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Change of angles in tent spaces

We prove sharp bounds for the equivalence of norms in tent spaces with respect to changes of angles. Some applications are given.

Let B(x, t) denote an open ball centered at x ∈ R n with radius t > 0. Define for a locally square integrable function g(t, y), (t, y) ∈ R n+1 + , for α > 0 and x ∈ R n , A (α) g(x) := R n+1 +

, (0.1) and for 0 < p < ∞, say that g ∈ T p,2 α if

g T p,2 α := A (α) g p < ∞.
This space was introduced in [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF]. As sets the spaces for a given p are the same and the norms (or quasi-norms if p < 1) are equivalent: whenever α, β > 0, one has

A (α) g p ∼ A (β) g p . (0.2) 
For p = ∞, the limiting space is defined with a Carleson measure condition. Let T α B be the tent with aperture α above the open ball B = B(x, r), i.e., the set of (t, y) such that 0 < t < r/α and y ∈ B(x, rαt). We define g T ∞,2 α as the infimum of C ≥ 0 such that for all ball B,

TαB |g(t, y)| 2 dydt t ≤ C 2 |B| α n . (0.3)
Again, the spaces T ∞,2 α are the same, the norms are equivalent and the isometry property holds. To expain the choice of the normalisation in (0.3), we remark that for p = ∞ included, g(t, y) → h(t, y) := α n/2 g(t/α, y) is an isometry between T p,2 1 and T p,2 α equipped with their respective (quasi-)norms.

It is shown in [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF] that the spaces T p,2 1 , 0 < p ≤ ∞, interpolate by the complex method and the real method. The same results hold for T p,2 α for fixed α, with constants (i.e., the constants in the equivalence of norms between T p,2 α and the interpolated space to which it is equal) independent of α by using the isometry property.

Motivated by an intensive usage of tent spaces in the development of new Hardy spaces associated to operators with Gaffney-Davies estimates first made in [START_REF] Auscher | Hardy spaces of differential forms and Riesz transforms on Riemannian manifolds[END_REF], [START_REF] Hofmann | Hardy and BMO spaces associated to divergence form elliptic operators[END_REF], and also by the study of maximal regularity on tent spaces towards applications for parabolic PDE's ( [START_REF] Auscher | The maximal regularity operator on tent spaces[END_REF], and some more work in progress), it became interesting to know the sharp dependence of the bounds in (0.2) with respect to α, β. The L 2 bound is immediate by Fubini's theorem:

g T 2,2 α = (α/β) n/2 g T 2,2 β . For p = 2,
the argument in [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF], originating from [START_REF] Fefferman | H p spaces of several variables[END_REF], does not give optimal dependence. The inequality

g T p,2 α ≤ C(1 + log α)α n/τ g T p,2 1 ,
for 1 < p < ∞ and α ≥ 1, where τ = min(p, 2) and C depends only on n and p, is proved in [START_REF] Hytönen | Conical square function estimates in UMD Banach spaces and applications to H ∞ -functional calculi[END_REF] as a special case of a Banach space valued result, and, moreover, the polynomial growth α n/τ is shown 1 to be optimal for such an inequality to hold. The restriction p > 1 occurs in this argument because the UMD property is required and a maximal inequality is used. Note that even the L 2 bounds is not immediate in a Banach (non Hilbert) space valued context. In discussion with T. Hytönen, we convinced ourselves that the logarithmic factor is not produced by this argument in the scalar case when p ≥ 2. Still, this argument is quite involved and elimination of the logarithm in the p < 2 situation was unclear.

Here we give the sharp lower and upper bounds for (0.2) in the scalar case by a very simple argument. Define h(p, α)

= min α -n/2 , α -n/p , h(p, α) = max α -n/2 , α -n/p . Note that h(p, α) = α -n/p if (α -1)(p -2) ≥ 0 and h(p, α) = α -n/2 if (α -1)(p -2) ≤ 0,

and inversely for h(p, α).

Theorem 0.1. Let 0 < p ≤ ∞ and α, β > 0. There exist constants C, C ′ > 0 depending on n, p only, such that for any locally square integrable function g,

Ch(p, α/β) g T p,2 α ≤ g T p,2 β ≤ C ′ h(p, α/β) g T p,2 α .
Moreover, the dependence in α/β is best possible in the sense that this growth is attained.

In particular, for α > 1, τ = min(2, p) and σ = max(2, p), one has

g T p,2 α ≤ Cα n/τ g T p,2 1 , (0.4) g T p,2 1 ≤ Cα -n/σ g T p,2 α . (0.5)
The second one improves the obvious bound g T p,2 1 ≤ g T p,2 α . By symmetry using the relation h(p, α) -1 = h(p, α -1 ) and scale invariance, all cases reduce to (0.4) and (0.5) with α > 1.

Corollary 0.2. Let 0 < p < ∞. There is a constant 0 < C < ∞ depending on n, p only such that for any locally square integrable g, if

V g(x) = ∞ 0 |g(t, x)| 2 dt t 1 2 , V g p ≤ C g T p,2 1 , if p ≤ 2, V g p ≥ C g T p,2 1 , if p ≥ 2.
The corollary was proved by a different method in [START_REF] Auscher | Vertical versus conical square functions[END_REF] when p < 2 and the p > 2 case dates back to [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF]. The opposite inequalities are false if p = 2. Starting from Theorem 0.1, the proof is a mere application of Lebesgue differentiation theorem when α → 0 for α -n/2 A (α) g(x) converges to V g(x) assuming g smooth with compact support. This assumption is easily removed.

Corollary 0.3. If 0 < p < ∞ and λ > max(2/p, 1), for any locally square integrable g,

R n+1 + t |x -y| + t nλ g(t, y) 2 dydt t n+1 1 2 p ≤ C(n, p, λ) A (1) g p .
The left hand side equals the grand square function of Stein when g(t, y) = t∇u(t, y), u being the harmonic extension of a suitable distribution u 0 on R n . Hence, for all 0 < p < ∞ and λ > max(2/p, 1), it is dominated in L p by A (1) g p which is the L p norm of the area functional of Lusin defined from u 0 . However, it is known from Stein-Weiss' theory that A (1) g ∈ L p (R n ) if and only if n-1 n < p < ∞ and u 0 belongs to the Hardy space H p (R n ) (See [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF]). This gives a simple proof of Theorem 2, Chap. IV in [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF]. The lower exponent n-1 n is only due to the choice of the extension. Using an extension by convolution with t -n ϕ(x/t) with ϕ ∈ C ∞ 0 (R n ) having all vanishing moments but the one of order 0, n-1 n becomes 0 by the results in [START_REF] Fefferman | H p spaces of several variables[END_REF]. At λ = 2/p and p < 2, a weak type inequality is plausible, the Lorentz norm L p,∞ replacing the Lebesgue norm L p in the left hand side. It would give a simple proof of the weak type (p, p) result of Fefferman [START_REF] Fefferman | Inequalities for strongly singular convolution operators[END_REF] for Stein's grand square function. We leave this open.

The proof of the corollary is easy by splitting the upper half space according to |x-y|/t compared to powers 2 k , k ≥ 0, and one obtains

R n+1 + t |x -y| + t nλ g(t, y) 2 dydt t n+1 1 2 ≤ C(n, λ) k≥0 2 -knλ/2 A (2 k+1 ) g(x) .
It remains to use A (α) g p ≤ Cα n/τ A (1) g p for α = 2 k+1 in appropriate arguments for p ≥ 1 or p ≤ 1.

The proof of Theorem 0.1 is an easy matter using in part atomic theory for tent spaces, again proved in [START_REF] Coifman | Some new function spaces and their applications to harmonic analysis[END_REF]. Recall that for 0 < p ≤ 1, the tent space T p,2 1 has an atomic decomposition: A T p,2 1 atom is a function a(t, x) supported in a tent T 1 B with the estimate

T1B |a(t, x)| 2 dxdt t ≤ |B| -( 2 p -1)
.

There is a constant C = C(n, p) > 0 such that a T p,2

1 ≤ C. Any T p,2
1 function g can be represented as a series g = λ j a j where a j is a T p,2 1 atom and

|λ j | p ∼ g p T p,2 1 
. By the isometry property, a T p,2 α atom is a function A(u, x) supported a tent T α B with the estimate

TαB |A(u, x)| 2 dxdu u ≤ α -n |B| -( 2 p -1)
and the decomposition theorem holds in T p,2 α . Proof of Theorem 0.1. Recall that we may assume α > β = 1 and it is enough to prove (0.4) and (0.5). Fix p = ∞ first. Let g T ∞,2 1 = 1 and B be a ball. As

T α B ⊂ T 1 B , TαB |g(t, x)| 2 dxdt t ≤ T1B |g(t, x)| 2 dxdt t ≤ |B| = α n |B| α n . Hence, g T ∞,2 α ≤ α n/2 . This shows g T ∞,2 α ≤ α n/2 g T ∞,2
1 for all g. Let g T ∞,2 α = 1 and B be a ball. As T 1 B ⊂ T α (αB) where αB is the ball concentric with B dilated by α,

T1B |g(t, x)| 2 dxdt t ≤ Tα(αB) |g(t, x)| 2 dxdt t ≤ |αB| α n = |B| . Hence, g T ∞,2 1 ≤ 1 and g T ∞,2 1 ≤ g T ∞,2
α for all g.

Fix now p ≤ 1. Let B be a ball and a be a T p,2 1 atom supported in a tent T 1 B. As T 1 B ⊂ T α (αB), we have a is supported in T α (αB) and

Tα(αB) |a(t, x)| 2 dxdt t = T1B |a(t, x)| 2 dxdt t ≤ |B| -( 2 p -1) = α 2n/p α -n |αB| -( 2 p -1)
.

Thus α -n/p a is a T p,2 α atom. An atomic decomposition of any element of T p,2

1 is up to multiplication by α -n/p an atomic decomposition in T p,2 α , proving g T p,2 α ≤ C(n, p)α n/p g T p,2 1 . Next, let B be a ball and a be a T p,2 α atom supported in a tent

T α B. As T α B ⊂ T 1 B, we have a is supported in T 1 B and T1B |a(t, x)| 2 dxdt t = TαB |a(t, x)| 2 dxdt t ≤ α -n |B| -( 2 p -1) . Thus α n/2 a is a T p,2 1 
atom. As above, we conclude that g T p,2 1 ≤ C(n, p)α -n/2 g T p,2 α . For 1 < p < 2 and 2 < p < ∞, we conclude by interpolation with the p = 2 equality g T 2,2 α = α n/2 g T 2,2 1 . We have shown (0.4) and (0.5). The sharpness of the bounds is seen by saturating these inequalities. Fix α > 1 large. Let B be the unit ball. Set a 1 (t, y) = 1 T1B (t, y)1 [1/2,1] (t). It is easy to see that a 1 T p,2 1 ∼ 1. Now, we have that A (α) a 1 has support equal to B(0, α), is bounded by a constant c(n) > 0 and equal to that constant on the ball B(0, α+1

2 ). Thus a 1 T p,2 α ∼ α n/p . This proves that (0.4) is optimal when p ≤ 2 and (0.5) is optimal when p ≥ 2. Next, let a 2 (t, y) = a 1 (αt, y). By scaling a 2 T p,2 α = α n/2 a 1 T p,2 1 ∼ α n/2 . Now, A (1) a 2 is supported in B, bounded by a constant c(n) > 0 and equal to that constant on B(0, α-1 2α ). Thus a 2 T p,2 1 ∼ 1. This proves that (0.4) is optimal when p ≥ 2 and (0.5) is optimal when p ≤ 2.