on the appropriate side. Such algorithms were implemented inside Mathemagix [15] and we plan to analyze them in a forthcoming paper.

2. Evaluation and interpolation

The key argument behind the proof from [11] that $\operatorname{SM}(n, n)=O\left(n^{\omega}\right)$ is the observation that an operator $L \in \mathbb{K}[x, \delta]_{n, r}$ is uniquely determined by its images on the vector $x^{; r}=\left(1, \ldots, x^{r-1}\right)$. This makes it possible to use a similar evaluation-interpolation strategy for the multiplication of differential operators as in the case of FFT-multiplication of commutative polynomials. More precisely:

Lemma 1. Any $L \in \mathbb{K}[x, \delta]_{n, r}$ is uniquely determined by its evaluation $L\left(x^{; r}\right) \in \mathbb{K}_{n+r-1}^{r}$ at $x^{; r}$ and

1. We may compute $L\left(x^{; r}\right)$ from L in time $O\left(n r^{\omega-1}\right)$.
2. We may compute L from $L\left(x_{; r}\right)$ in time $O\left(n r^{\omega-1}\right)$.

Proof. Let $L=\sum_{i, j} L_{i, j} x^{j} \delta^{i}$ and $\Lambda_{i, j}=L\left(x^{i}\right)_{i+j}$. Then

$$
\left(\begin{array}{ccc}
\Lambda_{0,0} & \cdots & \Lambda_{0, n-1} \\
\vdots & & \vdots \\
\Lambda_{r-1,0} & \cdots & \Lambda_{r-1, n-1}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
1 & (r-1) & \cdots & (r-1)^{r-1}
\end{array}\right)\left(\begin{array}{ccc}
L_{0,0} & \cdots & L_{0, n-1} \\
\vdots & & \vdots \\
L_{r-1,0} & \cdots & L_{r-1, n-1}
\end{array}\right) .
$$

In other words, we may compute $L\left(x^{; r}\right)$ from L by multiplying an $n \times r$ matrix on the left by an $r \times r$ Vandermonde matrix. We may recover L from $L\left(X^{; r}\right)$ by multiplying with the inverse matrix.

Remark 2. In fact, due to the special structure of Vandermonde matrices, the above transformations can actually be carried out in time $O((n / r) \mathrm{M}(r) \log r)$, but this will not be essential for what follows.

For fixed constants $\alpha, \beta>0$, we notice that $\mathrm{M}(\alpha n)=O(\mathrm{M}(n)),(\beta r)^{\omega}=O\left(r^{\omega}\right)$, $\mathrm{SM}(\alpha n, \beta r)=O(\mathrm{SM}(n, r))$, etc. From now on, we will freely use this remark without further mention.

Theorem 3. If $n \geqslant r$, then

$$
\begin{equation*}
\mathrm{SM}(n, r)=O\left(\mathrm{SV}(n, r)+n r^{\omega-1}\right) \tag{1}
\end{equation*}
$$

Proof. Let $K, L \in \mathbb{K}[x, \delta]_{n, r}$ and assume that we want to compute $K L$. We may evaluate $L\left(x^{; 2 r}\right)$ in time $\mathrm{SV}(\max (n, 2 r), 2 r)=O(\mathrm{SV}(n, r))$. We may also evaluate $K\left(L\left(x^{; 2 r}\right)\right)$ in time $\mathrm{SV}(n+2 r, 2 r)=O(\mathrm{SV}(n, r))$. Using the lemma, we may recover $K L$ from $K\left(L\left(x^{2 r}\right)\right)$ in time $O\left(n r^{\omega-1}\right)$. This completes the proof.

Theorem 4. If $n \geqslant r$, then

$$
\begin{equation*}
\mathrm{SV}(n, r)=O\left(\mathrm{SM}(n, r)+n r^{\omega-1}\right) \tag{2}
\end{equation*}
$$

Proof. Assume now that we are given a vector $V=\left(V_{0}, \ldots, V_{r-1}\right) \in \mathbb{K}[x]_{n}^{r}$ and that we want to evaluate $K(V)=\left(K\left(V_{0}\right), \ldots, K\left(V_{r-1}\right)\right)$. We first consider the case when $V \in x^{r} \mathbb{K}[x]_{n-r}^{r}$. Using the lemma, we may compute the unique operator $L \in \mathbb{K}[x, \delta]_{n, r}$ with $L\left(x^{; r}\right)=V$ in time $O\left(n r^{\omega-1}\right)$. We may compute the product $K L$ in time $\mathrm{SM}(n, r)$. We finally obtain $K(V)$ by evaluating $K L$ at $x^{; r}$. This can be done in time $O\left(n r^{\omega-1}\right)$, by our lemma.

It remains to consider the case when $V \in K[x]_{r}^{r}$ (see also theorem 7 below). Cutting K into $\lceil n / r\rceil$ parts, we may assume without loss of generality that $n=r$. In that case, considering $x^{; r}$ as a column vector, we may write $V=M x^{; r}$ for an $r \times r$ constant matrix M, and $K(V)=M K\left(x^{; r}\right)$ can again be computed in time $O\left(r^{\omega}\right)$.

3. BASIC COMPLEXITY BOUNDS

Let us quickly review the best know algorithms (asymptotically speaking, and up to constant factors) for the multiplication of linear differential operators and for the evaluation of linear differential operators at vectors of polynomials. The first multiplication algorithm is most efficient when $n \gg r$ or $r \ll n$.

Theorem 5. We have

$$
\mathrm{SM}(n, r)=O(\mathrm{M}(n r) \min (n, r))
$$

Proof. Consider two operators $K=\sum_{i, j} K_{i, j} x^{j} \delta^{i}, L=\sum_{i, j} L_{i, j} x^{j} \delta^{i} \in \mathbb{K}[x, \delta]_{n, r}$. Then we may compute their operator product using the formula

$$
\begin{equation*}
K L=\sum_{k} \frac{1}{k!}\left(\frac{\partial}{\partial \delta}\right)^{k} K *\left(\frac{x \partial}{\partial x}\right)^{k} L \tag{3}
\end{equation*}
$$

where

$$
K * L=\sum_{i, j, i^{\prime}, j^{\prime}} K_{i, j} L_{i^{\prime}, j^{\prime}} x^{j+j^{\prime}} \delta^{i+i^{\prime}}
$$

denotes the commutative product of K and L. Commutative products can be computed in time $O(\mathrm{M}(n r))$ using Kronecker substitution [9, 7], whence the result follows.

In practice, it is often possible and best to compute the commutative products using bivariate FFT multiplication. In that case several of the FFT-transforms can be shared. For instance, if $n \geqslant r$, then the most expensive step is to compute the r^{2} transforms with respect to x of the r coefficients in δ of the first r derivatives $(x \partial / \partial x)^{k} L$. For large n, this optimization yields an algorithm of complexity $\sim(1 / 3) M(n) r^{2}$.

Theorem 6. If $n \geqslant r$, then

$$
\mathrm{SV}(n, r)=O(\mathrm{M}(n r) \min (n, r))
$$

Proof. This is a direct consequence of theorems 4 and 5 .
In practice, in the domain where FFT-multiplication is most efficient, it is better to use a more direct method to obtain this result. Given $L \in \mathbb{K}[x, \delta]_{n, r}$ and $V \in \mathbb{K}[x]_{n}^{r}$, we use the following algorithm:

- Compute the r^{2} FFT-transforms of $\delta^{j} V_{i}$ with $i, j<r$ and the r FFT-transforms of the coefficients of L with respect to δ.
- From these values, deduce the FFT-transforms of the r entries of $L(V)$ using $2 n-1$ scalar $r \times r$ matrix-vector multiplications.
- Recover $L(V)$ using r inverse transforms.

This algorithm has a complexity $\sim(1 / 3) M(n) r^{2}$, for large n.
If $n=O\left(r^{4-\omega}\right)$, then the following result becomes more efficient for the evaluation of linear differential operators at vectors of polynomials:

Theorem 7. We have

$$
\operatorname{SV}(n, r)= \begin{cases}O\left(n^{\omega-1} r\right) & \text { if } n \leqslant r \\ O\left(n^{2} r^{\omega-2}\right) & \text { if } n \geqslant r\end{cases}
$$

Proof. Let $L \in \mathbb{K}[x, \delta]_{n, r}$ and $V \in \mathbb{K}[x]_{n}^{r}$ with $n \leqslant r$. We may compute $L\left(x^{; n}\right)$ in time $O\left(n^{\omega-1} r\right)$, since this really amounts to the computation of $O(r / n)$ matrix products of size $n \times n$. Writing $V=M x^{; r}$ for a constant $n \times r$ matrix M, we may this compute $L(V)=M L\left(x^{; n}\right)$ in time $O\left(n^{\omega-1} r\right)$.

If $r>n$, then we may cut both L and V into $O(n / r)$ pieces in $\mathbb{K}[x, \delta]_{r, r}$ and $\mathbb{K}[x]_{r}^{r}$. Hence $\operatorname{SV}(n, r)=O\left((n / r)^{2} \operatorname{SV}(r, r)\right)=O\left(n^{2} r^{\omega-2}\right)$. Here we repeatedly use the commutation rule $L(x, \delta) x^{k}=x^{k} L(x, \delta+k)$, when considering $L(x, \delta)$ and x^{k} as operators. The twist $L(x, \delta) \mapsto L(x, \delta+k)$ can be computed in time $O(r \mathrm{M}(r))$, for $L \in \mathbb{K}[x, \delta]_{r, r}[1]$.

If both $n=O\left(r^{4-\omega}\right)$ and $r=O\left(n^{4-\omega}\right)$, then we also obtain a more efficient algorithm for the multiplication of linear differential operators:

Theorem 8. We have

$$
\mathrm{SM}(n, r)= \begin{cases}O\left(n^{\omega-2} r^{2}\right) & \text { if } n \leqslant r \\ O\left(n^{2} r^{\omega-2}\right) & \text { if } n \geqslant r\end{cases}
$$

Proof. The formula for $n \geqslant r$ is a direct consequence of theorems 3 and 7. The other case is obtained by cutting both operators in $O(r / n)$ pieces, as in the proof of theorem 7 .

Remark 9. An interesting open problem concerns the existence of better bounds, such as $\mathrm{SM}(n, r)=O\left(\mathrm{M}(n) r^{\omega-1}\right)$.

We recall from [3] that $n^{\omega}=O(\operatorname{SM}(n, n))$. More generally, we have:
ThEOREM 10. If $r \leqslant n$, then the product of an $r \times n$ matrix and an $r \times r$ matrix with coefficients in \mathbb{K} can be computed in time $O(\mathrm{SM}(n, r))$.

Proof. By the result from [3], the problem is equivalent to the computation of $k=\lceil n / r\rceil$ operators K_{0}, \ldots, K_{k-1} in $\mathbb{K}[x, \delta]_{r, r}$ with a fixed operator $L \in \mathbb{K}[x, \delta]_{r, r}$. Setting $K=$ $K_{0}+x^{2 r} K_{1}+\cdots+x^{2 r(k-1)} K_{k-1}$, we may compute $K L$ in time $O(\mathrm{SM}(n, r))$. We may directly read off the products $K_{0} L, \ldots, K_{k-1} L$ from the result.

For our further complexity results, it will be convenient to make a few monotonicity assumptions on the asymptotic complexities. Indeed, it is customary to assume that the function $\mathrm{M}(n) / n$ is increasing. In a similar way, we will assume that $\mathrm{SM}(n, r) /(n r)$ is increasing, both in n and in r. This is indeed the case when replacing $\mathrm{SM}(n, r)$ by the best bounds in this section.

4. Local solutions

From now on, we will assume that $n \geqslant r$. We recall that an operator $L \in \mathbb{K}[x, \partial]$ of order r is said to be non singular at x_{0}, if its leading coefficient L_{r} does vanishes at x_{0}. We will say that an operator $L \in \mathbb{K}[x, \delta]$ of order r is non singular (at the origin) if $x^{-r} L \in \mathbb{K}[x, \partial]$ and $x^{-r} L$ is non singular as an operator in ∂.

Given a non singular differential operator $L \in \mathbb{K}[x, \delta]_{n, r+1}$ of order r, the equation $L(H)=0$ admits a canonical fundamental system $H=\left(H_{0}, \ldots, H_{r-1}\right)$ of solutions in $\mathbb{K}[[x]]^{r}$, with the property that $\left(H_{i}\right)_{i}=1$ and $\left(H_{i}\right)_{j}=0$ for all $i, j<r$ with $i \neq j$. Conversely, given a \mathbb{K}-linearly independent vector of power series $H \in \mathbb{K}[[x]]^{r}$, there exists a unique monic operator $L \in \delta^{r}+\mathbb{K}[[x]][\delta]$ of order r with $L(H)=0$. Let us show how to convert efficiently between these two representations.

Theorem 11. Let $L \in \mathbb{K}[x, \delta]_{n, r+1}$ be a differential operator of order r, which is non singular at the origin, and let H be its canonical fundamental system of solutions. Then we may compute H up to order $O\left(x^{n}\right)$ in time $O(\mathrm{SV}(n, r) \log n)$. In other words,

$$
\begin{equation*}
\mathrm{SF}(n, r)=O(\mathrm{SM}(n, r) \log n) . \tag{4}
\end{equation*}
$$

Proof. Modulo multiplying L on the left by L_{r}^{-1}, we may assume without loss of generality that L is monic. Since L is non singular at the origin, we have $x^{-r} L \in \mathbb{K}[x, \partial]$. Rewritten in terms of δ, this means that L is of the form

$$
\begin{aligned}
L & =\Delta_{r}(\delta)+x C_{r-1} \Delta_{r-1}(\delta)+\cdots+x^{r} C_{0} \Delta_{0}(\delta) . \\
\Delta_{k}(\delta) & =\delta(\delta-1) \cdots(\delta-k+1),
\end{aligned}
$$

for certain $C_{0}, \ldots, C_{r-1} \in \mathbb{K}[x]$. Setting $R=\Delta_{r}(\delta)-L \in x \mathbb{K}[x, \delta]_{n-1, r}$, we observe that R maps $\mathbb{K}[[x]]$ into $x^{r} \mathbb{K}[[x]]$. We now compute H using the "recursive" formula

$$
H=\left(\begin{array}{c}
1 \tag{5}\\
\vdots \\
x^{r-1}
\end{array}\right)+\Delta_{r}(\delta)^{-1}(R(H)),
$$

where

$$
\Delta_{r}(\delta)^{-1}\left(\sum_{k \geqslant r} A_{k} x^{k}\right)=\sum_{k \geqslant r} \frac{A_{k}}{\Delta_{r}(k)} x^{k} .
$$

The equation (5) is a schoolbook example for applying the strategy of relaxed resolution of power series equations [12, 13]. Since $\Delta_{r}(\delta)^{-1}$ operates coefficientwise, it can be computed in linear time. The main cost of the computation therefore reduces to the relaxed evaluation of $R(H)$. Using fast relaxed multiplication, this amounts to a cost

$$
\mathrm{SF}(n, r)=2 \mathrm{SV}(\lceil n / 2\rceil, r)+4 \mathrm{SV}(\lceil n / 4\rceil, r)+\cdots+n \mathrm{SV}(1, r)
$$

Using the monotonicity assumption and theorem 4, the result follows.
In what follows, given a non zero series Y in x, we denote by $v(Y)$ its valuation. Given a vector V of elements in a \mathbb{K}-vector space, we will also denote by $\operatorname{Vect}(V)$ the subvector space generated by the entries of V, and

$$
v^{\max }(V)=\max \{v(Y): Y \in \operatorname{Vect}(V) \backslash\{0\}\}
$$

Theorem 12. Let $H=\left(H_{0}, \ldots, H_{r-1}\right) \in \mathbb{K}[[x]]^{r}$ be \mathbb{K}-linearly independent. Then there exists a unique monic operator $L=\operatorname{ann}(H) \in \delta^{r}+\mathbb{K}[[x]][\delta]_{r}$ with $L(H)=0$. Moreover, given the truncation of H at order $O\left(x^{n}\right)$, we may compute L at order $O\left(x^{n-v^{\max }(H)}\right)$ in time $O(\mathrm{SM}(n, r) \log r)$. In other words,

$$
\begin{equation*}
\mathrm{SA}(n, r)=O(\mathrm{SM}(n, r) \log r) \tag{6}
\end{equation*}
$$

Proof. Modulo a triangularization of H, we may assume without loss of generality that $v\left(H_{0}\right)<\cdots<v\left(H_{r-1}\right)=v^{\max }(H)$. We define operators $L^{[0]}, \ldots, L^{[r]}$ by

$$
\begin{aligned}
L^{[0]} & =1 \\
L^{[i+1]} & =\left(\delta-\frac{\delta L^{[i]}\left(H_{i}\right)}{L^{[i]}\left(H_{i}\right)}\right) L^{[i]} .
\end{aligned}
$$

Then $L=L^{[r]}$ annihilates H and for any other operator $\tilde{L} \in \delta^{r}+\mathbb{K}[x, \delta]_{n, r}$ with $\tilde{L}(H)=0$, we would have $(\tilde{L}-L)(H)=0$, which is in contradiction with the fact that $\operatorname{dim} \operatorname{ker}(\tilde{L}-L)<r$. Moreover, by induction over i, we observe that the coefficient of x^{0} in $L^{[i]}$ is given by $\left(\delta-v\left(H_{0}\right)\right) \cdots\left(\delta-v\left(H_{i-1}\right)\right)$ and the coefficients of x^{0}, \ldots, x^{n-1} in $L^{[i]}$ can be expressed in terms of the coefficients of $x^{0}, \ldots, x^{n-1+v\left(H_{i-1}\right)}$ in H_{0}, \ldots, H_{i-1}. In particular, the truncation of L at order $O\left(x^{n-v^{\max }(H)}\right)$ is uniquely determined by the truncation of H at order $O\left(x^{n}\right)$.

In order to explicitly compute L up to a given order, it is more efficient to use a divide and conquer approach. More precisely, given $H \in\left(H_{0}, \ldots, H_{r-1}\right) \in \mathbb{K}[x]_{n}^{r}$ we compute $\operatorname{ann}_{n}(H) \in \delta^{r}+\mathbb{K}[x, \delta]_{n, r}$ using the following method:

- If $r=1$, then we take $\operatorname{ann}_{n}(H)=\delta-\left(\delta H_{0} / H_{0}\right) \bmod x^{n}$.
- Otherwise, let $r=a+b$ with $a=\lceil r / 2\rceil$.
- Compute $A:=\operatorname{ann}_{n}\left(H_{0}, \ldots, H_{a-1}\right)$.
- Evaluate $I:=\left(A\left(H_{a}\right), \ldots, A\left(H_{r-1}\right)\right) \bmod x^{n}$.
- Compute $B:=\operatorname{ann}_{n}\left(I_{0}, \ldots, I_{b-1}\right)$.
- Return $L=B A \bmod x^{n}$.

If $n>v^{\max }(H)$, then it is easy to check that $\operatorname{ann}_{n}(H)(H)=O\left(x^{n-v^{\max }(H)}\right)$. For a fixed constant C, we thus have

$$
\mathrm{SA}(n, 2 r) \leqslant 2 \mathrm{SA}(n, r)+C \mathrm{SM}(n, r)
$$

The result now follows from the monotonicity assumption.
Remark 13. If $\mathrm{SM}(n, r) / r^{1+\epsilon}$ is increasing in r for some $\epsilon>0$, then the bound further simplifies to $\mathrm{SA}(n, r)=O(\mathrm{SM}(n, r))$.

Remark 14. We notice that the operator L in theorem 12 is singular if and only if $v^{\max }(H)=r-1$, and if and only if $\{v(Y): Y \in \operatorname{Vect}(H) \backslash\{0\}\}=\{0, \ldots, r-1\}$.

Although a general operator $L \in \mathbb{K}[x, \delta]$ can be singular at the origin, many operations on operators (such as division and greatest common divisors) commute with translations $x \mapsto x+x_{0}$, and the following lemmas can be used in order to reduce to the case when L is non singular at the origin.

Lemma 15. Any operator $L \in \mathbb{K}[x, \delta]_{n, r}$ can be rewritten as an operator in $\mathbb{K}[x, \partial]_{n+r, r}$ in time $O(\mathrm{SM}(n, r))$. Similarly, an operator $L \in x^{r} \mathbb{K}[x, \partial]$ may be rewritten as an operator in $\mathbb{K}[x, \delta]_{n+r, r}$ in time $O(\mathrm{SM}(n, r))$.

Proof. In $[11,3]$, it is shown how to perform these rewritings using matrix products, so that the result follows from theorem 10.

Lemma 16. Given a non zero operator $L \in \mathbb{K}[x, \partial]_{n, r}$, we may find a point $x_{0} \in \mathbb{K}$ where L is non singular in time $O(\mathrm{M}(n))$.

Proof. Let L_{k} be the leading coefficient of L. Since $\operatorname{deg}_{x} L_{k}<n$, we have $L_{k}\left(x_{0}\right) \neq 0$ for some $x_{0} \in\{0, \ldots, n\}$. Using fast multipoint evaluation [2], we may find such a point x_{0} in time $O(\mathrm{M}(n))$.

5. DIVISION

From the formula (3) it is clear that both the degrees in x and δ are additive for the multiplication of operators $K, L \in \mathbb{K}[x, \delta]$. In particular, if $K, L \in \mathbb{K}[x, \delta]_{n, r}$ and L is left or right divisible by K, then the quotient is again in $\mathbb{K}[x, \delta]_{n, r}$.

Theorem 17. Let $K, L \in \mathbb{K}[x, \delta]_{n, r}$ be such that $L=Q K$ for some $Q \in \mathbb{K}[x, \delta]$. Then we may compute Q in time $O(\mathrm{SM}(n, r) \log n)$.

Proof. By lemmas 15 and 16 , and modulo a shift $x \mapsto x+x_{0}$, we may assume without loss of generality that K and L are non singular at the origin. We now use the following algorithm:

- We first compute the canonical fundamental system of solutions H to $L(H)=0$ up to order $O\left(x^{n+r}\right)$. By theorem 11, this can be done in time $O(\mathrm{SM}(n, r) \log n)$.
- We next evaluate $I=K(H)$ and compute a \mathbb{K}-basis G for $\operatorname{Vect}(I)$ at order $O\left(x^{n+r}\right)$. This can be done in time $O(\operatorname{SM}(n, r))$, by theorems 4 and 10 , and using linear algebra. Since K is non singular, we have $v(Y) \geqslant \operatorname{deg}_{\delta} K \Rightarrow v(K(Y))=v(Y)$ for all $Y \in \mathbb{K}[[x]]$. In particular, the $\operatorname{deg}_{\delta} Q=\operatorname{deg}_{\delta} L-\operatorname{deg}_{\delta} K$ elements of H of valuations $\operatorname{deg}_{\delta} K, \ldots, \operatorname{deg}_{\delta} L-1$ are mapped to set which spans a vector space of dimension $\operatorname{deg}_{\delta} Q$. This shows that $s=\operatorname{dim}\left(\operatorname{Vect}(I) \bmod x^{r}\right)=\operatorname{deg}_{\delta} Q$.
- We now compute the monic annihilator $\Omega=\operatorname{ann}(G)$ of G at order $O\left(x^{n}\right)$. This can be done in time $O(\mathrm{SM}(n, r) \log r)=O(\mathrm{SM}(n, r) \log n)$, by theorem 12 .
- We return the truncation of $Q_{s} \Omega$ at order $O\left(x^{n}\right)$, where $Q_{s}=L_{\operatorname{deg}_{\delta} L} / K_{\operatorname{deg}_{\delta} K}$.

Since each of the steps can be carried out in time $O(\mathrm{SM}(n, r) \log n)$, the result follows.
It is classical that euclidean division generalizes to the skew polynomial ring $\mathbb{K}(x)[\delta]$. In other words, given operators $A, B \in \mathbb{K}(x)[\delta]$ where $B \neq 0$, there exist unique operators $Q=\operatorname{quo}(A, B)$ and $R=\operatorname{rem}(A, B)$ in $\mathbb{K}(x)[\delta]$ with

$$
A=Q B+R,
$$

and $\operatorname{deg}_{\delta} R<\operatorname{deg}_{\delta} B$. If $A, B \in \mathbb{K}[x, \delta]$ and I is the leading term of B with respect to δ, then left multiplication of A by $I^{\operatorname{deg}_{\delta} A-\operatorname{deg}_{\delta} B+1}$ allows us to remain in the domain $\mathbb{K}[x, \delta]$: there exist unique $Q=\operatorname{pquo}(A, B)$ and $R=\operatorname{prem}(A, B)$ in $\mathbb{K}[x, \delta]$ with

$$
\begin{equation*}
I^{\operatorname{deg}_{\delta} A-\operatorname{deg}_{\delta} B+1} A=Q B+R \tag{7}
\end{equation*}
$$

and $\operatorname{deg}_{\delta} R<\operatorname{deg}_{\delta} B$. The operators Q and R are usually called pseudo-quotients and pseudo-remainders. In some cases, a non trivial polynomial can be factored out in the relation (7). Let J be monic, of maximal degree, such that $J^{-1} Q B, J^{-1} R \in \mathbb{K}[x, \delta]$. Then we call $J^{-1} Q=$ quo $^{*}(A, B)$ and $J^{-1} R=\operatorname{rem}^{*}(A, B)$ the "simplified" pseudo-quotient and pseudo-remainder of A and B.

Lemma 18. Let $H=\left(H_{0}, \ldots, H_{r-1}\right) \in \mathbb{K}[[x]]^{r}$ be \mathbb{K}-linearly independent and define $p=v^{\max }(\operatorname{Vect}(H))+1$. Given $G \in\left(x^{p} \mathbb{K}[[x]]\right)^{r}$, there exists a unique operator $L \in \mathbb{K}[[x]][\delta]_{r}$ of order $<r$ with $L(H)=G$ and we may compute its first n terms with respect to x in time $O(\mathrm{SM}(n+p, r) \log n)$.

Proof. Let $\alpha_{i}=v\left(H_{i}\right)$ for each i. Modulo a base change, we may assume without loss of generality that $\alpha_{0}<\cdots<\alpha_{r-1}$. Let $\Phi: \mathbb{K}[[x]]^{r} \rightarrow \mathbb{K}[[x]]^{r}$ be the operator with

$$
\Phi\left(V_{0}, \ldots, V_{r-1}\right)=\left(x^{\alpha_{0}} V_{0}, \ldots, x^{\alpha_{r-1}} V_{r-1}\right),
$$

and let Φ^{-1} denote the inverse operator. Let $\Psi: \mathbb{K}[[x]][\delta]_{r} \rightarrow \mathbb{K}[[x]]^{r}$ be the operator with

$$
\Psi(K)=\Phi^{-1}(K(\Phi(1))) .
$$

Writing $K=\sum_{i, k} K_{i, k} x^{k} \delta^{i}$ and $\Psi(K)_{i, k}=\left(\Psi(K)_{i}\right)_{k}$, we have

$$
\left(\begin{array}{c}
\Psi(K)_{0, k} \\
\vdots \\
\Psi(K)_{r-1, k}
\end{array}\right)=\left(\begin{array}{cccc}
1 & k+\alpha_{0} & \cdots & \left(k+\alpha_{0}\right)^{r-1} \\
\vdots & \vdots & & \vdots \\
1 & k+\alpha_{r-1} & \cdots & \left(k+\alpha_{r-1}\right)^{r-1}
\end{array}\right)\left(\begin{array}{c}
K_{0, k} \\
\vdots \\
K_{r-1, k}
\end{array}\right) .
$$

In other words, Ψ and its inverse Ψ^{-1} operate coefficientwise and n coefficients can be computed in time $O\left(r^{\omega} n\right)$.

Putting $H_{i}=x^{\alpha_{i}}+E_{i}$ with $E_{i}=o\left(x^{\alpha_{i}}\right)$ for each i, we may rewrite the equation $L(H)=G$ as

$$
L=\Psi^{-1}\left(\Phi^{-1}(G-L(E))\right)
$$

and we observe that the coefficient of x^{k} in the righthand side of (8) only depends on earlier coefficients of $1, \ldots, x^{k-1}$ in L. In particular, we may solve the equation using a relaxed algorithm. Then the main cost is concentrated in the relaxed evaluation of $L(E)$. As in the proof of theorem 11, this evaluation can be done in time $O(\mathrm{SM}(n+p, r) \log n)$.

Theorem 19. Let $K, L \in \mathbb{K}[x, \delta]_{n, r}$ with $n \geqslant r$ and $s=\operatorname{deg}_{\delta} K>0$. Skew pseudo-division of L by K and simplification yields a relation

$$
A L=Q K+R,
$$

where $A, Q=$ quo* $^{*}(L, K), R=\operatorname{rem}^{*}(L, K) \in \mathbb{K}[x, \delta]$. If $n^{\prime} \geqslant n$ is such that $A, Q, R \in$ $\mathbb{K}[x, \delta]_{n^{\prime}, r}$, then A, Q and R can be computed in time $O\left(\mathrm{SM}\left(n^{\prime}, r\right) \log n^{\prime}\right)$.

Proof. Let us first assume that n^{\prime} is known. Modulo a shift $x \mapsto x+x_{0}$, we may assume without loss of generality that K and L are non singular at the origin. We now use the following algorithm:

- We compute the canonical fundamental system H of solutions to $K(H)=0$ up to order $O\left(x^{2 n^{\prime}+r}\right)$. This requires a time $O\left(\mathrm{SM}\left(n^{\prime}, s\right) \log n^{\prime}\right)$.
- We compute $G=L(H)$ with $R(H)=A G$ up to order $O\left(x^{2 n^{\prime}+r}\right)$. This requires a time $O\left(\operatorname{SM}\left(n^{\prime}, r\right)\right)$.
- We determine the operator $\Omega \in \mathbb{K}[[x]][\delta]_{s}$ with $\Omega(H)=x^{s} G$ up to order $O\left(x^{2 n^{\prime}+r}\right)$. The lemma shows that this can be done in time $O\left(\mathrm{M}\left(n^{\prime}, s\right) \log n^{\prime}\right)$.
- By theorem 12 , we have $R=x^{-s} A \Omega$ and $x^{-s} \Omega$ is known up to order $O\left(x^{2 n^{\prime}}\right)$. Now $x^{-s} \Omega_{0}, \ldots, x^{-s} \Omega_{s-1}$ are truncated rational functions, for which the degrees of the numerators and denominators are bounded by n^{\prime}. Using rational function reconstruction [7], we may thus compute $N_{k} / D_{k}=x^{-s} \Omega_{k}$ with $\operatorname{gcd}\left(N_{k}, D_{k}\right)=1$ in time $s O(\mathrm{M}(n) \log n)$. Taking $A=\operatorname{lcm}\left(D_{0}, \ldots, D_{s-1}\right)$, we find R.
- Once A and R are known, we compute Q using the algorithm from theorem 17 .

The total complexity of this algorithm is bounded by $O\left(\mathrm{SM}\left(n^{\prime}, r\right) \log n^{\prime}\right)$.
In general, if n^{\prime} is not known, we may still apply the above algorithm for a trial value n^{*}. Then the algorithm may either fail (for instance, if $\operatorname{deg} \operatorname{lcm}\left(D_{0}, \ldots, D_{s-1}\right) \geqslant n^{*}$), or return the triple (A, Q, R) under the assumption that $A, Q, R \in \mathbb{K}[x, \delta]_{n^{*}, r}$. We may then check whether the triple is correct in time $O\left(\mathrm{SM}\left(n^{*}, r\right)\right)$. Applying this procedure for successive guesses $n^{*}=n, 2 n, 4 n, \ldots$, the algorithm ultimately succeeds for an n^{*} with $n^{*} \leqslant 2 n^{\prime}$. Using the monotonicity hypothesis, the total running time thus remains bounded by $O\left(\mathrm{SM}\left(n^{*}, r\right) \log n^{*}\right)=O\left(\mathrm{SM}\left(n^{\prime}, r\right) \log n^{\prime}\right)$.

6. Euclidean operations

It is classical that greatest common divisors and least common multiples exist in the skew euclidean domain $\mathbb{K}(x)[\delta]$: given two operators $K, L \in \mathbb{K}(x)[\delta]$, the greatest common divisor $\Gamma=\operatorname{gcd}(K, L)$ and the least common multiple $\Lambda=\operatorname{lcm}(K, L)$ are the unique monic operators with

$$
\begin{aligned}
\mathbb{K}(x)[\delta] \Gamma & =\mathbb{K}(x)[\delta] K+\mathbb{K}(x)[\delta] L \\
\mathbb{K}(x)[\delta] \Lambda & =\mathbb{K}(x)[\delta] K \cap \mathbb{K}(x)[\delta] L
\end{aligned}
$$

Assume now that $K, L \in \mathbb{K}[x, \delta]$ and let A and B be monic polynomials of minimal degrees, such that $A \Gamma$ and $B \Lambda$ are in $\mathbb{K}[x, \delta]$. Then we call $\Gamma^{*}=\operatorname{gcd}^{*}(K, L)=A \Gamma$ and $\Lambda^{*}=\operatorname{lcm}^{*}(K, L)=B \Lambda$ the (simplified) pseudo-gcd and pseudo-lcm of K and L.

Theorem 20. Let $K, L \in \mathbb{K}[x, \delta]_{n, r}$ and $n^{\prime} \geqslant n$ be such that $\Gamma^{*}=\operatorname{gcd}^{*}(K, L) \in \mathbb{K}[x, \delta]_{n^{\prime}, r}$. Assume that K, L and $\mathrm{lcm}^{*}(K, L)$ are non singular at the origin. Then we may compute Γ^{*} in time $O\left(\mathrm{SM}\left(n^{\prime}, r\right) \log n^{\prime}\right)$.

Proof. Assuming n^{\prime} known, we compute Λ^{*} using the following algorithm:

- We compute the canonical fundamental systems of solutions G and H to $K(G)=0$ and $L(H)=0$ at order $O\left(x^{2 n^{\prime}+2 r}\right)$. This can be done in time $O\left(\mathrm{SM}\left(n^{\prime}, r\right) \log n^{\prime}\right)$.
- Using linear algebra, we compute a basis B for $V=\operatorname{Vect}(G) \cap \operatorname{Vect}(H)$ at order $O\left(x^{2 n^{\prime}+2 r}\right)$. This can be done in time $O\left(n^{\prime} r^{\omega-1}\right)$. Since $\Lambda^{*}=\operatorname{lcm}^{*}(K, L)$ is non singular, we have $\operatorname{dim}\left([\operatorname{Vect}(G)+\operatorname{Vect}(H)] \bmod x^{2 r}\right)=\operatorname{deg}_{\delta} \Lambda^{*}=\operatorname{deg}_{\delta} G+$ $\operatorname{deg}_{\delta} H-\operatorname{deg}_{\delta} \Gamma^{*}$. Hence, $s=\operatorname{dim}\left(V \bmod x^{2 r}\right)=\operatorname{dim}\left(\operatorname{Vect}(G) \bmod x^{2 r}\right)+$ $\operatorname{dim}\left(\operatorname{Vect}(H) \bmod x^{2 r}\right)-\operatorname{dim}\left([\operatorname{Vect}(G)+\operatorname{Vect}(H)] \bmod x^{2 r}\right)=\operatorname{deg}_{\delta} \Gamma^{*}$.
- We compute $\Omega=\operatorname{ann}(B)=\operatorname{gcd}(K, L)$ at order $O\left(x^{2 n^{\prime}}\right)$. By theorem 12, this can be done in time $O\left(\mathrm{SM}\left(n^{\prime}, r\right) \log n^{\prime}\right)$.
- We compute Γ^{*} from $\Omega \bmod x^{2 n^{\prime}}$ using rational function reconstruction.

For a fixed n^{\prime}, this algorithm requires a running time $O\left(\mathrm{SM}\left(n^{\prime}, r\right) \log n^{\prime}\right)$. Using a geometric progression $n^{\prime}=n, 2 n, 4 n, \ldots$ of successive guesses yields the desired complexity bound, in a similar way as for theorem 19 .

Remark 21. Notice that Γ^{*} might be singular at the origin, even if K, L and $\operatorname{lcm}^{*}(K, L)$ are not. This happens for instance when K is the minimal annihilator of the vector $(1, x)$ and L the minimal annihilator of the vector $\left(\mathrm{e}^{x}, x\right)$, so that $\Gamma=\delta-1$.

Remark 22. During the relaxed computation of G and H, we may check whether $V=\varnothing$ at each next coefficient. In the particular case when $\Gamma=1$, the running time of the algorithm will then be bounded by $O\left(\mathrm{SM}\left(n^{*}, r\right) \log n^{*}\right)$, where n^{*} is the smallest order at which common solutions no longer exist. This kind of early termination only works for this very special case.

Theorem 23. Let $K, L \in \mathbb{K}[x, \delta]_{n, r}$ and $n^{\prime} \geqslant n$ be such that $\Lambda^{*}=\operatorname{lcm}^{*}(K, L) \in \mathbb{K}[x, \delta]_{n^{\prime}, r}$. If K, L and $\operatorname{lcm}^{*}(K, L)$ are non singular at the origin, then we may compute Λ^{*} in time $O\left(\mathrm{SM}\left(n^{\prime}, r\right) \log n^{\prime}\right)$.

Proof. Similar to the proof of theorem 20, by taking $V=\operatorname{Vect}(K)+\operatorname{Vect}(L)$ instead of $V=\operatorname{Vect}(K) \cap \operatorname{Vect}(L)$.

Remark 24. The above algorithms can be generalized to gcds and lcms of more than two operands. This is usually more efficient than the repeated computation of gcds or lcms of pairs.

The assumption that $\mathrm{lcm}^{*}(K, L)$ should be non singular is still a bit unsatisfactory in theorems 20 and 23 , even though the probability that a randomly chosen point is singular is infinitesimal. If we drop this assumption, then we still have $s \geqslant \operatorname{deg}_{\delta} \Gamma^{*}$ in the proof of theorem 20. Consequently, "candidate" pseudo-gcds Γ^{*} found by the algorithm are genuine pseudo-gcds whenever Γ^{*} pseudo-divides both K and L. Using the division algorithms from the previous section, this can be checked in time $O\left(\mathrm{SM}\left(n^{\prime} r, r\right) \log n^{\prime}\right)$ in the case of gcds and $O\left(\mathrm{SM}(n r, r) \log n^{\prime}\right)$ in the case of lcms.

An alternative way to check whether candidate gcds and lcms are correct is to compute Bezout and Ore relations. More precisely, given $K, L \in \mathbb{K}(x)[\delta]$ with $L \notin \mathbb{Q}(x) K$, there exist operators $A, B, C, D \in \mathbb{K}(x)[\delta]$ with

$$
\binom{\Gamma}{0}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{K}{L},
$$

$\operatorname{deg}_{\delta} A K, \operatorname{deg}_{\delta} B L<\operatorname{deg}_{\delta} \Lambda$ and $C K=-D L=\Lambda$. The 2×2 matrix at the righthand side will be called the (simplified) Euclidean matrix $\mathrm{E}=\operatorname{Eucl}(K, L)$ of K and L. In a similar way as above, we may define a pseudo-Euclidean matrix $\mathrm{E}^{*}=\operatorname{Eucl}^{*}(K, L)$ with entries $A^{*}, B^{*}, C^{*}, D^{*}$ in $\mathbb{K}[x, \delta]$, whenever $K, L \in \mathbb{K}[x, \delta]$. We will say that $\operatorname{Eucl}(K, L)$ is non singular at x_{0}, if the denominators of A, B, C and D do not vanish at x_{0}.

Theorem 25. Let $K, L \in \mathbb{K}[x, \delta]_{n, r}$ and $n^{\prime} \geqslant n$ be such that $\mathbb{E}^{*}=\operatorname{Eucl}^{*}(K, L) \in \mathbb{K}[x, \delta]_{n^{\prime}, r}^{2 \times 2}$. If $K, L, \operatorname{lcm}^{*}(K, L)$ and $\operatorname{Eucl}(K, L)$ are non singular at the origin, then we may compute Λ^{*} in time $O\left(\mathrm{SM}\left(n^{\prime}, r\right) \log n^{\prime}\right)$.

Proof. Assuming n^{\prime} known, we compute $\operatorname{Eucl}(K, L)=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ at order $O\left(x^{2 n^{\prime}}\right)$ as follows:

- We compute the canonical fundamental systems of solutions G and H to $K(G)=0$ and $L(H)=0$ at order $O\left(x^{2 n^{\prime}+3 r}\right)$.
- We compute a basis X for $\operatorname{Vect}(G) \cap \operatorname{Vect}(H)$ at order $O\left(x^{2 n^{\prime}+3 r}\right)$, together with bases \hat{G} and \hat{H} for the supplements of $\operatorname{Vect}(X)$ in $\operatorname{Vect}(G)$ resp. Vect (H). We also compute $\Gamma=\operatorname{ann}(X)$ at order $O\left(x^{2 n^{\prime}+2 r}\right)$.
- We solve the systems $A(K(\hat{H}))=\Gamma(\hat{H})$ and $B(L(\hat{G}))=\Gamma(\hat{G})$ in A resp. B at order $O\left(x^{2 n^{\prime}}\right)$, using lemma 18.
- We compute a basis Y for $\operatorname{Vect}(G)+\operatorname{Vect}(H)$ at order $O\left(x^{2 n^{\prime}+2 r}\right)$, as well as bases \tilde{H} and \tilde{G} for the vector spaces $\operatorname{Vect}(K(Y))$ resp. Vect $(L(Y))$ at order $O\left(x^{2 n^{\prime}+2 r}\right)$.
- We compute $C=K_{\operatorname{deg}_{\delta} K}^{-1} \operatorname{ann}(\tilde{H})$ and $D=-L_{\operatorname{deg}_{\delta} L} \operatorname{ann}(\tilde{G})$ at order $O\left(x^{2 n^{\prime}}\right)$.

We finally compute E^{*} from A, B, C and D using rational function reconstruction. The complexity analysis and the remainder of the proof is done in a similar way as in the proofs of theorems 19 and 20.

With the above techniques, we may at least verify whether computed pseudo-gcds or pseudo-lcms are correct. For a fully deterministic algorithm, we still need a way to find a point where $\operatorname{lcm}^{*}(K, L)$ is non singular. This can be done by brute force. Let us state the result for pseudo-gcds; similar deterministic results hold for pseudo-lcms and pseudoEuclidean matrices.

Theorem 26. Let $K, L \in \mathbb{K}[x, \delta]_{n, r}$ and $n^{\prime} \geqslant n$ be such that $\Gamma^{*}=\operatorname{gcd}^{*}(K, L) \in \mathbb{K}[x, \delta]_{n^{\prime}, r}$. Then we may compute Γ^{*} in time $O\left(\mathrm{SM}\left(n^{\prime} r, r\right) \log n^{\prime}+n^{\prime}\left(\mathrm{M}(n) r+r^{\omega}\right)\right)$.

Proof. Let $k=\operatorname{deg}_{\delta} K, l=\operatorname{deg}_{\delta} L$, and assume first that we know n^{\prime}. Then, at $n^{\prime}+1$ distinct random points where K and L are non singular, we compute canonical fundamental systems of solutions G and H at order $O\left(x^{k+l}\right)$. This can be done in time $O\left(n^{\prime}\left(\mathrm{M}(n) r+r^{\omega}\right)\right)$. We now pick a point at which the dimension of $(\operatorname{Vect}(G)+\operatorname{Vect}(H)) \bmod x^{k+l}$ is maximal and apply the algorithm from theorem 20 in order to find Γ^{*}. If n^{\prime} is unknown, then we use a sequence of guesses $n^{\prime}=n, 2 n, 4 n, \ldots$, as in the previous proofs.

Bibliography

[1] A.V. Aho, K. Steiglitz, and J.D. Ullman. Evaluating polynomials on a fixed set of points. SIAM Journ. of Comp., 4:533-539, 1975.
[2] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets of points. Journal of Complexity, 21(4):420-446, August 2005. Festschrift for the 70th Birthday of Arnold Schönhage.
[3] Alin Bostan, Frédéric Chyzak, and Nicolas Le Roux. Products of ordinary differential operators by evaluation and interpolation. In J. Rafael Sendra and Laureano González-Vega, editors, ISSAC, pages 23-30, Linz/Hagenberg, Austria, July 2008. ACM.
[4] D.G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Informatica, 28:693-701, 1991.
[5] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier series. Math. Computat., 19:297-301, 1965.
[6] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. pages 1-6, may 25-27 1987.
[7] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 2-nd edition, 2002.
[8] V. Pan. How to multiply matrices faster, volume 179 of Lect. Notes in Math. Springer, 1984.
[9] V. Pan and D. Bini. Polynomial and matrix computations. Birkhauser, 1994.
[10] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:352-356, 1969.
[11] J. van der Hoeven. FFT-like multiplication of linear differential operators. JSC, 33(1):123-127, 2002.
[12] J. van der Hoeven. Relax, but don't be too lazy. JSC, 34:479-542, 2002.
[13] J. van der Hoeven. Relaxed multiplication using the middle product. In Manuel Bronstein, editor, Proc. ISSAC '03, pages 143-147, Philadelphia, USA, August 2003.
[14] J. van der Hoeven. Transseries and real differential algebra, volume 1888 of Lecture Notes in Mathematics. Springer-Verlag, 2006.
[15] J. van der Hoeven, G. Lecerf, B. Mourain, et al. Mathemagix, 2002. http://www.mathemagix.org.

[^0]: *. This work has been supported by the ANR-09-JCJC-0098-01 MAGIX project, as well as a Digiteo 200936HD grant and Région Ile-de-France.

