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Abstract. Until recently, there was not a strong need for networking
inside aircrafts. Indeed, the communications were mainly cabled and han-
dled by etherned protocols. The evolution of avionics embedded systems
and the number of integrated functions in civilian aircrafts has changed
the situation. Indeed, those functionalities implies a huge increase in the
quantity of data exchanged and thus in the number of connections be-
tween functions. Among the available mechanisms provided to handle
this new complexity, one find Avionics Full Duplex Switched Ethernet
(AFDX), a protocol that allows to simulate a point-to-point network be-
tween a source and one or more destinations. The core idea in AFDX is
the one of Virtual Links (VL) that are used to simulate point-to-point
communication between devices. One of the main challenge is to show
that the total delivery time for packets on VL is bounded by some pre-
defined value. This is a difficult problem that also requires to provide a
formal, but quite evolutive, model of the AFDX network. In this paper,
we propose to use a component-based design methodology to describe the
behavior of the model. We then propose a stochastic abstraction that al-
lows not only to simplify the complexity of the verification process but
also to provide quantitative information on the protocol.

1 Introduction

Until recently, there was not a strong need for networking inside aircrafts. Digital
technologies were initially introduced at the control platform of the aircrafts with
the fly-by-wire technologies.

The evolution of avionics embedded systems and the number of integrated
functions in civilian aircrafts implied a huge increase in the quantity of data
exchanged and thus in the number of connections between functions. The Air-
craft Data Networks used until now had either point to point connections, which
incurred a high cost in aircraft production as well as increase of weight, or mono
transmitter buses with very low performances (100Kbits/s). The innovation of
Avionics Full Duplex Switched Ethernet (AFDX) [2] was to use an open stan-
dard such as Ethernet and take advantage of its high bandwidth, 100Mbps, and
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the use of cheap COTS components. AFDX also offers the capability to easily
extend the avionic network with new devices, as well as to reduce the wiring.

For a network to be suitable for use in critical applications, it must be reli-
able and deterministic. In AFDX reliability is achieved with redundancy while
determinism with the definition of Virtual Links (VL), which put constraints
on the allowed traffic. A network is deterministic if we can guarantee an upper
bound for the time a message needs to be delivered to its destination. For AFDX
such upper bounds can be provided with analytical methods [10]. The bounds
obtained are over approximations of the worst case and the analysis can only be
performed on very abstract models [8]. There is thus the need for new methods
that will guarantee more realistic upper bounds on more realistic models.

In a very recent work [6], we suggested stochastic abstraction. This technique
can ease the verification process of large heterogeneous systems by abstracting
some of the components of the system with probability distributions. The ability
to add stochastic information can also be used to compute a probability for the
system to satisfy the property. The latter can efficiently be done with Statis-
tical Model Checking (SMC) [12, 19, 21] that has recently been proposed as an
alternative to avoid an exhaustive exploration of the state-space of the model.
The core idea of SMC is to conduct some simulations of the system and then
use results from the statistic area in order to decide whether the system satisfies
the property. Statistical model checking techniques can also be used to estimate
the probability with which a system satisfies a given property [12, 11]. Of course,
in contrast with an exhaustive approach, a simulation-based solution does not
guarantee a correct result. However, it is possible to bound the probability of
making an error. Simulation-based methods are known to be far less memory and
time intensive than exhaustive ones, and are sometimes the only option [22, 14].
Statistical model checking gets widely accepted in various research areas such
as systems biology [9, 15] or software engineering, in particular for industrial ap-
plications. The technique in [6], which combines statistical model checking and
stochastic abstraction, was capable of verifying properties of a model with more
than 23000 states in a few minutes.

In this experimental paper, we propose to apply the stochastic abstraction
principle on AFDX networks. Our contributions are twofolds:

1. Model of the network. In this paper, we propose a BIP model for AFDX
architecture. BIP [5] is a tool for specifying components and component in-
teractions. One of the very attractive features of BIP is its ability to generate
executions of composite systems. This is required to compute the stochastic
abstraction as well as to apply statistical model checking. Another advantage
of BIP is that it permits to give a very detailed description of each com-
ponent. Also, components can be developed by independent teams, which
decrease the complexity of the design.

2. Verification. We then examine the latency requirements property in AFDX,
i.e., we check that the total delivery time for packets on virtual links is smaller
than some predefined values. The difficulty is that our model of AFDX is
constituted of many BIP components – this is needed to obtain an accurate



model of the network. Combining these components lead to a system that
is too big (in terms of states) to be analyzed by classical verification tech-
niques such as model checking. In order to overcome the problem, we suggest
to abstract some of these components with probability distributions, hence
producing another BIP model of the network that is a stochastic abstraction
of the original one. We then apply statistical model checking to estimate a
value of the bound for which the requirement is satisfied with probability
1. This is an important feature as correct upper bounds are mandatory for
certification. We also show that one can use our approach to compute the
probability that the latency requirement is satisfied for a given value of the
bound. This latest feature is of interest to adapt/reconfigure the network for
better average performances.

We believe that our work is interesting as it proposes (1) a very detailed and
accurate model of an AFDX network that is obtained by a component-based
design methodology (this also illustrate the advantages of the BIP toolset), and
(2) an efficient formal technique for verifying properties and provide quantitative
informations on this model.

Structure of the paper. Section 2 introduces BIP and SMC while Section
3 is dedicated to AFDX. In Section 4, we propose our compositional design
methodology to generate formal models of AFDX networks. Section 5 focuses
on a stochastic abstraction and presents our experiments. Finally, Section 6
concludes the paper and discuss related works.

2 Preliminaries

In this section, we briefly introduce the BIP framework that is used to define
components and component interactions. BIP has the ability to simulate execu-
tion of composite systems. We then introduce statistical model checking that is
a technique used to estimate/or validate the probability for a stochastic system
to satisfy some given property. Statistical model checking requires the ability to
simulate the model, which is exactly what BIP can provide.

2.1 The BIP Framework

The BIP framework, introduced in [5], supports a methodology for building
systems from atomic components. It uses connectors, to specify possible inter-
action patterns between components, and priorities, to select amongst possible
interactions. In BIP, data and their transformations can be written directly in
C. Atomic components are finite-state automata extended with variables and
ports. Ports are action names, and may be associated with variables. They are
used for synchronization with other components. Control states denote loca-
tions at which the components await for synchronization. Variables are used to
store local data. Composite components allow defining new components from



sub-components (atomic or composite). Components are connected through flat
or hierarchical connectors, which relate ports from different sub-components.
Connectors represent sets of interactions, that are, non-empty sets of ports that
have to be jointly executed. They also specify guards and transfer functions for
each interaction, that is, the enabling condition and the exchange of data across
the ports of the interacting components. Priorities are used to select amongst
simultaneously enabled interactions. They are a set of rules, each consisting of
an ordered pair of interactions associated with a condition. When the condition
holds and both interactions of the corresponding pair are enabled, only the one
with higher-priority can be executed.

BIP is supported by an extensible tool-set which includes functional valida-
tion, model transformation and code generation features. Actually, code gen-
eration targets both simulation and implementation models (e.g., distributed,
multi-threaded, real-time, etc.). In particular, simulation is driven by a specific
middleware, the BIP engine, which allows to generate, explore and inspect exe-
cution traces corresponding to BIP models.

2.2 Statistical Model Checking

Consider a stochastic system S and a property φ. Statistical model checking
refers to a series of simulation-based techniques that can be used to answer two
questions : (1) Qualitative : Is the probability for S to satisfy φ greater or equal
to a certain threshold θ? and (2) Quantitative : What is the probability for S
to satisfy φ? Let Bi be a discrete random variable with a Bernoulli distribution of
parameter p. Such a variable can only take 2 values 0 and 1 with Pr[Bi = 1] = p
and Pr[Bi = 0] = 1 − p. In our context, each variable Bi is associated with one
simulation of the system. The outcome for Bi, denoted bi, is 1 if the simulation
satisfies φ and 0 otherwise.

Qualitative Answer using Statistical Model Checking The main ap-
proaches [21, 19] proposed to answer the qualitative question are based on hypoth-
esis testing. Let p = Pr(φ), to determine whether p ≥ θ, we can test H : p ≥ θ
against K : p < θ. A test-based solution does not guarantee a correct result but
it is possible to bound the probability of making an error. The strength (α, β)
of a test is determined by two parameters, α and β, such that the probability of
accepting K (respectively, H) when H (respectively, K) holds, called a Type-I
error (respectively, a Type-II error ) is less or equal to α (respectively, β). A
test has ideal performance if the probability of the Type-I error (respectively,
Type-II error) is exactly α (respectively, β). However, these requirements make
it impossible to ensure a low probability for both types of errors simultaneously
(see [21] for details). A solution is to use an indifference region [p1, p0] (with θ in
[p1, p0]) and to test H0 : p≥ p0 against H1 : p≤ p1. We now very briefly sketch
an hypothesis testing algorithm that is called the sequential probability ratio test
(SPRT in short) [20]. Our intention is not to give too much details on SPRT –
the interested reader will read [20].



In SPRT, one has to choose two values A and B (A > B) that ensure that
the strength (α, β) of the test is respected. Let m be the number of observations
that have been made so far. The test is based on the following quotient:

p1m

p0m

=

m∏

i=1

Pr(Bi = bi | p = p1)

Pr(Bi = bi | p = p0)
=

pdm

1 (1 − p1)
m−dm

pdm

0 (1 − p0)m−dm

, (1)

where dm =
∑m

i=1 bi. The idea behind the test is to accept H0 if p1m

p0m
≥ A, and H1

if p1m

p0m
≤ B. The SPRT algorithm computes p1m

p0m
for successive values of m until

either H0 or H1 is satisfied; the algorithm terminates with probability 1[20]. This
has the advantage of minimizing the number of simulations. In his thesis [21],
Younes proposed a logarithmic based algorithm SPRT that given p0, p1, α and β
implements the sequential ratio testing procedure. When one has to test θ≥1 or
θ≥0, it is better to use Single Sampling Plan (SSP) (see [21, 17, 19] for details)
that is another hypothesis testing algorithm whose number of simulations is
pre-computed in advance. In general, this number is higher than the one needed
by SPRT, but is it known to be optimal for the above mentioned values. More
details about hypothesis testing algorithms and a comparison between SSP and
SPRT can be found in [17].

Quantitative Answer using Statistical Model Checking In [12, 16] Peyronnet et
al. propose an estimation procedure to compute the probability p for S to satisfy
φ. Given a precision δ, Peyronnet’s procedure, which we call PESTIMATION,
computes a value for p′ such that |p′ − p|≤δ with confidence 1 − α. The proce-
dure is based on the Chernoff-Hoeffding bound [13]. Let B1 . . . Bm be m discrete
random variables with a Bernoulli distribution of parameter p associated with
m simulations of the system. Recall that the outcome for each of the Bi, de-
noted bi, is 1 if the simulation satisfies φ and 0 otherwise. Let p′ = (

∑m

i=1 bi)/m,

then Chernoff-Hoeffding bound [13] gives Pr(|p′ − p| > δ) < 2e−
mδ

2

4 . As a con-
sequence, if we take m≥ 4

δ2 log( 2
α
), then Pr(|p′ − p|≤δ) ≥ 1 − α. Observe that if

the value p′ returned by PESTIMATION is such that p′≥θ − δ, then S |= Pr≥θ

with confidence 1 − α.

Playing with Statistical Model Checking Algorithms The efficiency of
the above algorithms is characterized by the number of simulations needed to
obtain an answer. This number may change from executions to executions and
can only be estimated (see [21] for an explanation). However, some generalities
are known. For the qualitative case, it is known that, except for some situations,
SPRT is always faster than SSP. PESTIMATION can also be used to solve the
qualitative problem, but it is always slower than SSP [21]. If θ is unknown, then
a good strategy is to estimate it using PESTIMATION with a low confidence
and then validate the result with SPRT and a strong confidence.



3 The Avionics Full Duplex Switched Ethernet

AFDX [2] is a standard developed by Airbus for building highly reliable, time
deterministic aircraft data networks (ADNs) based on commercial, off-the shelf
Ethernet technology.

The first standard defined for ADNs has been ARINC 429 [1]. This stan-
dard, developed over thirty years ago and still widely used today, has proven
to be highly reliable in safety critical applications. It relies on point-to-point
unidirectional bus with single transmitter and up to twenty receivers. Conse-
quently, ARINC 429 networks need a significant amount of wiring and imply a
non-negligible aircraft weight increase.

ARINC 664 has been defined as the next-generation ADNs standard. It is
based upon IEEE 802.3 Ethernet and uses commercial off-the-shelf hardware
thereby reducing costs and development time. AFDX is formally defined in Part
7 of the ARINC 664 specification [2]. It has been developed by Airbus Indus-
tries for the A380 and since then, it has been accepted by Boeing and used on
the Boeing 787 Dreamliner. AFDX bridges the gap on reliability of guaranteed
bandwidth from the original ARINC 664 standard. It features a star topology
network of up to 24 end-systems connected to a switch, where each switch can
be bridged together to other switches on the network. Based on this topology,
AFDX is able to significantly reduce wire runs thus reducing overall aircraft
weight. Additionally, AFDX provides dual link redundancy and Quality of Ser-
vice (QoS).

Virtual Links. AFDX offer to avionics engineers the capability to think in terms
of point-to-point connections of their applications at design time, just as they
did in the past with ARINC 429. This capability is provided through the no-
tion of virtual links (VL), that are, logical unidirectional connections from one
transmitter end-system to one or many receiver end-systems. Moreover, virtual
links are used to define and control the QoS within AFDX networks. They are
annotated with non-functional characteristics including (i) the bandwidth alloca-
tion gap (BAG), the time interval allocated for the transmission of one packet,
(ii) the minimum and maximum packet size and (iii) the jitter allowed for trans-
mission, with respect to the beginning of the BAG. These characteristics can be
visualized in figure 1a.

End Systems. The end-systems are the entry points on AFDX networks. They
realize the interface between the application software and the network infras-
tructure. They mainly perform three tasks: traffic regulation, scheduling and
redundancy management. First, traffic regulation transforms arbitrary (not reg-
ulated) flows of packets sent by applications such that they meet their corre-
sponding virtual links characteristics. More precisely, stores packets and delivers
them with the correct rate i.e., exactly one packet per BAG, without jitter.
Second, scheduling organize the global flow obtained from several virtual links
before their delivery on the channel. Packets coming from the traffic regulator
and corresponding to different virtual links are interleaved in order to ensure
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(b) Overview of AFDX networks.

Fig. 1: Details of AFDX.

QoS characteristics such as bounded delivery time or bounded jitter. Third, re-
dundancy management enforces dual redundancy. On transmission side, packets
are indexed, duplicated and sent towards destination on two distinct channels.
On reception side, a first valid wins policy is applied, that is, the first valid
packet received is delivered to the destination application, whereas the second
is silently discarded.

Switches. AFDX switches are the core elements of AFDX networks. They per-
form tasks such as frame filtering, traffic policing, switching, and monitoring.
Frame filtering discards invalid packets according to various integrity rules (con-
cerning packet size, sequence numbers, incoming path, etc). In a similar way,
traffic policing maintains the traffic for each virtual link within its (statically)
declared characteristics i.e., avoid fault propagation such as network flooding
because of faulty end-systems or switches. The switching functionality performs
the routing of packets towards their destination(s). The routes are statically de-
fined for every virtual link. Finally, monitoring realizes various logging and other
administrative operations.

Requirements. The use of AFDX in safety-critical systems is usually subject
to extra requirements. In particular, there are latency requirements, that are,
the total delivery time for packets on virtual links must be smaller than some
predefined values. For example, such requirements are mandatory when AFDX
is used to transport data needed for navigation and control applications running
on board. They usually have to be formally verified as part of the certification
process. Nevertheless, their verification is difficult since they are system-level
properties depending both on the network topology (physical infrastructure)
and on the whole set of virtual links (application traffic) deployed on it.
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Fig. 2: Details of the modeling of AFDX in BIP.

4 A BIP Model for AFDX Systems

We have developed a systematic way to construct accurate functional models of
AFDX networks in BIP. Network models are structural, that is, they are inter-
connected assemblies of models of AFDX entities (end-systems and switches),
following the physical connections and reflecting the static deployment on virtual
links. This construction arises naturally given the BIP modeling principles and
enforces a clear separation between functional (behavior) and architectural (con-
nection) elements. Moreover, it allows the development of models for real-sized
AFDX networks, of arbitrary complexity with no difficulty.

The BIP components modeling AFDX end-systems and switches are para-
metric and can accommodate arbitrary but statically fixed numbers of virtual
links. Their inner architecture reflects the functional decomposition established
by the AFDX standard [2]. For example, the BIP model for end-systems is
composed of traffic regulator(s), scheduler, sender, receiver(s) and redundancy
manager(s) sub-components, inter-connected as shown in figure 2a.

receive
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send

send

tick

receive

p

wait

[ c = BAG ]

c := 0

bag send

τ

[ ¬ empty(B) ]

p := get(B)

τ

τ

c : clock

p : packet

B : buffer

p

[c < BAG]

c := c + 1

put(B,p)

Fig. 3: Model of Traffic Regulator

All sub-components are atomic and have
been explicitly modeled using discretized
timed automata. As an example, we pro-
vide the model of the atomic traffic regula-
tor component in figure 3. The BIP compo-
nent representing AFDX switches has been
constructed in a similar way. Its inner ar-
chitecture is shown in figure 2b. The switch
model includes atomic sub-components im-
plementing traffic classification, traffic polic-
ing, in packet buffering for each virtual link,
scheduling and finally, out packet buffering,
for each outgoing connection.

In particular, let us remark that the AFDX standard leaves open the schedul-
ing algorithms to be used within end-systems and switches. Nevertheless, our
BIP models provide concrete implementations, that is, round-robin on incoming
virtual links. We made this choice since, while being very easy to implement,



it introduces relatively low jitter for multiplexing regulated flows of packets in-
coming on several virtual links. Still, the model can be easily changed to use
other scheduling policy, if needed. We have identified nine types of atomic com-
ponents in BIP necessary to model any AFDX system (excluding the application
atomic components). As an example, a switch model with two input (each hav-
ing ten Virtual Links) and one output, contains twenty-four atomic components.
An end system generating ten Virtual Links is modeled by twenty-two atomic
components.

BIP components interact using two categories of connectors. First, there are
data connectors, as illustrated in figures 2a or 2b, which transport (abstractions
of) data packets between various components. These connectors have an unique
sender port and one or many receiver ports. At any interaction an abstract packet
(a data structure containing the virtual link id, size, sequence numbers, etc.) is
transferred simultaneously from the sender to all the receivers. Second, there is
a global tick connector (not illustrated) which realizes the time synchronization
within the whole model. This connector synchronizes all the tick ports, occuring
within all the atomic components. Whenever a tick interaction takes place, it
correspond to a discrete progress of time by one time unit. Since all components
participate, the progress of time is therefore synchronously observed/followed by
all of them. The time step has been chosen as 1 µs (microsecond) in order to
correspond to the magnitude for sending frames on 100Mbps Ethernet networks.
That is, the transmission duration for an Ethernet frame takes between 5 and
117 time units (i.e., microseconds).

5 Verification Methodology and Experiments

In this section, we present the experiments we conducted using our BIP model
of the AFDX infrastructure. We are interested in verifying the latency require-
ment property introduced in Section 3. The problem with our model is that,
as we have seen, switches are complex components, providing multiples func-
tionalities. This complexity, which is needed to obtain a realistic model of the
system, may prevent the use of classical model checking algorithms (state-space
explosion). This is especially the case for AFDX systems made of many (e.g.,
tens) switches and supporting many (e.g., hundreds or thousands) virtual links.
However, in order to reason on the latency requirement, we are only interested
in the time needed for a message to go through the switch. We suggest to exploit
this observation in order to reduce the complexity of the verification process.

More precisely, our idea (which is similar to the one we recently introduced
in [6]) is to abstract switch complexity by replacing the switches with proba-
bility distributions on the delays for a message to cross them. We thus obtain
a stochastic abstraction of our AFDX model. We can then use statistical model
checking techniques to verify the end-to-end delay properties.

As a running example, let us consider the AFDX network given in Figure 5a.
This network is constituted of three switches, five source end-systems, and one
destination end system. The source end-systems are connected to the destination



end system with several virtual links. For such a network with ten Virtual Links
per end-system, the BIP model contains 213 atomic components. As we shall see
in the next section, the number of virtual links going out from an end-system
and the size of the BAGs may vary from experiments to experiments.

SW2SW1

ρ1 ρ2

ES

source

ES

dest.

Fig. 4: Abstract stochastic model
obtained for a designated virtual
link V L0

Our idea is to replace each switch by several
probability distributions, one for each Vir-
tual link. The result will be a BIP model in
where the switches are replaced by several
automata generating the distribution; an ex-
ample is given in Figure 4. One can again
simulate this model and then use statistical
model checking algorithms to verify its prop-
erties. As we shall see, these automata can

directly be encoded in the BIP engine, which simplify the structure of the model.
We first give details on how to compute the probability distributions and then

we discuss the experimental results for several scenarios, each of them depending
on the number of virtual links and size of BAGs.

5.1 Stochastic Abstraction

In this section, we briefly describe our approach to learn the probability distri-
butions that abstract switches behaviors.

VL’s per End System Switch Time
10 2 0:08:49.85

1 0:36:14.06
20 2 0:19:24.17

1 1:34:36.08
30 2 0:31:57.96

1 2:03:22.70

Table 1: Simulation times in sec-
onds

For each switch and each virtual link, we
try to estimate a probability distribution on
the delay for a packet to cross the switch.
This is done by running the BIP model cor-
responding to architecture of Figure 5a. For
example, let assume that we made 33 mea-
sures on a given switch, i.e. the virtual links
has sent 33 packets through the switch. The
result will be a series of delay values and, for
each value, the number of times it has been
observed. As an example, delay 5 has been
observed 3 times, delay 19 has been observed 30 times. The probability distri-
bution is represented with a table of 33 cells. In our case, 3 cells of the table will
contains the value 5 and 30 will contain the value 19. The BIP engine will select
a value in the table in a uniform way.

According to our observation, 1000 simulations are enough to obtain an accu-
rate estimation of the probability distribution. However, for confidence reasons,
we have conducted 4000 experiments. Figure 1 reports on the time needed to
conduct these simulations switch by switch.

5.2 Experiments

We now report on our experiments. We are mainly interested in estimating
a bound on the total delivery time for packets on virtual links. We are also
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Fig. 5: Architecture of the Experiments and results for Scenario 1

interested in computing the probability that the total delivery time for packets
is smaller than a given bound. This bound may be a requirement provided by
the user. Verifying these properties is only illistrations of what we can do with
our stochastic abstraction.

We consider the AFDX architecture given in Figure 5a, but our methodology
applies to any AFDX architecture. We assume that the switches are replaced by
probability distributions computed as explained in Section 5.1. As we have seen
in the previous section, the number of virtual links and the size of the BAGs and
the frames may vary. It is important to study the influence of these variation on
the latency requirement. This will be done with the following scenarios.

Scenario 1 In this scenario, each source end-system is connected to the des-
tination end-system with a single virtual link. Each of these five virtual links
have the same parameters, that are BAG=4 ms, frame size=500 Bytes. Our first
experiment was to compute, for each link, the probability that the total delivery
time for packets is smaller than a given bound, until we reach probability one.
We were using the ESTIMATION algorithm with a precision of of 0.01 and a
confidence of 0.01 to estimate probabilities for bounds between 1 and 400 micro
seconds. The results, which were obtained in less than 2 seconds, are given in
Figure 5b. It is not surprising that End-system 5 gets a better behavior as it is
only connected to one switch. In the next scenarios we shall see that these results
can be validated with higher precision and confidence by using SPRT and SSP.

Scenario 2 In this scenario, we consider an increasing number of virtual links:
10, 20, and 30 links. All the virtual links have the same characteristics: BAG =
4ms, and frame size varying between 100 and 500 octets (which is different from
the previous experiment in where this number was fixed). Our first experiment
was the same as for Scenario 1, except that we had to consider bigger values of
the bound in order to reach probability 1. The results are given in Figures 6a,
6b and 7a for respectively X = 10, X = 20 and X = 30 links. We shall observe
that the bound varies between 0µs and 2000µs for X = 10, between 0µs and
3000µs for X = 20 and between 0µs and 3500µs for X = 30.
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Fig. 6: Illustration of results for Scenario 2.
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Fig. 7: Illustration of results for Scenario 2 and 3.

The second and third experiment consisted in validating the results we ob-
tained in the first experiment using SPRT and SSP. Those algorithms cannot be
used to check for an exact probability (= θ) but for a bound on the probability
(≥ θ or ≤ θ with a simple modification of the algorithm [21]). This is not a
problem. Indeed, if ESTIMATION told us that the probability is x for a given
bound, then it means then it is also greater or equal to x. As outlined in Section
2.2, working with SSP and SPRT allows us to validate the results with a higher
confidence. More precisely, we worked with a precision of 10−7 and confidence
of 10−10 instead of 10−2. The results are given in Table 2 for X = 10.

Finally, we have measured the minimum and maximum delay and the jitter
(difference between these delays) for one of the virtual link of each End-system.
This is a proportion computed on a fixed number of simulations, here 2.3 ∗ 109.
We obtained, a jitter of 915 with a maximum delay of 1032 and a minimum delay
of 117 for a virtual link between End-system 1 and End-system 6 with X = 20.



End-system Bound Estimated proba Algorithm Checked against Result NSimulations

1 479 P = 0.831975 SPRT P ≥ 0.8 ? Y 1.21010

SPRT P ≥ 0.85 ? N 1.510−10

564 P = 1 SSP P ≥ 1 ? Y 2.3109

2 859 P = 0.730221 SPRT P ≥ 0.7 ? Y 1.61010

SPRT P ≥ 0.5 ? Y 2.5109

1064 P = 1 SSP P ≥ 1 ? Y 2.3109

3 760 P = 0.532258 SPRT P ≥ 0.5 ? Y 1.91010

SPRT P ≥ 0.3 ? Y 2.1109

1064 P = 1 SSP P ≥ 1 ? Y 2.3109

4 977 P = 0.931101 SPRT P ≥ 0.9 ? Y 6.8109

SPRT P ≥ 0.5 ? Y 1.3109

1064 P = 1 SSP P ≥ 1 ? Y 2.3109

1 512 P = 0.231049 SPRT P ≥ 0.2 ? Y 1.21010

SPRT P ≥ 0.1 ? Y 1.6109

1064 P = 1 SSP P ≥ 1 ? Y 2.3109

Table 2: Results of SPRT and SSP experiments for X = 10 for Scenario 2.
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Fig. 8: Repartitions of the virtual links in the switches for Scenario 3.

As the number of simulations is quite high, we believe that our results are quite
accurate. This show the interest of working with an executable model.

Scenario 3 In this scenario, we use a fixed number of ten virtual links. Those
links have different BAGS, and the packets size still varies between 100 and
500 octets. Figures 8a and 8b represents the repartition of the virtual links in
Switches 1 and 2 respectively. Switch 3 has the same repartition of virtual links
as Switch 2. We conducted the same experiments as for Scenario 2.

We first measure the probability of having a delay lower than a given bound,
varying between 0µs and 2000µs. The results are given in Figure 7b. We then
applied SPRT and SSP. The results are reported in Table 3. All the results are
obtained in less than 10 seconds. Finally, we have measured the minimum delay,
the maximum delay and the jitter for one virtual link of each group of virtual
links with the same characteristics. As an example, we obtain, a jitter of 451
with a maximum delay of 556 and a minimum delay of 105 for VL 49 between
End-system 1 and End-system 6.



End-system-VL Bound Estimated proba Algorithm Checked against Result NSimulations

1-41 345 0.801593 SPRT P ≥ 0.8 Y 1.3 · 109

566 1 SSP P ≥ 1 Y 2.3 · 109

1-43 403 0.804363 SPRT P ≥ 0.8 Y 9.2 · 108

561 1 SSP P ≥ 1 Y 2.3 · 109

1-49 347 0.805792 SPRT P ≥ 0.8 Y 9.2 · 108

556 1 SSP P ≥ 1 Y 2.3 · 109

2-1 751 0.901582 SPRT P ≥ 0.9 Y 1.1 · 109

1044 1 SSP P ≥ 1 Y 2.3 · 109

2-6 785 0.902106 SPRT P ≥ 0.9 Y 1.1 · 109

1051 1 SSP P ≥ 1 Y 2.3 · 109

3-11 505 0.504159 SPRT P ≥ 0.5 Y 1.7 · 109

932 1 SSP P ≥ 1 Y 2.3 · 109

3-16 446 0.502088 SPRT P ≥ 0.5 Y 3.1 · 109

994 1 SSP P ≥ 1 Y 2.3 · 109

Table 3: Results of SPRT and SSP experiments Scenario 3.

6 Conclusion and Related Work
This paper proposes a model of the AFDX network based on the compositional
design approach as well as a verification technique based on statistical model
checking. To the best of our knowledge, this is the first complete, fully opera-
tional and timing accurate, model of AFDX developed using a formal framework.
Other models are either performance models built within network simulators
or timed automata models, restricted to few functionalities or describing very
simple network configuration. The work of [4] focused on redundancy manage-
ment and identified several issues occuring in the presence of particular network
faults. Alternatively, [7, 8, 18] deal with computing bounds for end-to-end de-
lays in AFDX networks. The papers [7, 8] report experiments using three anal-
ysis methods: network calculus, stochastic simulation using QNAP2 and timed
model-checking using Uppaal. The results confirm the well-established knowl-
edge about these methods. Network calculus[10] provides pessimistic, unreach-
able bounds. Network stochastic simulation provide reachable bounds, however,
these bounds hardly depend on the simulation scenario considered and can be
too optimistic. Timed model-checking[3] provide exact bounds, however, it suf-
fers for state explosion due to model complexity, and hence, cannot scale to
realistic networks. Finally, the work in [18] provides a method for compositional
analysis of end-to-end delays. It is shown that, to measure delays for a given vir-
tual link, it is enough to consider only the traffic generated by the virtual links
influencing, i.e., which share paths within the network. This observation allows
to slice the network and therefore to reduce the complexity of any forthcoming
analysis. However (1) our model is more detaillel and easier to extend/modify
due to the use of the component-based design approach, (2) we are capable to
retreive stochastic informations on the network, (3) our approach is adaptive.
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