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Abstract

In this paper we prove an approximate controllability result for the bilinear Schrödinger
equation. This result requires less restrictive non-resonance hypotheses on the spectrum
of the uncontrolled Schrödinger operator than those present in the literature. The con-
trol operator is not required to be bounded and we are able to extend the controllability
result to the density matrices. The proof is based on fine controllability properties of the
finite dimensional Galerkin approximations and allows to get estimates for the L

1 norm
of the control. The general controllability result is applied to the problem of controlling
the rotation of a bipolar rigid molecule confined on a plane by means of two orthogonal
external fields.

1 Introduction

In this paper we are concerned with the controllability problem for the Schrödinger equation

i
dψ

dt
= (H0 + u(t)H1)ψ. (1.1)

Here ψ belongs to the Hilbert sphere of a complex Hilbert space H and H0, H1 are self-adjoint
operators on H. The control u is scalar-valued and represents the action of an external field.
The reference model is the one in which H0 = −∆ + V (x), H1 = W (x), where x belongs
to a domain D ⊂ Rn with suitable boundary conditions and V,W are real-valued functions
(identified with the corresponding multiplicative operators) characterizing respectively the
autonomous dynamics and the coupling of the system with the control u. However, equation
(1.1) can be used to describe more general controlled dynamics. For instance, a quantum
particle on a Riemannian manifold subject to an external field (in this case ∆ is the Laplace–
Beltrami operator) or a two-level ion trapped in a harmonic potential (the so-called Eberly
and Law model [18, 9, 14]). In the last case, as in many others relevant physical situations,
the operator H0 cannot be written as the sum of a Laplacian plus a potential.
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Equation (1.1) is usually named bilinear Schrödinger equation in the control community,
the term bilinear referring to the linear dependence with respect to ψ and the affine dependence
with respect to u. (The term linear is reserved for systems of the form ẋ = Ax+Bu(t).) The
operator H0 is usually called the drift.

The controllability problem consists in establishing whether, for every pair of states ψ0

and ψ1, there exist a control u(·) and a time T such that the solution of (1.1) with initial
condition ψ(0) = ψ0 satisfies ψ(T ) = ψ1. Unfortunately the answer to this problem is negative
when H is infinite dimensional. Indeed, Ball, Marsden, and Slemrod proved in [3] a result
which implies (see [29]) that equation (1.1) is not controllable in (the Hilbert sphere of)
H Moreover, they proved that in the case in which H0 is the sum of the Laplacian and a
potential in a domain D of Rn, equation (1.1) is neither controllable in the Hilbert sphere S
of L2(D,C) nor in the natural functional space where the problem is formulated, namely the
intersection of S with the Sobolev spaces H2(D,C) and H1

0 (D,C). Hence one has to look for
weaker controllability properties as, for instance, approximate controllability or controllability
between the eigenstates of H0 (which are the most relevant physical states).

However, in certain cases one can describe quite precisely the set of states that can be
connected by admissible paths. Indeed in [4, 5] the authors prove that, in the case in which
H0 is the Laplacian on the interval [−1, 1], with Dirichlet boundary conditions, and H1 is
the operator of multiplication by x, the system is exactly controllable near the eigenstates in
H7(D,C) ∩ S (with suitable boundary conditions). This result was then refined in [6], where
the authors proved that the exact controllability holds in H3(D,C) ∩ S, for a large class of
control potentials (see also [23]).

In dimension larger than one (for H0 equal to the sum of the Laplacian and a potential)
or for more general situations, the exact description of the reachable set appears to be more
difficult and at the moment only approximate controllability results are available.

In [11] an approximate controllability result for (1.1) was proved via finite dimensional
geometric control techniques applied to the Galerkin approximations. The main hypothesis
is that the spectrum of H0 is discrete and without rational resonances, which means that the
gaps between the eigenvalues of H0 are Q-linearly independent. Another crucial hypothesis
appearing naturally is that the operator H1 couples all eigenvectors of H0.

The main advantages of that result with respect to those previously known are that: i)
it does not need H0 to be of the form −∆ + V ; ii) it can be applied to the case in which
H1 is an unbounded operator; iii) the control is a bounded function with arbitrarily small
bound; iv) it allows to prove controllability for density matrices and it can be generalized to
prove approximate controllability results for a system of Schrödinger equations controlled by
the same control (see [10]).

The biggest difficulty in order to apply the results given in [11] to academic examples is
that in most of the cases the spectrum is described as a simple numerical series (and hence
Q-linearly dependent). However, it has been proved that the hypotheses under which the
approximate controllability results holds are generic [19, 24]. Notice that writingH0+u(t)H1 =
(H0 + εH1) + (u(t) − ε)H1 and redefining (u(t) − ε) as new control may be useful. As a
matter of fact, perturbation theory permits often to prove the Q-linearly independence of
the eigenvalues of (H0 + εH1) for most values of ε. This idea was used in [11] to prove
the approximate controllability of the harmonic oscillator and the 3D potential well with a
Gaussian control potential.

Results similar to those presented in [11] have been obtained, with different techniques,
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Figure 1: Each vertex of the graph represents an eigenstate of H0 (when the spectrum is not
simple, several nodes may be attached to the same eigenvalue). An edge links two vertices
if and only if H1 connects the corresponding eigenstates. In this example, 〈φ1, H1φ2〉 and
〈φ1, H1φ3〉 are not zero, while 〈φ1, H1φ4〉 = 〈φ2, H1φ3〉 = 〈φ2, H1φ4〉 = 0.

in [22] (see also [15, 8, 21, 23]). They require less restrictive hypotheses on the spectrum of
H0 (which is still assumed to be discrete) but they do not admit H1 unbounded and do not
apply to the density matrices. However, it should be noticed that [22] proves approximate
controllability with respect to some Sobolev norm Hs, while the results given in [11] permit to
get approximate controllability in the weaker norm L2. As it happens for the results in [11],
the sufficient conditions for controllability obtained in [22] are generic.

Fewer controllability results are known in the case in which the spectrum of H0 is not
discrete. Let us mention the paper [20], in which approximate controllability is proved between
wave functions corresponding to the discrete part of the spectrum (in the 1D case), and [15].

In this paper we prove the approximate controllability of (1.1) under less restrictive hy-
potheses than those in [11]. More precisely, assume that H0 has discrete spectrum (λk)k∈N
(possibly not simple) and denote by φk an eigenvector of H0 corresponding to λk in such a way
that (φk)k∈N is an orthonormal basis of H. Let Ξ be the subset of N2 given by all (k1, k2) such
that 〈φk1, H1φk2〉 6= 0. Assume that, for every (j, k) ∈ Ξ such that j 6= k, we have λj 6= λk
(that is, degenerate energy levels are not directly coupled by H1). We prove that the system
is approximately controllable if there exists a subset S of Ξ such that the graph whose vertices
are the elements of N and whose edges are the elements of S is connected (see Figure 1) and,
moreover, for every (j1, j2) ∈ S and every (k1, k2) ∈ Ξ different from (j1, j2) and (j2, j1),

|λj1 − λj2| 6= |λk1 − λk2|. (1.2)

As in [11], H1 is not required to be bounded and we are able to extend the controllability
result to the density matrices and to simultaneous controllability (see Section 2.2 for precise
definitions). This extension is interesting in the perspective of getting controllability results
for open systems.

Interesting features of our result are that it permits to get L1 estimates for the control laws
and that it does not require the spectrum of A to be simple. Moreover, beside requiring less
restrictive hypotheses, this new result works better in academic examples where very often
one has a spectrum which is resonant, but a lot of products 〈φk1, H1φk2〉 which vanish. The
consequence of the presence of these vanishing elements (i.e., of the smallness of Ξ) is that
less conditions of the type (1.2) need being verified.

The condition on the spectrum given above is still generic and it is less restrictive than
the one given in [22], which corresponds to the case S = {(k0, k) | k ∈ N, k 6= k0} for some
k0 ∈ N and where condition (1.2) is required for every (k1, k2) ∈ N2\{(j1, j2), (j2, j1)}. Notice
however that the approximate controllability result given in [22] is still in a stronger norm.

The idea of the proof is the following. We recover approximate controllability for the
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Figure 2: The bipolar rigid molecule confined to a plane.

system defined on an infinite dimensional Hilbert space through fine controllability properties
of the N -dimensional Galerkin approximations, N ∈ N, which allow us to pass to the limit
as N → ∞. More precisely, we prove that, for n,N ∈ N with N ≫ n ≫ 1, for given initial
and final conditions ψ0, ψ1 in the Hilbert sphere of H which are linear combinations of the
first n eigenvectors of H0, it is possible to steer ψ0 to ψ1 in the Galerkin approximation of
order N in such a way that the projection on the components n + 1, . . . , N has arbitrarily
small norm along the trajectory. This kind of controllability for the Galerkin approximation
of order N is proved in two steps: firstly, thanks to a time-dependent change of variables we
transform the system in a driftless one, nonlinear in the control, and we prove the result up
to phases. The change of variables was already introduced in [1, 11]; the technical novelty of
this paper is the convexification analysis for the transformed system, which allows to conclude
the controllability with less restrictive non-resonance hypotheses. Secondly, the control of
phases is obtained via a classical method, using as pivot an eigenstate of H0 and exploiting
the controllability (up to phases) of the time-reversed Schrödinger equation. This last step
requires some further arguments in the case of simultaneous controllability.

In the second part of the paper we apply our result to the problem of controlling a bipolar
rigid molecule confined on a plane by means of two electric fields constant in space and
controlled in time, oriented along two orthogonal directions (see Figure 2). The corresponding
Schrödinger equation can be written as

i
∂ψ(θ, t)

∂t
=

(
− ∂2

∂θ2
+ u1(t) cos(θ) + u2(t) sin(θ)

)
ψ(θ, t), θ ∈ S

1, (1.3)

where S
1 = R/2πZ. Notice that a controlled rotating molecule is the most relevant physical

application for which the spectrum of H0 is discrete.
The system described by (1.3) is not controllable if we fix one control to zero. Indeed by
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parity reasons the potential cos(θ) does not couple an odd wave function with an even one
and the potential sin(θ) does not couple wave functions with the same parity.

Up to our knowledge, the controllability result presented in this paper is the only one which
can be directly applied to system (1.3). Indeed, both the results obtained in [11] and [22]
seem to require sophisticated perturbation arguments in order to conclude the approximate
controllability of (1.3).

The proof of the controllability of (1.3) by means of the controllability result obtained in
this paper is not immediate since we have to use in a suitable way the two controls. The idea
is to prove that, given an initial condition ψ0 which is even with respect to some θ̄ ∈ S

1, by
varying the control u = (u1, u2) ∈ R2 along the line R(cos(θ̄), sin(θ̄)), it is possible to steer it
(approximately) towards any other wave function even with respect to θ̄. In particular, it is
possible to steer any eigenfunction (which is necessarily even with respect to some θ̄) to the
ground state (that is, the constant function 1/

√
2π), which can, in turn, be steered towards

any other eigenfunction. The argument can be refined to prove approximate controllability
among any pair of wave functions on the Hilbert sphere.

The structure of the paper is the following. In Section 2 we introduce the class of systems
under consideration and we discuss their well-posedness. Then, we state the main results
contained in the paper. Section 3 is devoted to the case in which H is finite dimensional.
Sections 4, 5, and 6 contain the proof of the main results and in Section 5.6 we present
estimates on the L1 norm of the control. Section 7 contains an application to the infinite
potential well, showing controllability and establishing L1 estimates of the control. Section 8
provides the application to the bipolar planar molecule evolving on the plane.

2 Framework and main results

2.1 Settings and notations

As in [11], we use an abstract framework instead of a presentation in terms of partial differ-
ential equations. The advantage of this presentation is that it is very versatile and applies
without modification for Schrödinger equation on a (possibly unbounded) domain of Rn or on
a manifold such as S1 (see Section 8). To avoid confusion, let us stress that H0 and H1, intro-
duced in the introduction, are self-adjoint operators while A = −iH0 and B = −iH1, used in
what follows, are skew-adjoint. Hereafter N denotes the set of strictly positive integers. We
also denote by U(H) the space of unitary operators on H.

Definition 2.1. Let H be an Hilbert space with scalar product 〈·, ·〉 and A,B be two (possibly
unbounded) linear operators on H, with domains D(A) and D(B). Let U be a subset of R.
Let us introduce the formal controlled equation

dψ

dt
(t) = (A+ u(t)B)ψ(t), u(t) ∈ U. (2.1)

We say that (A,B, U,Φ) satisfies (A) if the following assumptions are verified:

(A1) Φ = (φk)k∈N is an Hilbert basis of H made of eigenvectors of A associated with
the family of eigenvalues (iλk)k∈N;

(A2) φk ∈ D(B) for every k ∈ N;
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(A3) A+ uB : span{φk | k ∈ N} → H is essentially skew-adjoint for every u ∈ U ;

(A4) if j 6= k and λj = λk then 〈φj, Bφk〉 = 0.

Remark 2.2. If A has simple spectrum then (A4) is verified. If all the eigenvalues of A
have finite multiplicity, then, up to a change of basis, hypothesis (A4) is a consequence of
(A1− 2− 3).

A crucial consequence of assumption (A3) is that, for every constant u in U , A + uB
generates a group of unitary transformations et(A+uB) : H → H. The unit sphere of H is
invariant for all these transformations.

Definition 2.3. Let (A,B, U,Φ) satisfy (A) and u : [0, T ] → U be piecewise constant. The
solution of (2.1) with initial condition ψ0 ∈ H is

ψ(t) = Υu
t (ψ0), (2.2)

where Υu : [0, T ] → U(H) is the propagator of (2.1) that associates, with every t in [0, T ], the
unitary linear transformation

Υu
t = e(t−

∑j−1
l=1 tl)(A+ujB) ◦ etj−1(A+uj−1B) ◦ · · · ◦ et1(A+u1B),

where
∑j−1

l=1 tl ≤ t <
∑j

l=1 tl and u(τ) = uj if
∑j−1

l=1 tl ≤ τ <
∑j

l=1 tl.

The notion of solution introduced above makes sense in very degenerate situations and can
be enhanced when B is bounded (see [3] and references therein).

Note that, since 〈
φn, e

t(A+uB)ψ0

〉
=
〈
e−t(A+uB)φn, ψ0

〉
,

for every n ∈ N, ψ0 ∈ H, and u ∈ U , then, for every solution ψ(·) of (2.1), the function
t 7→ 〈ψ(t), φn〉 is absolutely continuous and satisfies, for almost every t ∈ [0, T ],

d

dt
〈φn, ψ(t)〉 = −〈(A + u(t)B)φn, ψ(t)〉 . (2.3)

2.2 Main results

As already recalled in the introduction, exact controllability is hopeless in general. Several
relevant definitions of approximate controllability are available. The first one is the standard
approximate controllability.

Definition 2.4. Let (A,B, U,Φ) satisfy (A). We say that (2.1) is approximately controllable
if for every ψ0, ψ1 in the unit sphere of H and every ε > 0 there exist a piecewise constant
control function u : [0, T ] → U such that ‖ψ1 −Υu

T (ψ0)‖ < ε.

Recall that A has purely imaginary eigenvalues (iλk)k∈N with associated eigenfunctions
(φk)k∈N. Next we introduce the notion of connectedness chain, whose existence is crucial for
our result.

Definition 2.5. Let (A,B, U,Φ) satisfy (A). A subset S of N2 couples two levels j, k in N,
if there exists a finite sequence

(
(s11, s

1
2), . . . , (s

p
1, s

p
2)
)
in S such that
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(i) s11 = j and sp2 = k;

(ii) sj2 = sj+1
1 for every 1 ≤ j ≤ p− 1;

(iii) 〈φsj1, Bφsj2〉 6= 0 for 1 ≤ j ≤ p.

S is called a connectedness chain (respectively m-connectedness chain) for (A,B, U,Φ) if
S (respectively S ∩{1, . . . , m}2) couples every pair of levels in N (respectively in {1, . . . , m}).

A connectedness chain is said to be non-resonant if for every (s1, s2) in S, |λs1 − λs2| 6=
|λt1 − λt2 | for every (t1, t2) in N2 \ {(s1, s2), (s2, s1)} such that 〈φt2, Bφt1〉 6= 0.

Theorem 2.6. Let δ > 0 and let (A,B, [0, δ],Φ) satisfy (A). If there exists a non-resonant
connectedness chain for (A,B, [0, δ],Φ) then (2.1) is approximately controllable.

Theorem 2.6 is a particular case of Theorem 2.11, stated in the next section.

Remark 2.7. Notice that in the assumptions of Theorem 2.6 we do not require that the
eigenvalues of A are simple. Take for instance H = C4, U = [0, 1], and

A =




i 0 0 0
0 2i 0 0
0 0 4i 0
0 0 0 4i


 , B =




0 1 1 0
−1 0 0 1
−1 0 0 0
0 −1 0 0


 .

A connectedness chain is given by {(1, 2), (2, 1), (1, 3), (3, 1), (2, 4), (4, 2)}. The corresponding
eigenvalue gaps are |λ2 − λ1| = 1, |λ3 − λ1| = 3, and |λ4 − λ2| = 2. Hence, the connectedness
chain is non-resonant.

The following proposition gives an estimate of the L1 norm of the control steering (2.1)
from one eigenvector to an ε-neighborhood of another. A generalization of this proposition is
given by Theorem 2.13.

Proposition 2.8. Let δ > 0. Let (A,B, [0, δ],Φ) satisfy (A) and admit a non-resonant chain
of connectedness S. Then for every ε > 0 and (j, k) ∈ S there exist a piecewise constant
control u : [0, Tu] → [0, δ] and θ ∈ R such that ‖Υu

Tu(φj)− eiθφk‖ < ε and

‖u‖L1 ≤ 5π

4| 〈φk, Bφj〉 |
.

2.3 Simultaneous controllability and controllability in the sense of

density matrices

We define now a notion of controllability in the sense of density matrices. Recall that a density
matrix ρ is a non-negative, self-adjoint operator of trace class whose trace is normalized to
one. Its time evolution is determined by

ρ(t) = Υu
t ρ(0)Υ

u∗

t

where Υu∗

t is the adjoint of Υu
t . Notice that the spectrum of ρ(t) is constant along the motion,

since, for every t, ρ(t) is unitarily equivalent to ρ(0).
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Definition 2.9. Let (A,B, U,Φ) satisfy (A). We say that (2.1) is approximately controllable
in the sense of the density matrices if for every pair of unitarily equivalent density matrices
ρ0, ρ1 and every ε > 0 there exists a piecewise constant control u : [0, T ] → U such that

‖ρ1 −Υu
Tρ0Υ

u∗
T ‖ < ε,

in the sense of the operator norm induced by the Hilbert norm of H.

Definition 2.10. Let (A,B, U,Φ) satisfy (A). We say that (2.1) is approximately simultane-
ously controllable if for every r in N, ψ1, . . . , ψr in H, Υ̂ in U(H), and ε > 0 there exists a
piecewise constant control u : [0, T ] → U such that, for every 1 ≤ k ≤ r,

∥∥∥Υ̂ψk −Υu
Tψk

∥∥∥ < ε.

The following result is proved in Sections 4, 5, and 6.

Theorem 2.11. Let δ > 0 and let (A,B, [0, δ],Φ) satisfy (A). If there exists a non-resonant
connectedness chain for (A,B, [0, δ],Φ), then (2.1) is approximately simultaneously control-
lable.

Simultaneous controllability implies controllability in the sense of density matrices (see
Proposition A.1). Hence we have the following.

Corollary 2.12. Let δ > 0 and let (A,B, [0, δ],Φ) satisfy (A). If there exists a non-resonant
connectedness chain for (A,B, [0, δ],Φ), then (2.1) is approximately controllable in the sense
of the density matrices.

Theorem 2.13. Let (A,B, U,Φ) satisfy (A) and admit a non-resonant chain of connectedness.
Then there exists a basis Φ̂ = (φ̂k)k∈N of eigenvectors of A and a subset S of N2 such that,
for every m ∈ N, S is a m-connectedness chain for (A,B, U, Φ̂). Moreover, let δ > 0 and
U = [0, δ], then for every ε > 0 and for every permutation σ : {1, . . . , m} → {1, . . . , m}
there exist a piecewise constant control u : [0, Tu] → [0, δ] and θ1, . . . , θm in R for which the
propagator Υu of (2.1) satisfies ‖Υu

Tuφ̂l − eiθl φ̂σ(l)‖ < ε for every 1 ≤ l ≤ m and

‖u‖L1 ≤ 5 π (2m−1 − 1)

4 inf{|
〈
φ̂k, Bφ̂j

〉
| : (j, k) ∈ S, 1 ≤ j, k ≤ m}

.

The proof of the first part of the statement of Theorem 2.13 is given in Section 4.4. The
second part is proved in Section 5.6.

Notice that a lower bound on the L1 norm of the control was already proved in [11] (see
Proposition 5.10).

3 Finite dimensional case

Denote by u(n) and su(n) the Lie algebras of the group of unitary matrices U(n) and its
special subgroup SU(n) = {M ∈ U(n)| detM = 1} respectively.

Here we address the case where H is of finite dimension n. Equation (2.1) then defines
a bilinear control system on U(n). Finite dimensional systems of the type (2.1) have been
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extensively studied. A necessary and sufficient condition for controllability on SU(n) (i.e. the
property that every two points of SU(n) can be joined by a trajectory in U(n) of system (2.1))
is that the Lie algebra generated by A and B contains su(n). This criterion is optimal, yet
sometimes too complicated to be checked for n large. Easily verifiable sufficient conditions for
controllability on SU(n) have been thoroughly studied in the literature (see for instance [13]
and references therein). Next proposition gives a new sufficient condition, slightly improving
those in [29] and [11, Proposition 4.1]. Its proof is based on the techniques that we extend to
the infinite dimensional case in the following sections.

The controllability result is obtained under a slightly weaker assumption than (A).

Proposition 3.1. Let H = Cn. Let (A,B, U,Φ) satisfy (A1 − 2 − 3) and admit a non-
resonant connectedness chain S. Assume, moreover, that λj 6= λk for every (j, k) ∈ S. Then
the control system (2.1) is controllable both on the unit sphere of Cn and on SU(n), provided
that U contains at least two points. If, moreover, trA 6= 0 or trB 6= 0, then the control system
(2.1) is controllable on U(n).

Proof. For every 1 ≤ j, k ≤ n, let e
(n)
jk be the n× n matrix whose entries are all zero, but the

one at line j and column k which is equal to 1. We denote by ajk and bjk the (j, k)-th entry
of A and B, respectively.

Recall that, for any two n × n matrices X and Y , adX(Y ) = [X, Y ] = XY − Y X , and
compute the iterated matrix commutator

adpA(B) =
n∑

j,k=1

(ajj − akk)
pbjke

(n)
jk .

Fix (j, k) in S. By hypothesis, for every l, m in {1, . . . , n} such that {l, m} 6= {j, k},
(ajj − akk)

2 6= (all− amm)
2 or blm = 0. There exists some polynomial Pjk with real coefficients

such that Pjk((ajj − akk)
2) = 1 and Pjk((all − amm)

2) = 0 if (ajj − akk)
2 6= (all − amm)

2. Let

Pjk =
∑d

h=0 chX
h. Then

d∑

h=0

chad
2h
A (B) = bjke

(n)
jk + bkje

(n)
kj .

As a consequence,

d∑

h=0

chad
2h+1
A (B) = (ajj − akk)

(
bjke

(n)
jk + bjke

(n)
kj

)
= i(λj − λk)

(
bjke

(n)
jk + bjke

(n)
kj

)
,

and then the two elementary Hermitian matrices e
(n)
jk − e

(n)
kj and ie

(n)
jk + ie

(n)
kj also belong to

Lie(A,B). Because of the connectedness of B and thanks to the relation

[
e
(n)
jk , e

(n)
lm

]
= δkle

(n)
jm − δjme

(n)
lk ,

one deduces that su(n) ⊂ Lie(A,B).
If trA = trB = 0, then A and B belong to su(n), hence su(n) = Lie(A,B). If trA 6= 0

or trB 6= 0, then A or B does not belong to su(n) and u(n) = Lie(A,B). This completes the
proof of the controllability of the control system (2.1) on SU(n) and U(n).
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It remains to prove the controllability on the unit sphere Sn of Cn. Fix x0, x1 in Sn, and
consider an element of g1 ∈ SU(n) such that g1x0 = x1. According to what precedes there
exists a trajectory g in U(n) of (2.1) from In to g1. The curve t 7→ g(t)x0 is a trajectory
of (2.1) in Sn that links x0 to x1.

4 Convexification procedure

4.1 Time-reparametrization

We denote by PC the set of piecewise constant functions u : [0,∞) → [0,∞) such that there
exist u1, . . . , up > 0 and 0 = t1 < · · · < tp+1 = Tu for which

u : t 7→
p∑

j=1

ujχ[tj ,tj+1)(t).

Let us identify u =
∑p

j=1 ujχ[tj ,tj+1) with the finite sequence (uj, τj)1≤j≤p where τj = tj+1 − tj
for every 1 ≤ j ≤ p.

We define the map
P : PC → PC

(uj, τj)1≤j≤p 7→
(

1
uj
, ujτj

)
,

which satisfies the following easily verifiable properties.

Proposition 4.1. For every u ∈ PC, P ◦ P(u) = u and ‖P(u)‖L1 =
∑p

i=1 τj .

Assume that (A,B, U,Φ) satisfies (A). In analogy with Definition 2.3, we define, for every
u =

∑p
j=1 ujχ[tj ,tj+1) ∈ PC such that u(t) ∈ U for every t ≥ 0, the solution of

dψ

dt
(t) = (u(t)A+B)ψ(t), (4.1)

with initial condition ψ0 ∈ H as

ψ(t) = e(t−tl)(ulA+B) ◦ · · · ◦ et1(u1A+B)(ψ0) ,

where tl ≤ t ≤ tl+1.
System (4.1) is the time reparametrization of system (2.1) induced by the transformation

P, as stated in the following proposition.

Proposition 4.2. Let u = (uj, τj)1≤j≤p belong to PC and ψ0 be a point of H. Let ψ be the

solution of (2.1) with control u and initial condition ψ0, and ψ̃ be the solution of (4.1) with

control P(u) and initial condition ψ0. Then ψ (Tu) = ψ̃ (‖u‖L1).

Proof. It is enough to remark that, if u 6= 0, for every t ∈ [0,∞), et(A+uB) = etu(
1
u
A+B).

As a consequence of Proposition 4.2 it is equivalent to prove controllability for (2.1) with
U = (0, δ] or to prove controllability for system (4.1) with control u ∈ [1/δ,∞).

10



4.2 Convexification

For every positive integer N let the matrices

A(N) = diag(iλ1, . . . , iλN) and B(N) = (〈φj, Bφk〉)Nj,k=1 =: (bjk)
N
j,k=1 ,

be the Galerkin approximations at order N of A and B, respectively. Let t 7→ ψ(t) be a
solution of

ψ̇ = (uA(N) +B(N))ψ ,

corresponding to a control function u and consider v(t) =
∫ t
0
u(τ)dτ . Denote by d(B) the

diagonal of B(N) and let B̂(N) = B(N) − d(B). Then q : t 7→ e−v(t)A
(N)−td(B)ψ(t), is a solution

of
q̇(t) = e−v(t)A

(N)−td(B)B̂(N)ev(t)A
(N)+td(B)q(t). (ΘN)

Let us set
ϑN (t, v) = e−vA

(N)−td(B)B̂(N)evA
(N)+td(B). (4.2)

Lemma 4.3. Let K be a positive integer and γ1, . . . , γK ∈ R \ {0} be such that |γ1| 6= |γj| for
j = 2, . . . , K. Let

ϕ(t) = (eitγ1 , . . . , eitγK ).

Then, for every t0 ∈ R, we have

convϕ([t0,∞)) ⊇ νS1 × {(0, . . . , 0)} ,

where ν =
∏∞

k=2 cos
(
π
2k

)
> 0. Moreover, for every R > 0 and ξ ∈ S

1 there exists a sequence
(tk)k∈N such that tk+1 − tk > R and

lim
h→∞

1

h

h∑

k=1

ϕ(tk) = (νξ, 0, . . . , 0) .

Proof. Since
ϕ(t− t0) = (e−it0γ1eitγ1 , . . . , e−it0γKeitγK ), (4.3)

it is enough to prove the lemma for t0 = 0. We can suppose that |γ1| = 1 and, up to a reordering
of the indexes, that there exist n and ñ such that 1 ≤ n ≤ ñ ≤ K, |γi| 6= |γj| for every
i, j ∈ {1, . . . , n}, γ2, . . . , γñ ∈ Z, γñ+1, . . . , γK ∈ R\Z, and {|γn+1|, . . . , |γñ|} ⊂ {|γ2|, . . . , |γn|}.

Consider the 2n−1 real numbers defined as follows: let

t̄1 = 0,

and for k ∈ {1, . . . , n− 1} and j ∈ {1, . . . , 2k−1},

t̄2k−1+j = t̄j +
π

|γk+1|
.

Up to a reordering of the t̄j , we can suppose that 0 = t̄1 < t̄2 < · · · < t̄2n−1 . Take an integer
r larger than R/2π, then set tj = t̄j + 2πr(j − 1), in such a way that tk − tk−1 > R for every
k = 2, . . . , 2n−1.
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Now consider the arithmetic mean of the l-th (complex) coordinates of ϕ(t1), . . . , ϕ(t2n−1).
We show that this quantity is zero for l = 2, . . . , ñ. Indeed, from the definition of tj, we have

2n−1∑

j=1

eitjγl =
n−1∏

k=1

(
1 + eiπγl/|γk+1|

)
,

which is zero since so is the k-th factor when |γl| = |γk+1|.
On the other hand, the arithmetic mean of the first coordinate is uniformly bounded away

from zero. Indeed
∣∣∣∣∣

1

2n−1

2n−1∑

j=1

eiγ1tj

∣∣∣∣∣ =
n−1∏

k=1

∣∣∣∣
1 + eiπγ1/|γk+1|

2

∣∣∣∣ =
n∏

k=2

cos

(
π

2|γk|

)
= exp

(
n∑

k=2

log

(
cos

(
π

2|γk|

)))

≥ exp

(
∞∑

k=2

log
(
cos
( π
2k

)))
= ν . (4.4)

Since log
(
cos
(
π
2k

))
∼ − π2

8k2
as k tends to infinity, then the sum

∑
k≥2 log

(
cos
(
π
2k

))
converges

to a (negative) finite value l. As a consequence, ν = exp(l) is a non-zero positive number.
Therefore we have found a sequence of numbers tj such that the arithmetic mean of the

first coordinate of ϕ(t1), . . . , ϕ(t2n−1) is uniformly bounded away from zero and the arithmetic
means of following ñ− 1 coordinates are zero. According to (4.3), the role of t1, . . . , t2n−1 can
equivalently be played, for every k ∈ N, by the 2n−1-uple

tkj = tj + 2πmk , j = 1, . . . , 2n−1,

where the integer m is larger than r + t2n−1/2π. Now, let l ∈ {ñ + 1, . . . , K}, so that γl /∈ Z.
For every h ∈ N, the arithmetic mean of the l-th coordinate of the points ϕ(tkj ) (k = 0, . . . , h,
j = 1, . . . , 2n−1) is

1

2n−1(h+ 1)

2n−1∑

j=1

h∑

k=0

eit
k
j γl =

1

2n−1(h+ 1)

2n−1∑

j=1

eitjγl
h∑

k=0

ei2πmkγl

=

(
1

2n−1

2n−1∑

j=1

eitjγl

)
1

(h+ 1)

1− ei2πm(h+1)γl

1− ei2πmγl
h→∞−→ 0 .

Therefore, we found a sequence of points in the convex hull of ϕ([0,∞)) converging to

(21−n
∑2n−1

j=1 eiγ1tj , 0, . . . , 0). The lemma follows from (4.4) and by rotation invariance (see (4.3)).

Remark 4.4. In order to estimate ν, notice that, for every x in (−1, 1), −x2

2
− x4

11
≤ log(cos(x)).

Hence, taking x = π
2k

for k ≥ 2,

∞∑

k=2

log
(
cos
( π
2k

))
> −π

2

8

∞∑

k=2

1

k2
− π4

176

∞∑

k=2

1

k4
= −π

8 + 240 π4 − 1980 π2

15840

from which one deduces ν > exp
(
−π8+240π4−1980π2

15840

)
> 2

5
. Numerically, one finds ν ≈ 0.430.

12



4.3 An auxiliary system

Let (A,B, U,Φ) satisfy (A). With every non-resonant connectedness chain S for (A,B, U,Φ)
and every n ∈ N we associate the subset

Sn = {(j, k) ∈ S | 1 ≤ j, k ≤ n, j 6= k}

of S and the control system on Cn

ẋ = ν|bjk|
(
eiθe

(n)
jk − e−iθe

(n)
kj

)
x, (Σn)

where θ = θ(t) ∈ S
1 and (j, k) = (j(t), k(t)) ∈ Sn are piecewise constant controls. Recall that

e
(n)
jk is the n× n matrix whose entries are all zero but the one of index (j, k) which is equal to

1 and that ν =
∏∞

k=2 cos
(
π
2k

)
(see Lemma 4.3).

The control system (Σn) is linear in x. For every θ in S
1 and every 1 ≤ j, k ≤ n, j 6= k, the

matrix eiθe
(n)
jk − e−iθe

(n)
kj is skew-adjoint with zero trace. Hence the control system (Σn) leaves

the unit sphere Sn of Cn invariant. In order to take advantage of the rich Lie group structure
of group of matrices, it is also possible to lift this system in the group SU(n), considering x
as a matrix.

4.4 Existence of a n-connectedness chain

Notice that system (Σn) cannot be controllable if S is not a n-connectedness chain (see [11,
Remark 4.2]). This motivates the following proposition.

Proposition 4.5. Let (A,B, U,Φ) satisfy (A). If there exists a connectedness chain for
(A,B, U,Φ), then there exists a bijection σ : N → N such that, setting Φ̂ = (φσ(k))k∈N
and Ŝ = {(σ(j), σ(k)) : (j, k) ∈ S}, (A,B, U, Φ̂) satisfies (A) and Ŝ is a n-connectedness
chain for (A,B, U, Φ̂) for every n in N.

Proof. Following [19, Proof of Theorem 4.2], σ can be constructed recursively by setting
σ(1) = 1 and σ(n + 1) = minα ({σ(1), . . . , σ(n)}), where, for every subset J of N, α(J) =
{k ∈ N \ J | 〈φj, Bφk〉 6= 0 for some j in J} .

Proposition 4.5 proves the first part of the statement of Theorem 2.13.

5 Modulus tracking

The aim of this section is to prove the following proposition, which is the main step in the
proof of Theorem 2.6.

Proposition 5.1. Let δ > 0. Let (A,B, [0, δ],Φ) satisfy (A) and admit a non-resonant con-
nectedness chain. Then, for every continuous curve Υ̂ : [0, T ] → U(H), r in N, and ε > 0,
there exist Tu > 0, a continuous increasing bijection s : [0, T ] → [0, Tu], and a piecewise
constant control function u : [0, Tu] → [0, δ] such that the propagator Υu of equation (2.1)
satisfies ∣∣|〈φj, Υ̂tφ〉| − |〈φj,Υu

s(t)φ〉|
∣∣ < ε for every t ∈ [0, T ], j ∈ N,

for every φ ∈ span{φ1, . . . , φr} with ‖φ‖ = 1.
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The proof of Proposition 5.1 splits in several steps. In Section 5.1 we recall some classical
results of finite dimensional control theory, which, in Section 5.2, are applied to system (Σn)
introduced in Section 4.3. In Section 5.3 we prove that system (ΘN) can track in projection
the trajectories of system (Σn). Then we prove tracking for the original infinite dimensional
system in Section 5.4. The proof of Proposition 5.1 is completed in Section 5.5.

5.1 Tracking: definitions and general facts

Let M be a smooth manifold, U be a subset of R, and f : M × U → TM be such that, for
every x in M and every u in U , f(x, u) belongs to TxM and f(·, u) is smooth. Consider the
control system

ẋ = f(x, u), (5.1)

whose admissible controls are piecewise constant functions u : R → U . For a fixed u in U , we
denote by fu the vector field x 7→ f(x, u).

Definition 5.2 (Tracking). Given a continuous curve c : [0, T ] →M we say that system (5.1)
can track up to time reparametrization the curve c if for every ε > 0 there exist Tu > 0, an
increasing bijection s : [0, T ] → [0, Tu], and a piecewise constant control u : [0, Tu] → U such
that the solution x : [0, Tu] → M of (5.1) with control u and initial condition x(0) = c(0)
satisfies dist(x(s(t)), c(t)) < ε for every t ∈ [0, T ], where dist(·, ·) is a fixed distance compatible
with the topology of M . If s can be chosen to be the identity then we say that system (5.1)
can track c without time reparametrization.

Notice that this definition is independent of the choice of the distance dist(·, ·). Next
proposition gives well-known sufficient conditions for tracking. It is a simple consequence of
small-time local controllability (see for instance [12, Proposition 4.3] and [16]).

Proposition 5.3. If, for every x in M , {f(x, u) | u ∈ U} = {−f(x, u) | u ∈ U} and
Liex({fu | u ∈ U}) = TxM , then system (5.1) can track up to time reparametrization any
continuous curve in M .

5.2 Tracking in (Σn)

We now proceed with the first step of the proof of Proposition 5.1. Using Proposition 5.3 we
can prove the following.

Proposition 5.4. Let (A,B, U,Φ) satisfy (A). Let S be a non-resonant connectedness chain
for (A,B, U,Φ) such that, for every n in N, S is a n-connectedness chain. Then, for every n
in N, the finite dimensional control system (Σn) can track up to time reparemetrization any
curve in SU(n).

Proof. Recall that Sn = {(j, k) ∈ S | 1 ≤ j, k ≤ n, j 6= k}. In order to apply Proposition 5.3
we notice that the set

V(x) =
{
ν|bjk|

(
eiθe

(n)
jk − e−iθe

(n)
kj

)
x : θ ∈ S

1, (j, k) ∈ Sn

}

is symmetric with respect to 0 and we are left to prove that the Lie algebra generated by the
linear vector fields x 7→ ν|bjk|(eiθejk − e−iθekj)x contains the whole tangent space su(n)x of
the state manifold SU(n). The latter condition is verified if and only if B(n) is connected, as
shown in the proof of Proposition 3.1.
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5.3 Tracking trajectories of (Σn) in (ΘN)

Next proposition states that, for every N ≥ n, system (ΘN), defined in Section 4, can track
without time reparametrization, in projection on the first n components, every trajectory of
system (Σn).

Hereafter we denote by Π
(N)
n the projection mapping a N×N complex matrix to the n×n

matrix obtained by removing the last N − n columns and the last N − n rows.

Proposition 5.5. Let δ > 0. Let (A,B, [0, δ],Φ) satisfy (A) and admit a non-resonant
connectedness chain S. For every n,N ∈ N, N ≥ n, ε > 0 and for every trajectory
x : [0, T ] → SU(n) of system (Σn) with initial condition x(0) = In there exists a piece-
wise constant control u : [0, T ] → [1/δ,+∞) such that the solution y : [0, T ] → SU(N) of
system (ΘN) with initial condition IN satisfies

‖x(t)−Π(N)
n (y(t))‖ < ε for every t ∈ [0, T ].

Proof. Given a trajectory x(t) of system (Σn) with initial condition x(0) = In, denote by
(j, k) = (j(t), k(t)) ∈ Sn and θ = θ(t) ∈ S

1 its corresponding control functions. Being these
functions piecewise constant, it is possible to write [0, T ] =

⋃q
p=0[tp, tp+1] in such a way that

j, k, and θ are constant on [tp, tp+1) for every p = 0, . . . , q.
We are going to construct the control u by applying recursively Lemma 4.3. Let δ̄ > 1/δ.

Fix p ∈ {0, . . . , q} and j, k, θ such that (j(t), k(t)) = (j, k) and θ(t) = θ on [tp, tp+1). Apply
Lemma 4.3 with γ1 = λj − λk, {γ2, . . . , γK} = {λl − λm | l, m ∈ {1, . . . , N}, blm 6= 0, {l, m} 6=
{j, k}, and l 6= m}, R = max(l,m)∈Sn

|bll−bmm|
|λl−λm|

T + δ̄T , and t0 = t0(p) to be fixed later depending

on p. Then, for every η > 0, there exist h = h(p) > 1/η and a sequence (wpα)
h
α=1 such that

wp1 ≥ t0, w
p
α − wpα−1 > R, and such that

∣∣∣∣∣
1

h

h∑

α=1

ei(λk−λj)w
p
α − ν

b̄jk
|bjk|

eiθ

∣∣∣∣∣ < η,

and ∣∣∣∣∣
1

h

h∑

α=1

ei(λl−λm)wp
α

∣∣∣∣∣ < η,

for every l, m ∈ {1, . . . , N} such that blm 6= 0, {l, m} 6= {j, k}, and l 6= m.
Set τ pα = tp + (tp+1 − tp)α/h, α = 0, . . . , h, and define the piecewise constant function

vη(t) =

q∑

p=0

h∑

α=1

(
wpα + τ pα

bjj − bkk
λk − λj

)
χ[τpα−1,τ

p
α)(t) . (5.2)

Note that by choosing t0(p) = wp−1
h(p−1) + R for p = 1, . . . , q and t0(0) = R we have that vη(t)

is non-decreasing.

Set M(t) = ν|bj(t)k(t)|
(
eiθ(t)e

(N)
j(t)k(t) − e−iθ(t)e

(N)
k(t)j(t)

)
. From the construction of vη we have

∫ t

0

ϑN (s, vη(s))ds
η→0−→

∫ t

0

M(s)ds, (5.3)
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Figure 3: The piecewise constant function vη (in bold) and the piecewise linear approximation
v̌η with slope greater than δ̄.

uniformly with respect to t ∈ [0, T ], where ϑN is defined as in (4.2). This convergence
guarantees (see for example [2, Lemma 8.2]) that, denoting by yη(t) the solution of system (ΘN)

with control vη and initial condition IN , Π
(N)
n (yη(t)) converges to x(t) as η tends to 0 uniformly

with respect to t ∈ [0, T ]. Hence, for every η sufficiently small,

‖Π(N)
n ◦ yη(t)− x(t)‖ < ε

2
for every t ∈ [0, T ].

If the functions vη were of the type t 7→
∫ t
0
u(s)ds for some u : [0, T ] → [1/δ,∞) piecewise

constant, then we would be done. For every η > 0 consider the piecewise linear continuous
function v̌η uniquely defined on every interval [tp, tp+1) by





v̌η(tp) = wp−1
h

¨̌vη(t) = 0 if t ∈
⋃h
α=1[τ

p
α−1, τ

p
α−1 +

(tp+1−tp)

h2
),

v̌η(τ
p
α−1 +

(tp+1−tp)

h2
) = wpα for α = 1, . . . , h,

˙̌vη(t) = δ̄ if t ∈ ⋃h
α=1[τ

p
α−1 +

(tp+1−tp)

h2
, τ pα),

where we set w−1
h = 0 (see Figure 5.3). On each interval [τ pl−1 +

(tp+1−tp)

h2
, τ pl ) the difference

between vη and v̌η is bounded in absolute value by δ̄(tp+1 − tp)/h. Therefore,

sup

{
‖ϑN (t, vη(t))− ϑN (t, v̌η(t))‖ | t ∈

⋃

l,p

[
τ pl−1 +

(tp+1 − tp)

h2
, τ pl

)}

tends to zero as η tends to 0.
Since ‖ϑN(t, v)‖ is uniformly bounded with respect to (t, v) ∈ [0, T ]×R and the measure

of
⋃
l,p[τ

p
l−1, τ

p
l−1 +

(tp+1−tp)

h2
) goes to 0 as η goes to 0, we have

∫ t

0

(ϑN(τ, vη(τ))− ϑN (τ, v̌η(τ))) dτ
η→0−→ 0 uniformly with respect to t ∈ [0, T ] .
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In particular, for η sufficiently small, if y̌η denotes the solution of system (ΘN) with control
v̌η and initial condition IN , then

‖yη(t)− y̌η(t)‖ <
ε

2
for every t ∈ [0, T ].

Finally, u can be taken as the derivative of v̌η, which is defined almost everywhere.

5.4 Tracking trajectories of (Σn) in the original system

Next proposition extends the tracking property obtained in the previous section from the
system (ΘN) to the infinite dimensional system (4.1). We denote by Πn : H → Cn the

projection mapping ψ ∈ H to (〈φ1, ψ〉, . . . , 〈φn, ψ〉) ∈ Cn and we write φ
(n)
k for Πnφk.

Proposition 5.6. Let δ > 0 and let (A,B, [0, δ],Φ) satisfy (A). For every ε > 0, n ∈ N, and
for every trajectory x : [0, T ] → SU(n) of system (Σn) with initial condition In there exists
a piecewise constant function u : [0, T ] → [1/δ,+∞) such that the propagator Υu of (4.1)
satisfies ∣∣|〈φ(n)

j , x(t)Πnφ〉| − |〈φj,Υu
t (φ)〉|

∣∣ < ε

for every φ ∈ span{φ1, . . . , φn} with ‖φ‖ = 1 and every t in [0, T ] and j in N.

Proof. Consider µ > 0. For every j ∈ N the hypothesis that φj belongs to D(B) implies
that the sequence (bjk)k∈N is in ℓ2. It is therefore possible to choose N ≥ n such that∑

k>N |bjk|2 < µ for every j = 1, . . . , n. By Proposition 5.5, for every η > 0 and for every
trajectory x : [0, T ] → SU(n) of system (Σn) with initial condition In, there exists a piecewise
constant control uη : [0, T ] → [1/δ,+∞) such that the solution yη of system (ΘN) with initial
condition IN satisfies

‖x(t)−Π(N)
n (yη(t))‖ < η.

Denote by Rη(t, s) : CN → CN , 0 ≤ s, t ≤ T , the resolvent of system (ΘN) associated
with the control vη(t) =

∫ t
0
uη(τ)dτ , so that yη(t) = Rη(t, 0). Fix φ ∈ span{φ1, . . . , φn} with

‖φ‖ = 1 and set
Qη(t) = e−v

η(t)A−t d(B)Υuη

t (φ).

The components of Qη(t), say

qηj (t) = e−iλjv
η(t)−tbjj 〈φj,Υuη

t (φ)〉, j ∈ N ,

satisfy, for almost every t ∈ [0, T ],

q̇ηj (t) =
∞∑

k=1

bjke
i(λk−λj)v

η(t)+t(bkk−bjj)qηk(t). (5.4)

Therefore Qη
N (t) = ΠNQ

η(t) = (qη1(t), . . . , q
η
N(t))

T satisfies the time-dependent linear equation

Q̇η
N(t) = ϑN(t, v

η(t))Qη
N (t) + P η

N(t),

where P η
N(t) = (

∑
k>N b1ke

i(λk−λ1)v
η(t)+t(bkk−b11)qηk , . . . ,

∑
k>N bNke

i(λk−λN )vη(t)+t(bkk−bNN )qηk)
T .

Hence

Qη
N(t) = Rη(t, 0)ΠNφ+

∫ t

0

Rη(s, t)P η
N(s)ds.
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Consider the projection of the equality above on the first n coordinates. Notice that, because
of the choice of N , the norm of the first n components of P η

N(t) is smaller than
√
µn. By (5.3),

Rη(s, t) converges uniformly, as η tends to 0, to a time-dependent operator from CN into itself
which preserves the norm of the first n components. Then, there exists η sufficiently small
such that ∥∥∥∥Π

(N)
n

(∫ t

0

Rη(s, t)P η
N(s)ds

)∥∥∥∥ < 2T
√
µn.

Hence

‖ΠnQ
η(t)− x(t)Πnφ‖ ≤ ‖ΠnQ

η(t)− Π(N)
n (Rη(t, 0))Πnφ‖+ ‖Π(N)

n (Rη(t, 0))Πnφ− x(t)Πnφ‖
≤ 2T

√
µn+ η <

ε

2
, (5.5)

if µ < ε2/(32nT 2) and η < T
√
µn. In particular, for j = 1, . . . , n,

∣∣|〈φ(n)
j , x(t)Πnφ〉| − |〈φj,Υuη

t (φ)〉|
∣∣ < ε

2
.

It remains to prove the statement for j > n. From (5.5) it follows

n∑

j=1

|qηj (t)|2 >
(
1− ε

2

)2
,

then, since Υu
t is a unitary operator for every t, we have

∑

j>n

|qηj (t)|2 < 1−
(
1− ε

2

)2
< ε . �

5.5 Proof of modulus tracking

The following proposition allows to reduce the tracking problem stated in Proposition 5.1 to
the tracking of a curve in SU(n).

Proposition 5.7. For every continuous curve Υ̂ : [0, T ] → U(H), ε > 0, and r ∈ N,
there exist n ≥ r and a continuous curve Fn : [0, T ] → SU(n) such that |〈φj, Υ̂tφk〉 −
〈φ(n)

j ,Fn(t)φ
(n)
k 〉| < ε for every t in [0, T ], 1 ≤ k ≤ r, and j ∈ N.

Proof. For every n in N, define the function gn : t 7→
∑

r

k=1

∑n
l=1 |〈φl, Υ̂tφk〉|2. The functions

gn are continuous and gn(t) converges monotonically to r as n tends to infinity for every
t ∈ [0, T ]. Hence gn converges to the constant function r uniformly with respect to t ∈ [0, T ].
Therefore, for every 1 ≤ k ≤ r, ψnk (t) =

∑n
l=1〈φl, Υ̂tφk〉φl converges to Υ̂tφk uniformly with

respect to t ∈ [0, T ]. In particular, the matrix
(
〈ψnk (t), ψnj (t)〉

)r
j,k=1

converges to Ir uniformly

with respect to t ∈ [0, T ].
For every n large enough, the vectors ψn1 (t), . . . , ψ

n
r
(t) are linearly independent and can

be completed to a basis Bn(t) = (ψn1 (t), . . . , ψ
n
r (t), ϕ

n
r+1(t), . . . , ϕ

n
n(t)) of span{φ1, . . . , φn} de-

pending continuously on t ∈ [0, T ]. Let Mn(t) be the n × n matrix of the components of
Bn(t) with respect to the basis (φ1, . . . , φn). Denote by Fn(t) the matrix whose columns are
the Gram–Schmidt transform of the columns of Mn(t). Then, for every n large enough, F n

satisfies the statement of the proposition.

18



We are now ready to prove Proposition 5.1.

Proof of Proposition 5.1. Thanks to Proposition 4.2, it is sufficient to prove that, for every r

in N, ε > 0, and every continuous curve Υ̂ : [0, T ] → U(H), there exist Tu > 0, a continuous
increasing bijection s : [0, T ] → [0, Tu], and a piecewise constant control function u : [0, Tu] →
[1/δ,+∞) such that the propagator Υu of system (4.1) satisfies

∣∣|〈φj, Υ̂tφ〉| − |〈φj,Υu
s(t)φ〉|

∣∣ < ε ,

for every φ ∈ span{φ1, . . . , φr} with ‖φ‖ = 1 and every t ∈ [0, T ], j ∈ N.
By Proposition 5.7 there exist n ≥ r and a continuous curve Fn : [0, T ] → SU(n) such

that |〈φj, Υ̂tφk〉 − 〈φ(n)
j ,Fn(t)φ

(n)
k 〉| < ε/3 for every t in [0, T ], 1 ≤ k ≤ r, and j ∈ N.

By Proposition 5.4, there exists an admissible trajectory x : [0, TΣ] → SU(n) of system
(Σn) with initial condition In satisfying

‖x(s(t))− Fn(t)‖ < ε

3
for every t ∈ [0, T ].

Finally, by Proposition 5.6, there exists a piecewise constant function u : [0, TΣ] →
[1/δ,+∞) such that the propagator Υu of (4.1) satisfies

∣∣|〈φ(n)
j , x(t)Πnφ〉| − |〈φj,Υu

t (φ)〉|
∣∣ < ε

3

for every φ ∈ span{φ1, . . . , φr} with ‖φ‖ = 1 and every t ∈ [0, TΣ], j ∈ N.

5.6 Estimates of the L1 norm of the control

We derive now estimates of the minimal L1 norm of the control u whose existence is asserted
in Proposition 5.1. We focus here on the physically relevant transitions inducing permutations
between eigenvectors of A.

The strategy to get L1 estimates is the following. Recall that, instead of considering the
control system ẋ = (A + uB)x driven by a piecewise continuous function u : [0, Tu] → [0, δ],
we have defined the function P(u) : [0, ‖u‖L1] → [1/δ,∞) and considered the control system
ẋ = (P(u)A + B)x. By Propositions 4.1 and 4.2, in order to estimate the L1 norm of u, it
is enough to estimate the time needed to transfer the system ẋ = (uA + B)x from a given
source to an ε-neighborhood of a given target. We observe that the time needed to transfer
ẋ = (uA + B)x from one state to an ε-neighborhood of another is smaller than or equal to
the time needed to transfer system (Σn) between the n-Galerkin approximations of the initial
and the final condition for n large enough.

We proceed to the proofs of Proposition 2.8 and Theorem 2.13.

Proof of Proposition 2.8. Let S be a non-resonant chain of connectedness for (A,B, [0, δ],Φ).
Choose (j, k) in S and let m in N be such that m ≥ j, k. The solution x : R → SU(m) of the
Cauchy problem

ẋ = ν|bjk|
(
e
(m)
jk − e

(m)
kj

)
x, x(0) = Im

is a trajectory of (Σm) and has the form x(t) = exp
(
tν|bjk|

(
e
(m)
jk − e

(m)
kj

))
. The matrix

M := x
(

π
2ν|bjk|

)
satisfies Mφ

(m)
l = φ

(m)
l if l 6= j, k, Mφ

(m)
j = −φ(m)

k , Mφ
(m)
k = φ

(m)
j . In other
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words, the control system (Σm) can exchange (up to a phase factor) the eigenstates j and k
of A(m), leaving all the others eigenstates invariant, in time π

2ν|bjk |
.

Proof of Theorem 2.13. Using Proposition 4.5 one may assume that S is a m-connectedness
chain for every m ∈ N. Let us prove by induction that every permutation of {1, . . . , m} is a
product of at most 2m−1 − 1 transpositions of the form (j k) with (j, k) in S ∩ {1, . . . , m}2.
Let h(n) be the minimal integer such that every permutation of {1, . . . , n} is the product of
at most h(n) transpositions of the form (j k) with (j, k) in Sm. For every permutation σ of
{1, . . . , n+ 1}, either σ(n+ 1) = n+ 1, and σ is generated by at most h(n) transpositions, or
σ(n+1) < n+1. In this case, there exists 1 ≤ k ≤ n such that (k, n+1) ∈ S. Since the product
(k n + 1)(k σ(n + 1))σ leaves n + 1 invariant, it is a product of at most h(n) permutations.
As a conclusion, h(n+ 1) ≤ 2h(n) + 1 and since h(2) = 1, we find h(m) ≤ 2m−1 − 1.

The time needed for each of the transpositions (j k) with (j, k) in S has been computed in
Proposition 2.8. The conclusion follows from the estimate ν > 2/5 proved in Remark 4.4.

Remark 5.8. The bound given in Theorem 2.13 does not depend on ε. However, it is possible
that the time Tu needed to achieve the transfer of system (2.1) grows to infinity as ε tends to
zero.

Remark 5.9. Theorem 2.13 could be stated in a more general way. Indeed the result [25,
Theorem 6.2] gives the existence of a uniform bound on the time needed to steer system (Σn)
from any linear combination of the first n eigenstates to any other. This fact guarantees the
existence of a uniform bound for the L1-norm of a control steering system (2.1) from any linear
combination of the first n eigenstates to any neighborhood of any other unitarily equivalent
linear combination of the first n eigenstates. Such time estimates have been given explicitly
in the case S = N2 in [1, Section 5]. This result could be generalized to the case under
consideration. It is, however, rather technical and involves advanced notions of Lie group
theory.

Following the method of [11, Section 4.5], one can also give a lower bound for the L1 norm
of the control.

Proposition 5.10. Let (A,B, U,Φ) satisfy (A). For every Υ̂ in U(H), m in N, ε > 0,
θ1, . . . , θn ∈ R, and every piecewise constant function u : [0, Tu] → U such that the propagator
Υu of (2.1) satisfies ‖eiθkΥ̂(φk)−Υu

Tu(φk)‖ ≤ ε for 1 ≤ k ≤ m, one has

‖u‖L1 ≥ sup
1≤k≤m

sup
j∈N

〈
φj, φk〉 − |〈φj, Υ̂φk〉|

∣∣− ε

‖Bφj‖
.

Notice that while some strong assumptions about the existence of connectedness chains
are needed in Theorem 2.13, Proposition 5.10 is valid even if (2.1) is not approximately
controllable.

6 Phase tuning

Based on Proposition 5.1, we shall now complete the proof of Theorem 2.6, proving approxi-
mate simultaneous controllability.
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In order to outline the mechanism of the proof, we treat in a first time the case of a
single wave function (proving directly the first part of Corollary 2.12) and we then turn, in
Section 6.2, to the general case.

6.1 Phase tuning for the control of a single wave function

Simultaneous controllability is obtained from Proposition 5.1 applied both to (2.1) and to its
time-reversed version. If (A,B, [0, δ],Φ) satisfies (A) and admits a non-resonant connectedness
chain, then the same is true for (−A,−B, [0, δ],Φ). Notice, moreover, that, by unitarity of
the evolution of the Schrödinger equation, if u : [0, T ] → [0, δ] steers ψ0 to a ε-neighborhood
of ψ1 for the time-reversed control system

dψ

dt
(t) = −(A+ u(t)B)ψ(t), u(t) ∈ [0, δ], (6.1)

then u(T − ·) : [0, T ] → [0, δ] steers ψ1 ε-close to ψ0 for the original system (2.1).
Take any eigenvector φk̄ such that λk̄ 6= 0 (its existence clearly follows from the existence

of a non-resonant connectedness chain) and consider the control u : [0, T ] → [0, δ] steering
ψ0 to a ε-neighborhood of eiθφk̄ for some θ ∈ [0, 2π). The existence of such a u follows from
Proposition 5.1, with Υ̂ any continuous curve in U(H) from the identity to a unitary operator
sending ψ0 into φk̄ and r sufficiently large.

Similarly, there exist ũ : [0, T̃ ] → [0, δ] and θ̃ ∈ [0, 2π) such that ũ steers ψ1 ε-close to e
iθ̃φk̄

for (6.1). Let τ > 0 be such that

eτA(eiθφk̄) = eiθ̃φk̄.

Hence, the concatenation of u, of the control constantly equal to zero for a time τ , and of
ũ(T̃ − ·), steers ψ0 2ε-close to ψ1.

6.2 Phase tuning for simultaneous control

Let r be the number of equations that we would like to control simultaneously, as in Defini-
tion 2.10. The scheme of the argument is similar to the one above. The pivotal role of the
orbit of {etAφk̄ | t} is now played by a torus of dimension r.

The crucial point is to ensure that an orbit of A “fills” the torus densely enough. This is
formally stated in the proposition below. Recall that a subset Ω1 is ε-dense in a metric space
Ω2 if any point of Ω2 is at distance smaller than ε from every point of Ω1. For every m ∈ N
and k1, . . . , km ∈ N, define

T (k1, . . . , km) = {eθ1Aφk1 + · · ·+ eθmAφkm | θ1, . . . , θm ∈ R}
C(k1, . . . , km) = {etAφk1 + · · ·+ etAφkm | t ∈ R}.

Notice that, if k1, . . . , km are distinct, T (k1 . . . , km) is diffeomorphic to the torus Tm.

Proposition 6.1. Let (A,B, [0, δ],Φ) satisfy (A) and admit a non-resonant connectedness
chain. Assume that, for every η > 0, there exist r pairwise distinct positive integers k̄1, . . . , k̄r
such that C(k̄1, . . . , k̄r) is η-dense in T (k̄1, . . . , k̄r). Then (2.1) is simultaneously approximately
controllable.
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Proof. Take r orthonormal initial conditions ψ1
0 , . . . , ψ

r
0 and r orthonormal final conditions

ψ1
1, . . . , ψ

r
1. Fix a tolerance η > 0. Take k̄1, . . . , k̄r as in the statement of the proposition.

According to Proposition 5.1 (with r sufficiently large and Υ̂ a continuous curve in U(H)
from the identity to a unitary operator sending ψj0 to φk̄j for each j = 1, . . . , r), there exists

a control u(·) steering simultaneously each ψj0, for j = 1, . . . , r, η-close to eθjAφk̄j for some
θ1, . . . , θr ∈ R. Similarly, applying Proposition 5.1 to the triple (−A,−B, [0, δ],Φ), there

exists a control ũ : [0, T̃ ] → [0, δ] steering simultaneously ψj1 η-close to eθ̃jAφk̄j for (6.1), for

j = 1, . . . , r and for some θ̃1, . . . , θ̃r ∈ R.
Since the positive orbit of A passing through

∑r
j=1 e

θjAφk̄j is η-close to
∑r

j=1 e
θ̃jAφk̄j ∈

T (k̄1, . . . , k̄r), then the concatenation of u(·), a control constantly equal to zero on a time
interval of suitable length, and ũ(T̃ − ·) steers each ψj0 3η-close to ψj1 for j = 1, . . . , r.

We are left to prove that

(P) for every η > 0, there exist r distinct positive integers k̄1, . . . , k̄r such that C(k̄1, . . . , k̄r)
is η-dense in T (k̄1, . . . , k̄r).

We split the proof in four cases.

6.2.1 dimQ

(
spanQ(λk)k∈N

)
= ∞

This case is trivial: it is enough to take k̄1, . . . , k̄r in such a way that λk̄1, . . . , λk̄r areQ-linearly
independent. Then C(k̄1, . . . , k̄r) is dense (hence, η-dense for every η > 0) in T (k̄1, . . . , k̄r).

6.2.2 The spectrum of A is unbounded

The most physically relevant case is the one in which the sequence (λk)k∈N is unbounded.
Fix k̄1 such that λk̄1 6= 0. Take then k̄2 such that |λk̄2| ≫ |λk̄1| in such a way that the

orbit C(k̄1, k̄2) is η-dense in T (k̄1, k̄2). By recurrence, taking |λk̄m| ≫ |λk̄m−1
| for m = 2, . . . , r

we have that C(k̄1, . . . , k̄m) is η-dense in T (k̄1, . . . , k̄m). Indeed, by the recurrence hypothesis,
C(k̄1, . . . , k̄m−1)+T (k̄m) is η-dense in T (k̄1, . . . , k̄m) = T (k̄1, . . . , k̄m−1)+T (k̄m) and the choice
of λk̄m is such that C(k̄1, . . . , k̄m) is η′-dense in C(k̄1, . . . , k̄m−1)+T (k̄m) for η

′ arbitrarily small.

6.2.3 The spectrum of A is bounded and dimQ

(
spanQ(λk)k∈N

)
= 1

The existence of a connectedness chain implies that there exist infinitely many pairwise distinct
gaps between eigenvalues of A. Hence, the set of eigenvalues of A has infinite cardinality.

Since all the eigenvalues of A are Q-linearly dependent, we may assume, without loss of
generality, that λj is rational for every j ∈ N. Up to removing the eigenvalues equal to zero,
if they exist, and changing the sign of some eigenvalues (which does not affect property (P)),
we can also assume that

λj =
aj
bj
, gcd(aj , bj) = 1, aj , bj > 0

for every j ∈ N. The boundedness and the infinite cardinality of the spectrum of A imply
that the sequence (bj)j∈N is unbounded.

In order ti prove (P), let us make some preliminary considerations. For every m ∈ N
and k1, . . . , km ∈ N, denote by τ(k1, . . . , km) the minimum of all t > 0 such that tλkj belongs
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to N for every j = 1, . . . , m. Equivalently said, 2πτ(k1, . . . , km) is the period of the curve
s 7→ esAφk1 + · · · + esAφkm. Notice that, if λk1 , . . . , λkm are integers, then τ(k1, . . . , km) =
1/gcd(ak1 , . . . , akm). In general,

τ(k1, . . . , km) =
bk1 · · · bkm

gcd
(
aklΠ

l−1
j=1bkjΠ

m
j=l+1bkj

)
1≤l≤m

. (6.2)

The following lemma guarantees that, for any choice of k1, . . . , km−1, we can select km in
such a way that τ(k1, . . . , km) ≫ τ(k1, . . . , km−1).

Lemma 6.2. Let m ∈ N. For every k1, . . . , km ∈ N, there exists c = c(k1, . . . , km) > 0 such
that, for every km+1 ∈ N,

τ(k1, . . . , km+1)

τ(k1, . . . , km)
≥ bkm+1

c
.

Proof. From equation (6.2),

τ(k1, . . . , km+1)

τ(k1, . . . , km)
= bkm+1

gcd
(
aklΠ

l−1
j=1bkjΠ

m
j=l+1bkj

)
1≤l≤m

gcd
(
aklΠ

l−1
j=1bkjΠ

m+1
j=l+1bkj

)
1≤l≤m+1

.

The proof consists, then, in showing that gcd
(
aklΠ

l−1
j=1bkjΠ

m+1
j=l+1bkj

)
1≤l≤m+1

is bounded

from above by a constant independent of km+1. First, notice that

gcd
(
aklΠ

l−1
j=1bkjΠ

m+1
j=l+1bkj

)
1≤l≤m+1

≤ gcd
(
ak1Π

m+1
j=2 bkj , akm+1Π

m
j=1bkj

)
=: Γ.

Set c1 = ak1Π
m
j=2bkj and c2 = Πm

j=1bkj and notice that they do not depend on km+1.
Write Γ as

γ1βm+1 = Γ = γ2αm+1

where γ1 and γ2 divide c1 and c2, respectively, while αm+1 and βm+1 divide akm+1 and bkm+1 ,
respectively. Since akm+1 and bkm+1 are relatively prime, then the same is true for αm+1 and
βm+1. Therefore, αm+1 divides γ1. Hence, Γ = αm+1γ2 ≤ γ1γ2 ≤ c1c2.

We show now how to choose k̄1, . . . , k̄r satisfying property (P). We proceed by induction
on r. The case r = 1 has already been treated in Section 6.1. Assume that k̄1, . . . , k̄r−1 are
such that C(k̄1, . . . , k̄r−1) is η-dense in T (k̄1, . . . , k̄r−1). Hence, for every choice of k̄r, the set
C(k̄1, . . . , k̄r−1) + T (k̄r) is η-dense in T (k̄1, . . . , k̄r).

We are left to show that, for a suitable choice of k̄r ∈ N\{k̄1, . . . , k̄r−1}, the set C(k̄1, . . . , k̄r)
is η′-dense in C(k̄1, . . . , k̄r−1) + T (k̄r) for η′ arbitrarily small. Recall that C(k̄1, . . . , k̄m) is
the support of the curve s 7→ esAφk̄1 + · · · + esAφk̄m, whose period equals 2πτ(k̄1, . . . , k̄m).
Therefore, C(k̄1, . . . , k̄r−1) is the projection of C(k̄1, . . . , k̄r) along φk̄r on φ⊥

k̄r
. Hence, for

every ψ ∈ C(k̄1, . . . , k̄r−1) the cardinality of the set (ψ + T (k̄r)) ∩ C(k̄1, . . . , k̄r) is equal to
τ(k̄1, . . . , k̄r)/τ(k̄1, . . . , k̄r−1). In particular, (ψ + T (k̄r)) ∩ C(k̄1, . . . , k̄r), which is regularly
distributed, is 2πτ(k̄1, . . . , k̄r−1)/τ(k̄1, . . . , k̄r)-dense in ψ + T (k̄r).

Lemma 6.2 and the unboundedness of the sequence (bj)j∈N allow to conclude.
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6.2.4 The spectrum of A is bounded and 1 < dimQ

(
spanQ(λk)k∈N

)
<∞

Let m = dimQ

(
spanQ(λk)k∈N

)
and fix a Q-basis µ1, . . . , µm of spanQ(λk)k∈N.

Let

λj =
m∑

l=1

αljµl, α1
j , . . . , α

m
j ∈ Q.

There exists l ∈ {1, . . . , m} such that the cardinality of {αlj | j ∈ N} is infinite. (Otherwise,
the set of eigenvalues of A would be finite.) Without loss of generality, l = 1.

The results of Sections 6.2.2 and 6.2.3 imply that, for every η > 0, there exist k̄1, . . . , k̄r ∈ N

such that {(eitµ1α
1
k̄1 , . . . , eitµ1α

1
k̄r ) | t ∈ R} is η-dense in T

r. We are going to show that
C(k̄1, . . . , k̄r) is rmη-dense in T (k̄1, . . . , k̄r) or, equivalently, that {(eitλk̄1 , . . . , eitλk̄r ) | t ∈ R}
is rmη-dense in T

r.
Up to a reparameterization, we can assume that αl

k̄j
∈ Z for every j = 1, . . . , r and

l = 1, . . . , m.
Fix (eiθ1 , . . . , eiθr) in T

r. The choice of k̄1, . . . , k̄r ∈ N guarantees the existence of t̄ ∈ R

such that ‖(eit̄µ1α
1
k̄1 , . . . , eit̄µ1α

1
k̄r )− (eiθ1 , . . . , eiθr)‖ < η. Because of the Q-linear independence

of µ1, . . . , µm, there exists t ∈ R such that

‖(eitµ1 , eitµ2 , . . . , eitµm)− (eit̄µ1 , 1, . . . , 1)‖ < η

max{|αl
k̄j
| | j = 1, . . . , r, l = 1, . . . , m} .

In particular |eitµlα
l
k̄j − 1| < η for every l = 2, . . . , m and every j = 1, . . . , r.

Hence

‖(eitλk̄1 , . . . , eitλk̄r )− (eiθ1, . . . , eiθr)‖ ≤ ‖(eitλk̄1 , . . . , eitλk̄r )− (e
it̄µ1α1

k̄1 , . . . , e
it̄µ1α1

k̄r )‖
+ ‖(eit̄µ1α

1
k̄1 , . . . , e

it̄µ1α1
k̄r )− (eiθ1, . . . , eiθr)‖

≤
r∑

j=1

|eit̄µ1α
1
k̄j · · · eit̄µmα

m
k̄j − e

it̄µ1α1
k̄j |+ η

≤ (r(m− 1) + 1)η.

This concludes the proof of property (P) and of Theorem 2.11. �

7 Example: Infinite potential well

We consider now the case of a particle confined in (−1/2, 1/2). This model has been extensively
studied by several authors in the last few years and was the first quantum system for which
a positive controllability result has been obtained. Beauchard proved exact controllability in
some dense subsets of L2 using Coron’s return method (see [5, 7] for a precise statement).
Nersesyan obtained approximate controllability results using Lyapunov techniques. In the
following, we extend these controllability results to simultaneous controllability and provide
some estimates of the L1 norm of controls achieving the transfer between two density matrices.

The Schrödinger equation writes

i
∂ψ

∂t
= −1

2

∂2ψ

∂x2
− u(t)xψ(x, t) (7.1)
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with the boundary conditions ψ(−1/2, t) = ψ(1/2, t) = 0 for every t ∈ R.
In this case H = L2 ((−1/2, 1/2),C) endowed with the Hermitian product 〈ψ1, ψ2〉 =∫ 1/2

−1/2
ψ1(x)ψ2(x)dx. The operators A and B are defined by Aψ = i1

2
∂2ψ
∂x2

for every ψ in

D(A) = (H2 ∩H1
0 ) ((−1/2, 1/2),C), and Bψ = ixψ.

Unfortunately, due to the numerous resonances, we are not able to apply directly our
results to system (7.1). A classical approach is in this case to use perturbation theory. Indeed,
consider for every η in [0, δ], the operator Aη = A + ηB. The controllability of system (7.1)
with control in [0, δ] is equivalent to the controllability of

dψ

dt
= Aηψ + vBψ

with controls v taking values in [−η, δ − η]. Since the perturbation η 7→ Aη is analytic, the
self-adjoint operator Aη admits a complete set of eigenvectors (φk(η))k∈N associated with the
eigenvalues (iλk(η))k∈N, with φk and λk analytic (see [17]). For η = 0,

φk(0) =

{
x 7→ 2 cos(kπx) when k is odd
x 7→ 2 sin(kπx) when k is even

is a complete set of eigenvectors of A associated with the eigenvalues iλk(0) = ik
2π2

2
. Follow-

ing [7, Proposition 2.3], one can compute the 2-jet at zero of the analytic functions λk:

λk(η) =
k2π2

2
+

(
1

24π2k2
− 5

8π4k4

)
η2 + o(η2),

as η goes to zero. For every k1, k2, p1, p2 in N, since 1
π2 is transcendental on Q,

λ′′k1(0)− λ′′k2(0) = λ′′p1(0)− λ′′p2(0) ⇔
{

1
k21

− 1
k22

= 1
p21

− 1
p22

1
k41

− 1
k42

= 1
p41

− 1
p42

⇔
{ 1

k21
− 1

k22
= 1

p21
− 1

p22(
1
k21

− 1
k22

)(
1
k21

+ 1
k22

)
=
(

1
p21

− 1
p22

)(
1
p21

+ 1
p22

) ⇔
{
k1 = p1
k2 = p2.

Hence, the 2-jets of the gaps between two eigenvalues are all different at zero. Recall that
〈φk, Bφk+1〉 6= 0. An argument similar to the one in [11, Proposition 6.2] ensures that for
every ε > 0 there exists 0 < η < ε such that {(j, j + 1), (j + 1, j) | j ∈ N} is a non-resonant
connectedness chain for (Aη, B, [−η, δ − η],Φ).

We can now apply Theorem 2.11 to obtain simultaneous approximate controllability for
(7.1) and Theorem 2.13 to get L1 estimates. For instance, for every ε > 0 there exist T > 0
and a piecewise constant function u : [0, T ] → [0, δ] such that the propagator at time T of
(7.1) exchanges (up to a correction of size ε) the density matrices

1

3
φ1(0)φ1(0)

∗ +
2

3
φ2(0)φ2(0)

∗ and
1

3
φ2(0)φ2(0)

∗ +
2

3
φ1(0)φ1(0)

∗

and

‖u‖L1 ≤ π

2ν|〈φ1(0), Bφ2(0)〉|
=

9π3

32ν
≈ 20.2656 .
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The control time T satisifies T ≥ 1
δ
‖u‖L1 and, from Proposition 5.10, the control u has to

satisfy

‖u‖L1 ≥ (1− ǫ)max

{
2
√
3π√

π2 − 6
,

2
√
6π√

2 π2 − 3

}
≈ (1− ǫ)5.5323 .

8 Orientation of a bipolar molecule in the plane by

means of two external fields

We present here an example of approximately controllable quantum system. (See [26, 27, 28]
and references therein.) It provides a simple model for the control by two electric fields of the
rotation of a bipolar rigid molecule confined to a plane (see Figure 2). Molecular orientation
and alignment are well-established topics in the quantum control of molecular dynamics both
from the experimental and theoretical point of view.

The model we aim to consider can be represented by a Schrödinger equation on the circle
S
1 = R/2πZ, so that H = L2(S1,C). In this case A = i ∂2/∂θ2 has discrete spectrum and its

eigenvectors are trigonometric functions. The controlled Schrödinger equation is

i
∂ψ(θ, t)

∂t
=

(
− ∂2

∂θ2
+ u1(t) cos(θ) + u2(t) sin(θ)

)
ψ(θ, t). (8.1)

We assume that both u1 and u2 are piecewise constant and take values in [0, δ], δ > 0.
Notice that system (8.1) is not controllable if we fix one control to zero. Indeed, by parity

reasons, the potential cos(θ) does not couple an odd wave function with an even one and the
potential sin(θ) does not couple wave functions with the same parity.

For every α ∈ S
1, let us split H as Hα

e ⊕ Hα
o , where Hα

e (respectively, Hα
o ) is the closed

subspace of H of even (respectively, odd) functions with respect to α. Notice that Hα
e and

Hα
o are Hilbert spaces. A complete orthonormal system for Hα

e (respectively, Hα
o ) is given

by {cos(k(· − α))/
√
π}∞k=0 (respectively, {sin(k(· − α))/

√
π}∞k=1). Let us write ψ = ψαe + ψαo ,

where ψαe ∈ Hα
e and ψαo ∈ Hα

o .
Our first result states that, once α is fixed, the even or the odd part of a wave function ψ

can be approximately controlled, under the constraint that their L2-norms are preserved.

Lemma 8.1. Let ψ ∈ H and α ∈ [0, π/2]. Then for every ε > 0 and every ψ̃ ∈ Hα
e such that

‖ψαe ‖H = ‖ψ̃‖H, there exists a piecewise constant control u = (u1, u2) steering ψ to a wave
function whose even part with respect to α lies in an ε-neighborhood of ψ̃. Similarly, for every
ε > 0 and every ψ̃ ∈ Hα

o such that ‖ψαo ‖H = ‖ψ̃‖H, there exists a piecewise constant control u
steering ψ to a wave function whose odd part with respect to α lies in an ε-neighborhood of ψ̃.

Proof. The idea is to apply Theorem 2.6 to a subsystem of (8.1) corresponding to the choice
of a subclass of wave functions and a subclass of admissible controls.

More precisely, let

Uα = {u : R → [0, δ]2 piecewise constant | u(t) is proportional to (cosα, sinα) for all t ∈ R}.
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The control system whose dynamics are described by (8.1) with admissible control functions
restricted to Uα can be rewritten as

i
∂ψ(θ, t)

∂t
=

(
− ∂2

∂θ2
+ v(t) cos(θ − α)

)
ψ(θ, t), v ∈

(
0, δ
√
1 + min{tanα, cotanα}2

)
.

(8.2)
Notice that the spaces Hα

e and Hα
o are invariant for the evolution of (8.2), whatever the

choice of v = v(·), since they are invariant both for A = i ∂
2

∂θ2
and for the multiplicative

operator Bα : H → H defined by (Bαφ)(θ) = cos(θ − α)φ(θ).
We shall consider (8.2) as a control system defined onHα

e (the second part of the statement
of the lemma can be proved similarly by considering its dynamics restricted to Hα

o ).
Denote by Aαe and Bα

e the restrictions of A and Bα to Hα
e . Choose as orthonormal basis

of eigenfunctions for Aαe the sequence defined by φk(θ) = cos(k(θ − α))/
√
π for k ∈ N. The

eigenvalue of A associated with φk is iλk = −ik2.
Then 〈φj, Bα

e φk〉 6= 0 if and only if |k − j| = 1. We take as connectedness chain the set
{(k, j) ∈ N2 | |k − j| = 1}. Since λk+1 − λk = −2k − 1, then the connectedness chain is
non-resonant. Theorem 2.6 implies that (8.2) can be steered from ψαe to an ε-neighborhood
of any ψ̃ ∈ Hα

e such that ‖ψαe ‖ = ‖ψ̃‖ by an admissible control v(·). The conclusion follows
by applying u(·) = (v(·) cosα, v(·) sin(α)) to (8.1) (since Hα

e and Hα
o are invariant by the flow

generated by u(·)).

The main result of this section states that (8.1) is approximately controllable.

Proposition 8.2. System (8.1) is approximately controllable.

Proof. It is enough to prove that every wave function of norm one can be steered arbitrarily
close to the constant 1/

√
2π. Indeed, if ψ and ψ̃ have norm one, if the control u(·) steers the

initial condition ψ ε-close to the constant 1/
√
2π, and if ũ(·) steers the conjugate of ψ̃ ε-close

to the same constant 1/
√
2π, then the concatenation of u and of the time reversed of ũ steers

ψ 2ε-close to ψ̃.
Fix ψ ∈ H of norm one, a tolerance ε > 0, and choose α ∈ (0, π/2). Fix ε̄ = ε(1− 1/

√
2).

Then, according to Lemma 8.1, ψ can be steered to a wave function ψ̃ such that ‖ψ̃−ψ1‖ < ε̄,
where ψ1 is of the form

ψ1 =
‖ψαe ‖√
2π

+ φ1, with φ1 ∈ Hα
o .

If ‖φ1‖ is smaller than ε/2 then we are done. Indeed, φ1 has L2-norm equal to
√

1− ‖ψαe ‖2,
which implies that 1− ‖ψαe ‖ < ε2/4. Then

∥∥∥∥ψ̃ − 1√
2π

∥∥∥∥ ≤ ‖ψ̃ − ψ1‖+
∥∥∥∥ψ1 −

1√
2π

∥∥∥∥ < ε̄+
√
(‖ψαe ‖ − 1)2 + ‖φ1‖2

= ε̄+
√
2
√

1− ‖ψαe ‖ < ε̄+
1√
2
ε = ε.

Assume then that ‖φ1‖ ≥ ε/2 and consider, for every β ∈ S
1, τβ = ‖(φ1)

β
e‖2. We can

characterize τβ in terms of the coefficients ak of the representation

φ1(·) =
∞∑

k=1

ak
sin(k( · − α))√

π
.
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Indeed,

τ 2β =
∞∑

k=1

∣∣〈φ1(·), cos(k(· − β))/
√
π〉
∣∣2 =

∞∑

k=1

∣∣〈ak sin(k( · − α))/
√
π, cos(k(· − β))/

√
π〉
∣∣2

=
∞∑

k=1

|ak sin((β − α)k)|2 .

There exists c > 0 independent of k and α such that

∫ π
2

0

sin2((β − α)k)dβ ≥ c,

hence, ∫ π
2

0

∞∑

k=1

|ak|2 sin2((β − α)k)dβ ≥ c

∞∑

k=1

|ak|2 = c‖φ1‖2,

from which we conclude that there exists β ∈ (0, π/2) such that

τβ ≥ 2c

π
‖φ1‖2 ≥

c

2π
ε2.

Notice now that the even part of ψ1 with respect to β has norm

‖(ψ1)
β
e‖ =

√
‖ψαe ‖2 + τβ ≥

√
‖ψαe ‖2 +

cε2

2π
.

Repeating the same argument as above replacing ψ by ψ1 we conclude that it is then possible
to steer ψ at a distance smaller than ε̄ from the sum ψ2 of a positive constant function of norm

larger than
√

‖ψαe ‖2 + cε2

2π
and a function φ2 ∈ Hβ

o of norm ‖φ2‖ < ‖φ1‖. If ‖φ2‖ < ε/2 then

we are done. Otherwise, since the improvement in the size of the constant is bounded from
below by a quantity that does not depend on φ1, we can iterate the procedure finitely many
times up to guaranteeing that the final wave function is ε-close to the constant 1/

√
2π.

A Appendix: relations between controllability notions

Proposition A.1. Let (A,B, U,Φ) satisfy (A). Then

(i) for every r in N, ε > 0, and Υ̂ in U(H) there exists a piecewise constant control
u : [0, T ] → U such that such that ‖Υ̂φk −Υu

Tφk‖ < ε for every 1 ≤ k ≤ r,

implies

(ii) (2.1) is controllable in the sense of densities matrices

which implies

(iii) for every r in N, ε > 0, and Υ̂ in U(H) there exist θ1, . . . , θr ∈ R and a piecewise
constant control u : [0, T ] → U such that ‖eiθkΥ̂(φk)−Υu

T (φk)‖ < ε for every 1 ≤ k ≤ r.
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Proof. Let us prove that (i) implies (ii). Fix two unitarily equivalent density matrices ρ0
and ρ1. Write ρ0 =

∑
k∈N Pkvkv

∗
k with (vk)k∈N an orthonormal sequence in H and (Pk)k∈N a

sequence in ℓ1([0, 1]) such that
∑

k Pk = 1. By assumption, there exists Υ̂ in U(H) such that

ρ1 = Υ̂ρ0Υ̂
∗ =

∑
k∈N PkΥ̂(vk)Υ̂(vk)

∗.
Let m in N be such that

∑
k>m Pk < ε and r in N be such that ‖vj−

∑r
k=1 〈φk, vj〉φk‖ < ε

for every j = 1, . . . , m. By hypothesis, there exists a piecewise constant function u : [0, T ] → U
such that ‖Υ̂(φk)−Υu

T (φk)‖ < ε/r for every 1 ≤ k ≤ r. Hence, for j = 1, . . . , m,

‖Υ̂(vj)−Υu
T (vj)‖ =

∥∥∥∥∥

∞∑

k=1

〈φk, vj〉 (Υ̂(φk)−Υu
T (φk))

∥∥∥∥∥

≤
r∑

k=1

‖ 〈φk, vj〉 (Υ̂(φk)−Υu
T (φk))‖+

∥∥∥∥∥Υ̂
(

∞∑

k=r+1

〈φk, vj〉φk
)∥∥∥∥∥

+

∥∥∥∥∥Υ
u
T

(
∞∑

k=r+1

〈φk, vj〉φk
)∥∥∥∥∥

≤ ε+ 2

∥∥∥∥∥vj −
r∑

k=1

〈φk, vj〉φk

∥∥∥∥∥ ≤ 3ε.

Then, recalling that for every θ in R, a, b in H, ‖aa∗ − bb∗‖ ≤ ‖aa∗ − eiθba∗ + eiθba∗ − bb∗‖ ≤
‖a‖‖a− eiθb‖+ ‖b‖‖eiθa∗ − b∗‖ ≤ (‖a‖+ ‖b‖)‖a− eiθb‖, we get

‖Υu
Tρ0Υ

u∗

T − ρ1‖ ≤
m∑

j=1

Pk‖Υu
T (vj)Υ

u
T (vj)

∗ − Υ̂(vj)Υ̂(vj)
∗‖+ 2ε

≤
m∑

j=1

Pk(‖Υu
T (vj)‖+ ‖Υ̂(vj)‖)‖Υu

T (vj)− Υ̂(vj)‖+ 2ε

≤ 6ε+ 2ε = 8ε,

which concludes the first part of the proof.
Assume now that (ii) holds true. Fix ε, r ∈ N, and Υ̂ as in the hypotheses. Choose

a1, . . . , ar ∈ R such that 0 < a1 < a2 < · · · < ar and
∑r

k=1 ak = 1. Define the two unitarily
equivalent density matrices

ρ0 =

r∑

k=1

akφkφ
∗
k and ρ1 =

r∑

k=1

akΥ̂(φk)Υ̂(φk)
∗.

By assumption, there exists a piecewise constant u : [0, T ] → U such that

‖ρ1 −Υu
Tρ0Υ

u∗
T ‖ < Cε, (A.1)

where C = min{aj , |ak − al| | 1 ≤ j, k, l ≤ r, k 6= l}/2. Choose 1 ≤ k0 ≤ r and test (A.1) on
Υu
Tφk0 ∥∥∥∥∥ak0Υ

u
Tφk0 −

r∑

k=1

ak〈Υ̂(φk),Υ
u
Tφk0〉Υ̂(φk)

∥∥∥∥∥ < Cε.
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Since (Υ̂(φk))k is an Hilbert basis of H, then

Υu
Tφk0 =

∞∑

k=1

〈Υ̂(φk),Υ
u
Tφk0〉Υ̂(φk),

and hence
∥∥∥∥∥

r∑

k=1

(ak0 − ak)〈Υ̂(φk),Υ
u
Tφk0〉Υ̂(φk) + ak0

∑

k>r

〈Υ̂(φk),Υ
u
Tφk0〉Υ̂(φk)

∥∥∥∥∥ < Cε.

In particular we have ∥∥∥∥∥
∑

k 6=k0

〈Υ̂(φk),Υ
u
Tφk0〉Υ̂(φk)

∥∥∥∥∥ <
ε

2
.

For ε small enough, this leads to |〈Υ̂(φk0),Υ
u
Tφk0〉| >

√
1− ε2/4 > 1−ε/2. Hence, there exists

θk0 in R such that ‖eiθk0 Υ̂(φk0)−Υu
T (φk0)‖ < ε.

Proposition A.2. Under the hypotheses of Proposition A.1 and if, moreover, 〈φj, Bφk〉 is
purely imaginary for every j, k ∈ N, then (iii) implies (ii).

Proof. First of all, because of the hypotheses on B, system (2.1) satisfies the following time-
reversibility property: If ψ : [0, T ] → H is a solution of (2.1) with control u(·), then ϕ(t) =∑∞

k=1 〈φk, ψ(T − t)〉φk is a solution of (2.1) with control u(T − ·).
Fix two unitarily equivalent density matrices ρ0 and ρ1. Write ρ0 =

∑
k∈N Pkvkv

∗
k with

(vk)k∈N an orthonormal sequence inH and (Pk)k∈N a sequence in ℓ1([0, 1]) such that
∑

k∈N Pk =

1. Let Υ̂ in U(H) be such that ρ1 = Υ̂ρ0Υ̂
∗ =

∑
k∈N PkΥ̂(vk)Υ̂(vk)

∗.
Let r ∈ N be such that

∑
k>r Pk < ε. By hypothesis there exist a control u : [0, Tu] → [0, δ]

and θ1, . . . , θr ∈ R such that ‖eiθk
∑∞

j=1 〈φj , vk〉φj − Υu
Tu(φk)‖ < ε for every 1 ≤ k ≤ r. By

time reversibility the control u(Tu − ·) steers e−iθkvk ε-close to φk. Now, there exist a control
w : [0, Tw] → [0, δ] and θ̂1, . . . , θ̂r such that

‖eiθ̂kΥ̂(vk)−Υw
Tw(φk)‖ .

Let ũ be the concatenation of the controls u(Tu − ·) and w.Then

‖eiθ̂kΥ̂(vk)−Υũ
Tũ
(e−iθkvk)‖ < 2ε .

Finally,

‖Υũ
Tũ
ρ0Υ

ũ∗

Tũ
− ρ1‖ ≤

r∑

k=1

Pk‖Υũ
Tũ
(e−iθkvk)Υ

ũ
Tũ
(e−iθkvk)

∗ − Υ̂(vk)Υ̂(vk)
∗‖+

+
∞∑

k=r+1

Pk‖Υũ
Tũ
(vk)Υ

ũ
Tũ
(vk)

∗ − Υ̂(vk)Υ̂(vk)
∗‖

≤ 4ε
r∑

k=1

Pk + 2ε ≤ 6ε.

This concludes the proof.
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