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Abstract In the present work, we investigate the error behaviour of exponential op-
erator splitting methods for nonlinear evolutionary problems of the form

u ′(t) = A
(
u(t)

)
+B
(
u(t)

)
, 0≤ t ≤ T , u(0) given .

In particular, our concern is to deduce an exact local error representation that is suit-
able in the presence of critical parameters. Essential tools in the theoretical analy-
sis including time-dependent nonlinear Schrödinger equations in the semi-classical
regime as well as parabolic initial-boundary value problems with high spatial gradi-
ents are an abstract formulation of differential equations on function spaces and the
formal calculus of Lie-derivatives. We expose the general mechanism on the basis of
the least technical example method, the first-order Lie–Trotter splitting.

Our conjecture that exponential operator splitting methods are favourable for the
time integration of a nonlinear Schrödinger equation in the semi-classical regime,
provided that the time stepsizes are suitably chosen in dependence of the magnitude
of the critical parameter 0 < ε << 1, is confirmed by a numerical example for the
time-dependent Gross–Pitaevskii equation

iε ∂ tψ(x, t) =− 1
2 ε

2
∆ ψ(x, t)+U(x)ψ(x, t)+ϑ

∣∣ψ(x, t)
∣∣2 ψ(x, t) ,

ψ(x,0) given , x ∈ Rd , 0≤ t ≤ T ,

and substantiated by theoretical considerations for the Lie–Trotter splitting method.
Moreover, we illustrate the ability of an embedded 4(3) splitting pair to serve as a
reliable basis for a local error control.
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1 Introduction

In this work, our concern is to investigate the error behaviour of exponential operator
splitting methods for the time integration of abstract nonlinear evolutionary problems{

u ′(t) = A
(
u(t)

)
+B
(
u(t)

)
, 0≤ t ≤ T ,

u(0) given ,
(1.1)

see [2,5–8,11,15,17–19,22–24,26,27,30]. In particular, our objective is the deriva-
tion of an exact local error representation that is well-suited in the presence of un-
bounded nonlinear operators and critical parameters. A most useful tool to this pur-
pose is the formal calculus of Lie-derivatives, which is suggestive of the less involved
linear case [8–10].

In comparison with other local error expansions for splitting methods that are
based on the Baker–Campbell–Hausdorff formula or on techniques exploited in [13,
19,20,22,25,30] in the context of time-dependent Schrödinger equations, the ap-
proach presented allows to capture correctly the error behaviour of time-splitting
methods for nonlinear evolutionary problems involving unbounded nonlinear op-
erators and critical parameters. Therefore, our theoretical analysis applies to time-
dependent nonlinear Schrödinger equations in the semi-classical regime as well as to
nonlinear parabolic initial-boundary value problems with high spatial gradients.

As a model problem, we consider the following time-dependent nonlinear Schrö-
dinger equation for ψ : Rd× [0,T ]→ C : (x, t) 7→ ψ(x, t){

iε ∂ tψ(x, t) =− 1
2 ε2∆ ψ(x, t)+U(x)ψ(x, t)+ϑ

∣∣ψ(x, t)
∣∣2 ψ(x, t) ,

ψ(x,0) given , x ∈ Rd , 0≤ t ≤ T ,
(1.2)

with (small) parameter ε > 0, real-valued external potential U : Rd → R, and cou-
pling constant ϑ ∈ R, imposing asymptotic boundary conditions on the unbounded
domain. The above problem is related to the time-dependent Gross–Pitaevskii equa-
tion [14,28] which arises in the description of the macroscopic wave function of a
Bose–Einstein condensate. Employing an abstract formulation of ordinary differen-
tial equations on function spaces, the initial-boundary value problem (1.2) takes the
form (1.1) with unbounded linear operator A comprising the Laplacian (and part of
the potential) and unbounded nonlinear multiplication operator B involving (part of)
the potential and the cubic nonlinearity.

The incentive for this work originates from the question whether exponential op-
erator splitting methods are favourable for nonlinear evolutionary Schrödinger equa-
tions in the semi-classical regime; our interest in this theme is inspired by theoretical
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and numerical investigations for the first-order Lie–Trotter splitting and the second-
order Strang splitting provided by [3,4,12], see also the references given therein.

Numerical comparisons given in [2,5,7,27], e.g., for nonlinear Schrödinger equa-
tions such as (1.2) with ε = 1 show that higher-order splitting schemes are superior
to standard integrators when low tolerances are required or long-term integrations
are carried out. These numerical observations are also confirmed by theoretical in-
vestigations. For instance, for an exponential operator splitting method of (classical)
order p, applied to a linear evolutionary Schrödinger equation involving a sufficiently
regular bounded potential, the local error expansion exploited in [19,30] leads to an
error estimate of the form∥∥uN−u(tN)

∥∥
L2 ≤C

(∥∥u0−u(0)
∥∥

L2 +
N−1

∑
n=0

hp+1
n
∥∥u(0)

∥∥
H p

)
.

In [20], in the context of the multi-configuration time-dependent Hartree–Fock equa-
tions, the techniques used in [13,19,22,25,30] are extended to establish estimates
for high-order splitting methods applied to nonlinear evolutionary problems; main
tools in the error analysis are the formal calculus of Lie-derivatives and bounds for
Lie-commutators of the involved nonlinear operators.

However, for small parameter values 0 < ε << 1, the above mentioned approach is
not appropriate to provide optimal (local) error bounds with respect to ε; thus, differ-
ent techniques are needed for a better theoretical understanding of the error behaviour
of exponential operator splitting methods for nonlinear evolutionary problems and
the dependence of the admissible temporal stepsize on the critical parameter. In our
previous work [10], which is concerned with an exact local error representation for
splitting methods applied to linear equations, we followed an alternative approach. In
particular, for linear Schrödinger equations and classical Wentzel–Kramers–Brillouin
initial values that satisfy the condition ε j ‖u(0)‖H j ≤M j with a constant M j > 0 for
1≤ j ≤ p, the convergence estimate∥∥uN−u(tN)

∥∥
L2 ≤

∥∥u0−u(0)
∥∥

L2 +C
hp

ε
, h = max

0≤n≤N−1
hn ,

results with constant C > 0 depending on M j, 0≤ j ≤ p,
∥∥∂

j
x U
∥∥

L∞ , 1≤ j ≤ 2p, and
the end time tN ; the dependence of the global error on the time stepsize and the critical
parameter is also confirmed by numerical examples.

In the present paper, we extend the error analysis of [10] for linear equations to
nonlinear problems (1.1). In order to illustrate the general mechanism, we focus on
the first-order Lie–Trotter splitting method{

un = ehn−1DA ehn−1DB un−1 , 1≤ n≤ N ,

u0 given ,
(1.3)

yielding numerical approximations to the exact solution values at time grid points
0 = t0 < t1 < · · · < tN ≤ T with associated stepsizes hn−1 = tn− tn−1, 1 ≤ n ≤ N.
In this case, it is evident that our approach leads to a compact exact local error rep-
resentation, which is advantageous for further investigations in regard to nonlinear
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Schrödinger equations such as (1.2). Indeed, the defect operator of the Lie–Trotter
splitting method (1.3) possesses the representation

L (t,v) = etDA etDB v− eDA+Bv

=
∫ t

0

∫
τ1

0
eτ1DA eτ2DB

[
DA,DB

]
e(τ1−τ2)DB e(t−τ1)DA+B v dτ2 dτ1 ;

(1.4)

especially, for linear operators A and B the above formula reduces to

L (t,v) =
(
e tB e tA− e t(A+B))v

=
∫ t

0

∫
τ1

0
e(t−τ1)(A+B) e(τ1−τ2)B [B,A

]
eτ2B eτ1A v dτ2 dτ1 .

Relations such as (1.4) provide the basis for a convergence analysis of exponential
operator splitting methods when applied to nonlinear evolution equations.

The structure of this work is as follows. In Section 2, we state the abstract non-
linear evolutionary problem and specify the considered exponential operator splitting
methods. Section 3 is devoted to the derivation of an appropriate local error rep-
resentation; we give a detailed derivation involving marginal technicalities for the
first-order Lie–Trotter splitting method and indicate the generalisation to high-order
methods. We first deduce the statement of Theorem 1 by employing standard tech-
niques and notations and then comment on a formal extension of the linear case using
the calculus of Lie-derivatives. Applications to nonlinear Schrödinger equations in
the semi-classical regime are the contents of Section 4. Theoretical considerations,
also confirmed by numerical illustrations, imply that the Lie–Trotter splitting method
is favourable for the time integration of the one-dimensional Gross–Pitaevskii equa-
tion, provided that the time stepsizes are chosen sufficiently small; in case of a regular
initial condition with bounded spatial derivatives, independent of the critical param-
eter 0 < ε << 1, time stepsizes of the magnitude of ε are needed, whereas for an
initial condition in classical Wentzel–Kramers–Brillouin form time stepsizes suffi-
ciently smaller than the critical parameter are required. For higher-order exponential
operator splitting methods, improved accuracy properties are observed. Furthermore,
as the shape of the solution to the Gross–Pitaevskii equation suggests an adaptive
time stepsize selection, we illustrate the ability of an embedded 4(3) splitting pair to
serve as a reliable basis for an adaptive time stepsize selection.

As in the present work the focus is on the least technical example method, the
first-order Lie–Trotter splitting method, we favour standard notations revealing the
non-trivial auxiliary results to the formal calculus of Lie-derivatives. Formal calcula-
tions are carried out under the tacit requirement that the arising unbounded operators
and compositions thereof are well-defined on suitably chosen domains and time in-
tervals.
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2 Splitting methods for nonlinear evolutionary problems

2.1 Nonlinear evolutionary problems

In the present work, we consider an initial value problem of the form{
u ′(t) = F

(
u(t)

)
, 0≤ t ≤ T ,

u(0) given ,
(2.1a)

where the structure of the unbounded nonlinear operator F : D(F)⊂ X→ X suggests
a decomposition into two parts

F(v) = A(v)+B(v) , v ∈ D(A)∩D(B) , (2.1b)

with unbounded nonlinear operators A : D(A) ⊂ X → X and B : D(B) ⊂ X → X ;
throughout, we tacitly require that the domains are suitably chosen subspaces of the
underlying Banach space (X ,‖ · ‖X ) such that D(F) = D(A)∩D(B) 6= /0.

The exact solution of the evolutionary problem (2.1) is (formally) given by

u(t) = EF
(
t,u(0)

)
, 0≤ t ≤ T , (2.2a)

with evolution operator EF depending on the actual time and the initial value; as the
differential equation in (2.1a) is supposed to be autonomous, we may neglect the
dependence on the initial time. Besides, we employ the formal notation

u(t) = e tDF u(0) , 0≤ t ≤ T , (2.2b)

which is suggestive of the (less involved) linear case. Here, the evolution opera-
tor e tDF and the Lie-derivative DF associated with F are given by

e tDF G v = G
(
EF(t,v)

)
, 0≤ t ≤ T , DF G v = G ′(v)F(v) , (2.3a)

for any unbounded nonlinear operator G : D(G)⊂ X→ X with Fréchet derivative G′;
whenever G is the identity operator, we write

e tDF v = EF(t,v) , 0≤ t ≤ T , DF v = F(v) , (2.3b)

for short. We note that the relation

DF = d
dt

∣∣
t=0 e tDF

holds, since d
dt EF(t,v) = F

(
EF(t,v)

)
and EF(0,v) = v and thus by the chain rule

d
dt

∣∣
t=0 e tDF G v = d

dt

∣∣
t=0 G

(
EF(t,v)

)
= G ′

(
EF(t,v)

)
F
(
EF(t,v)

)∣∣
t=0 = G ′(v)F(v)

= DF G v ;

this is in accordance with the identity L = d
dt |t=0 e tL, valid for instance for any

bounded linear operator L : X→X with the exponential function defined by the power
series.
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2.2 Exponential operator splitting methods

The nonlinear evolutionary problem (2.1) is discretised in time by an exponential
operator splitting method of (classical) order p≥ 1 involving s≥ 1 compositions. We
employ the following general formulation of a splitting method that includes various
example methods proposed in literature.

Starting from an initial value u0 ≈ u(0), numerical approximations un to the exact
solution values u(tn) at time grid points 0 = t0 < t1 < · · ·< tN ≤T with associated time
stepsizes hn−1 = tn− tn−1, 1 ≤ n ≤ N, are determined through a recurrence relation
of the form {

un = S (hn−1,un−1) , 1≤ n≤ N ,

u0 given;
(2.4a)

the splitting operator S is defined through

S (t,v) = ea1tDA eb1tDB · · · eastDA ebstDB v , 0≤ t ≤ T , (2.4b)

with (real or complex) method coefficients (a j,b j)s
j=1, see also (2.3). We meanwhile

suppose the procedure (2.4) to be well-defined on a certain function space.
Low-order example methods that can be cast into the scheme (2.4) are the first-

order Lie–Trotter splitting method, where

p = s = 1 , a1 = b1 = 1 , (2.5)

see also (1.3), and the widely used second-order symmetric Lie–Trotter or Strang
splitting method, where

p = s = 2 , a1 = a2 = 1
2 , b1 = 1 , b2 = 0 , (2.6)

see [29,31]. Evidently, when exchanging the roles of the operators A and B, the Lie–
Trotter splitting and the Strang splitting method are cast into the general form (2.4)
with s = 2 and a1 = b2 = 0, a2 = b1 = 1 or a1 = 0, a2 = 1, b1 = b2 = 1

2 , respectively.
A fourth-order method involving four compositions by Yoshida [15, p. 40, For-

mula (4.4)], i.e., p = s = 4, possesses the real coefficients

a1 = 0 , a2 = a4 = γ1 = 1
2− 3√2

, a3 = γ2 =−
3√2

2− 3√2
,

b1 = b4 = 1
2 γ1 , b2 = b3 = 1

2 (γ1 + γ2) .
(2.7)

Further example methods of higher-order that were proposed in literature are re-
viewed in [15,24], see also [10,25,30] and the references given therein. The coef-
ficients of a favourable fourth-order splitting method proposed in [6] and a related
third-order splitting method constructed in [21] in are displayed in Table 2.1.
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j a j

1 0
2,7 0.245298957184271
3,6 0.604872665711080
4,5 1

2 − (a2 +a3)

j â j

1 a1
2 a2
3 a3
4 a4
5 0.3752162693236828
6 1.4878666594737946
7 −1.3630829287974774

j b j

1,7 0.0829844064174052
2,6 0.3963098014983680
3,5 −0.0390563049223486
4 1−2(b1 +b2 +b3)

j b̂ j

1 b1
2 b2
3 b3
4 b4
5 0.4463374354420499
6 −0.0060995324486253
7 0

Table 2.1 Coefficients (a j,b j)7
j=1 of a fourth-order splitting method proposed in [6] (top). Coefficients

(â j, b̂ j)7
j=1 of a related third-order splitting method (bottom).

3 An exact local error representation

In the following, we deduce an appropriate representation of the defect operator

L (t,v) = S (t,v)−EF(t,v)

= ea1tDA eb1tDB · · · eastDA ebstDB v− e tDF v , 0≤ t ≤ T ,
(3.1)

of an exponential operator splitting method (2.4); the local error representation re-
mains valid for problems (2.1) involving unbounded nonlinear operators and is well-
suited in the presence of critical parameters. In Section 3.1, we give a detailed depic-
tion for the first-order Lie–Trotter splitting method (2.5) involving marginal techni-
calities and then indicate the generalisation to high-order methods utilising a formal
extension of the linear case by the calculus of Lie-derivatives; to keep the presentation
tight, several auxiliary results are collected in Section 3.2.

Below, we employ the following notations. The Lie-commutator of two nonlinear
operators G and H is defined through[

G,H
]
(v) = G ′(v)H(v)−H ′(v)G(v) ; (3.2a)

clearly, for linear operators G and H, due to G ′(v) = G as well as H ′(v) = H, the above
relation reduces to

[
G,H

]
(v) =

[
G,H

]
v = (GH−H G)v. In accordance with (3.2a),

we further set [
DG,DH

]
v = DG DH v−DH DG v , (3.2b)

see (2.3) for the definition of the Lie-derivative; note that
[
DG,DH

]
v =−

[
G,H

]
(v).

3.1 Lie–Trotter splitting method

For the Lie–Trotter splitting method (2.5), the splitting operator (2.4b) simplifies to

S (t,v) = EB
(
t,EA(t,v)

)
, 0≤ t ≤ T . (3.3)
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In regard to the primal initial value problem{
d
dt EF(t,v) = F

(
EF(t,v)

)
, 0≤ t ≤ T ,

EF(0,v) = v ,
(3.4)

see also (2.1) and (2.2), we determine the time derivative of (3.3) and rewrite it as
follows

d
dt S (t,v) = B

(
EB
(
t,EA(t,v)

))
+∂2EB

(
t,EA(t,v)

)
A
(
EA(t,v)

)
= F

(
S (t,v)

)
+∂2EB

(
t,EA(t,v)

)
A
(
EA(t,v)

)
−A
(
S (t,v)

)
;

consequently, we obtain the initial value problem{
d
dt S (t,v) = F

(
S (t,v)

)
+R(t,v) , 0≤ t ≤ T ,

S (0,v) = v ,
(3.5a)

which involves the time-dependent remainder

R(t,v) = ∂2EB
(
t,EA(t,v)

)
A
(
EA(t,v)

)
−A
(
S (t,v)

)
, 0≤ t ≤ T . (3.5b)

In order to relate the solutions of the initial value problems (3.4) and (3.5), we apply
the nonlinear variation-of-constants formula, see Theorem 2; this yields the following
relation for the defect operator

L (t,v) =
∫ t

0
∂2EF

(
t− τ1,S (τ1,v)

)
R(τ1,v) dτ1 , 0≤ t ≤ T ,

see (3.1). Furthermore, by Lemma 1 we obtain the identity

R(τ1,v) = ∂2EB
(
τ1,EA(τ1,v)

)
A
(
EA(τ1,v)

)
−A
(
EB
(
τ1,EA(τ1,v)

))
=
∫

τ1

0
∂2EB

(
τ1− τ2,EA(τ1,v)

)
×
[
B,A

](
EB
(
τ2,EA(τ1,v)

))
dτ2 , 0≤ τ1 ≤ t ≤ T ,

see also (3.2) and (3.5b). Altogether, the above considerations imply the following
local error representation; for a justification of the compact formal notation, we apply
Lemma 2 with G1 = H1 = A, G2 = G3 = H2 = B, G4 = F , t` = τ`, ` = 1,2, t3 = τ1−τ2,
and t4 = t− τ1, see also (2.3).

Theorem 1 (Local error representation, Lie–Trotter splitting) For the nonlinear
evolutionary problem (2.1) the defect operator (3.1) of the first-order Lie–Trotter
splitting method (2.5) possesses the integral representation

L (t,v) =
∫ t

0

∫
τ1

0
eτ1DA eτ2DB

[
DA,DB

]
e(τ1−τ2)DB e(t−τ1)DF v dτ2 dτ1

=
∫ t

0

∫
τ1

0
∂2EF

(
t− τ1,S (τ1,v)

)
∂2EB

(
τ1− τ2,EA(τ1,v)

)
×
[
B,A

](
EB
(
τ2,EA(τ1,v)

))
dτ2 dτ1 , 0≤ t ≤ T .
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Remark 1 In accordance with [10], for initial value problems (2.1) involving un-
bounded linear operators the local error representation of Theorem 1 reduces to

L (t,v) =
∫ t

0

∫
τ1

0
e(t−τ1)(A+B) e(τ1−τ2)B [B,A

]
eτ2B eτ1A v dτ2 dτ1 , 0≤ t ≤ T .

Simplistically, replacing the operators A and B by the associated Lie-derivatives DA
and DB and reversing the order, the result for the nonlinear case is obtained.

Remark 2 A rigorous extension of the exact local error representation for the first-
order Lie–Trotter splitting method to higher-order splitting methods and the investi-
gation for a particular application is left for future work; in this case, it is indispens-
able to employ the formal calculus of Lie-derivatives. However, it is expected that
exact local error representation for high-order exponential operator splitting meth-
ods formally resembles the relation for the linear case [10] replacing A and B by the
associated Lie-derivatives and reversing the sequence of the involved operators.

3.2 Auxiliary results

In this section, we collect several auxiliary results that are needed for the derivation of
our local error representation for exponential operator splitting methods (2.4) applied
to nonlinear evolutionary problems (2.1).

In the following, we let G : D(G) ⊂ X → X and H : D(H) ⊂ X → X denote un-
bounded nonlinear operators (with suitably chosen domains). In regard to (2.1), we
consider the evolutionary problem{

v ′(t) = G
(
v(t)
)
, 0≤ t ≤ T ,

v(0) = v0 ,

with exact solution formally given by v(t) = EG (t,v0) for 0 ≤ t ≤ T , see also (2.2).
We recall that the evolution operator EG and its derivative with respect to the initial
value, which we denote by ∂2EG , fulfill the initial value problems{

d
dt EG (t,v0) = G

(
EG (t,v0)

)
, 0≤ t ≤ T ,

EG (0,v0) = v0 ,{
d
dt ∂2EG (t,v0) = G ′

(
EG (t,v0)

)
∂2EG (t,v0) , 0≤ t ≤ T ,

∂2EG (t,v0)
∣∣
t=0 = I .

(3.6)

Clearly, the evolution operator EG satisfies

EG (t + s,v0) = EG
(
s,EG (t,v0)

)
= EG

(
t,EG (s,v0)

)
, 0≤ t + s≤ T ;

more generally, in the context parabolic equations the above relation holds true under
the additional restriction s, t ≥ 0. As a consequence, the identity

∂2EG (t,v0) G(v0) = d
ds

∣∣
s=0 EG

(
t,EG (s,v0)

)
= d

ds

∣∣
s=0 EG (t + s,v0)

= G
(
EG (t,v0)

)
, 0≤ t ≤ T ,

(3.7)
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follows.
An essential tool for the derivation of our local error representation is the nonlin-

ear variation-of-constants formula.

Theorem 2 (Gröbner–Alekseev formula) The analytical solutions of the following
initial value problems{

v ′(t) = H
(
t,v(t)

)
= G

(
v(t)
)
+R
(
t,v(t)

)
, 0≤ t ≤ T ,

v(0) = v0 ,{
v ′(t) = G

(
v(t)
)
, 0≤ t ≤ T ,

v(0) = v0 ,

are related through the nonlinear variation-of-constants formula

EH (t,v0) = EG (t,v0)

+
∫ t

0
∂2EG

(
t− τ,EH (τ,v0)

)
R
(
τ,EH (τ,v0)

)
dτ , 0≤ t ≤ T .

Proof With the help of relation (3.7), we obtain

d
dτ

EG
(
t− τ,EH (τ,v0)

)
=− G

(
EG
(
t− τ,EH (τ,v0)

))
+∂2EG

(
t− τ,EH (τ,v0)

)
H
(
τ,EH (τ,v0)

)
=− G

(
EG
(
t− τ,EH (τ,v0)

))
+∂2EG

(
t− τ,EH (τ,v0)

)
G
(
EH (τ,v0)

)
+∂2EG

(
t− τ,EH (τ,v0)

)
R
(
τ,EH (τ,v0)

)
= ∂2EG

(
t− τ,EH (τ,v0)

)
R
(
τ,EH (τ,v0)

)
, 0≤ τ ≤ t ≤ T ;

therefore, the desired result follows at once from

EH (t,v0)−EG (t,v0) = EG
(
0,EH (t,v0)

)
−EG

(
t,EH (0,v0)

)
= EG

(
t− τ,EH (τ,v0)

)∣∣t
τ=0

=
∫ t

0

d
dτ

EG
(
t− τ,EH (τ,v0)

)
dτ

=
∫ t

0
∂2EG

(
t− τ,EH (τ,v0)

)
R
(
τ,EH (τ,v0)

)
dτ , 0≤ t ≤ T .

We note that for the non-autonomous problem involving H, the associated evolution
operator EH depends on the actual time, the initial time, and the initial value; in this
case, we write EH (t,v0) = EH (t,0,v0) for short. ut

In particular, for G a time-independent (unbounded) linear operator generating a
semi-group

(
etG
)

t≥0, we retain the linear variation of constants formula

EH (t,v0) = e tG v0 +
∫ t

0
e(t−τ)G R

(
τ,EH (τ,v0)

)
dτ , 0≤ t ≤ T ,
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since EG (t,v0) = e tGv0 and thus ∂2EG (t, ·) = e tG, see also [11,17,18,23,26].
In order to further expand terms of the form (3.5b), we apply the following aux-

iliary result; we refer to (3.2) for the definition of the Lie-commutator.

Lemma 1 For unbounded nonlinear operators G and H, the identity

∂2EG
(
t,v
)

H(v)−H
(
EG (t,v)

)
=
∫ t

0
∂2EG (t− τ,v)

[
G,H

](
EG (τ,v)

)
dτ , 0≤ t ≤ T ,

holds true.

Proof In accordance with (3.5b), we set R(t,v) = ∂2EG
(
t,v
)

H(v)−H
(
EG (t,v)

)
for

a fixed element v and 0≤ t ≤ T . Rewriting the time derivative of R as

d
dt R(t,v) = G ′

(
EG (t,v)

)
∂2EG (t,v) H(v)−H ′

(
EG (t,v)

)
G
(
EG (t,v)

)
= G ′

(
EG (t,v)

)
R(t,v)

+G ′
(
EG (t,v)

)
H
(
EG (t,v)

)
−H ′

(
EG (t,v)

)
G
(
EG (t,v)

)
, 0≤ t ≤ T ,

see (3.6), and using R(0,v) = ∂2EG (0,v) H(v)−H
(
EG (0,v)

)
= 0 thus yields the

linear initial value problem{
d
dt R(t,v) = G ′

(
EG (t,v)

)
R(t,v)+

[
G,H

](
EG (t,v)

)
, 0≤ t ≤ T ,

R(0,v) = 0 ,

see also (3.2) and (3.6); we note that the evolution operator of the associated homo-
geneous linear differential equation is given by ∂2EG (t,v). As a consequence, the
(linear variant of the) variation-of-constants formula implies the given result, see also
Theorem 2. ut

We next reformulate the composition that arises in the local error representation of
the Lie–Trotter splitting by utilising the formal calculus of Lie-derivatives, see (2.3).

Lemma 2 For nonlinear operators Gj, 1 ≤ j ≤ 4, and Hj, 1 ≤ j ≤ 2, the following
relation

et1DG1 et2DG2
[
DH1 ,DH2

]
et3DG3 et4DG4 v0

= ∂2EG4

(
t4,EG3(t3,v)

)
∂2EG3(t3,v)

[
H2,H1

]
(v)
∣∣
v=EG2 (t2,EG1 (t1,v0))

is valid.

Proof We consider the composition

L1(v) = et3DG3 et4DG4 v = EG4

(
t4,EG3(t3,v)

)
and determine its Fréchet derivative

L ′1(v) = ∂2EG4

(
t4,EG3(t3,v)

)
∂2EG3(t3,v) .
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Fig. 4.1 (top left) ω = 1 ϑ = 1 ∂xσ0 6= 0 h = h0 α ≈−1
Fig. 4.1 (top right) ω = 1 ϑ = 1 ∂xσ0 6= 0 h = ε α ≈ p
Fig. 4.2 (top left) ω = 1 ϑ = 1 σ0 = 0 h = h0 α ≈−1
Fig. 4.2 (top right) ω = 1 ϑ = 1 σ0 = 0 h = ε α ≈ 2

⌊
p+ 1

2

⌋
Fig. 4.1 (bottom left) ω = 1 ϑ = 0 ∂xσ0 6= 0 h = h0 α =−1
Fig. 4.1 (bottom right) ω = 1 ϑ = 0 ∂xσ0 6= 0 h = ε α = p
Fig. 4.2 (bottom left) ω = 1 ϑ = 0 σ0 = 0 h = h0 α =−1
Fig. 4.2 (bottom right) ω = 1 ϑ = 0 σ0 = 0 h = ε α = 2

⌊
p+ 1

2

⌋
Fig. 4.3 (top left) ω = 0 ϑ = 1 ∂xσ0 6= 0 h = h0 α ≈−1
Fig. 4.3 (top right) ω = 0 ϑ = 1 ∂xσ0 6= 0 h = ε α ≈ p
Fig. 4.3 (bottom left) ω = 0 ϑ = 1 σ0 = 0 h = h0 α ≈−1
Fig. 4.3 (bottom right) ω = 0 ϑ = 1 σ0 = 0 h = ε α ≈ 2

⌊
p+ 1

2

⌋
Table 4.1 Time integration of problem (4.2) with initial condition (4.3) (∂xσ0 6= 0) or (4.4) (σ0 = 0), re-
spectively, by various splitting methods of orders 1≤ p≤ 4. Observed dependence O

(
εα
)

of the dominant
local error term on the critical parameter ε within the chosen range of h/ε .

Moreover, due to the fact that

L1+ j(v) = DHj et3DG3 et4DG4 v = L ′1(v)Hj(v) , j = 1,2 ,

L ′1+ j(v) = L ′′1(v)Hj(v)+L ′1(v)H ′j (v) , j = 1,2 ,

a straightforward calculation yields the relation

L4(v) =
[
DH1 ,DH2

]
et3DG3 et4DG4 v = L ′3(v)H1(v)−L ′2(v)H2(v) = L ′1(v)

[
H2,H1

]
(v) .

Using that

L5(v) = et2DG2
[
DH1 ,DH2

]
et3DG3 et4DG4 v = L4

(
EG2(t2,v)

)
and as a consequence

et1DG1 et2DG2
[
DH1 ,DH2

]
et3DG3 et4DG4 v = L5

(
EG1(t1,v)

)
,

the statement follows. ut

4 Nonlinear Schrödinger equations in the semi-classical regime

In this section, we discuss the ability of the exact local error representation of Theo-
rem 1 to provide optimal local error estimates for the first-order Lie–Trotter splitting
method (2.5) when applied to time-dependent nonlinear Schrödinger equations in the
semi-classical regime. In Section 4.1, we give a numerical example for the Gross–
Pitaesvkii equation (1.2) which illustrates and confirms the theoretical considerations
of Section 4.2. We believe that in both, the numerical example and the theoretical
considerations, it gives insight to draw a comparison with the less involved linear
case treated in our previous work [10].

For simplicity, we henceforth focus on a model problem in a single space di-
mension; for our purposes, this restriction is adequate and considerably facilitates the
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Fig. 4.1 Dependence of the local error on the critical parameter for different splitting methods applied to
problem (4.2) under the initial condition (4.3) with ω = 1 and ϑ = 1 (top) or ϑ = 0 (bottom), respectively,
and M = 4096. Local error versus critical parameter for time step h = 10−2 (left) and h = ε (right).

numerical computation as well as the theoretical considerations. We point out that
in the numerical example it is essential to ensure a high spatial resolution in order
to observe the expected dependence on the critical parameter; for a one-dimensional
problem, using an implementation in MATLAB, the computation time of Figure 4.1,
e.g., on a standard notebook1 amounts to a few seconds (only).

Throughout, we denote by C > 0 a generic constant, possibly taking different
values at different occurrences. As usual, the Lebesgue space L2(Ω) = L2

(
Ω ,C

)
of

square integrable functions f : Ω ⊂ Rd → C is endowed with inner product (·|·)L2

and corresponding norm ‖ · ‖L2 , given by

( f |g)L2 =
∫

Ω

f (x)g(x) dx ,
∥∥ f
∥∥

L2 =
√

( f | f )L2 , f ,g ∈ L2(Ω) . (4.1a)

The Sobolev space Hm(Ω) comprises all functions with partial derivatives up to or-
der m ≥ 0 contained in L2(Ω), where in particular H0(Ω) = L2(Ω); the associated

1 hp Compaq nc8430, Intel(R) Core(TM)2 CPU, T7200 @ 2 GHz, 1.99 GHz, 2 GB RAM
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Fig. 4.2 Dependence of the local error on the critical parameter for different splitting methods applied to
problem (4.2) under the initial condition (4.4) with ω = 1 and ϑ = 1 (top) or ϑ = 0 (bottom), respectively,
and M = 4096. Local error versus critical parameter for time step h = 5 · 10−2 (top left) or h = 2 · 10−1

(bottom left), respectively, and time step h = ε (right).

norm ‖·‖Hm is defined through∥∥ f
∥∥2

Hm = ∑
j=( j1,..., jd)∈Nd

j1+···+ jd≤m

∥∥∂
j f
∥∥2

L2 , f ∈ Hm(Ω) . (4.1b)

Detailed information on Sobolev spaces is found in the monograph [1].

4.1 Numerical example

In the following, we illustrate the local error behaviour of higher-order exponen-
tial operator splitting methods when applied to the one-dimensional Gross–Pitaevskii
equation under an initial condition in classical Wentzel–Kramers–Brillouin form and
a regular initial condition, respectively; in particular, we study the dependence of
the local error on the time stepsize and the critical parameter. Our model problem
conforms to [4, Example 6].
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Fig. 4.3 Dependence of the local error on the critical parameter for different splitting methods applied to
problem (4.2) under the initial condition (4.3) (top) or (4.4) (bottom), respectively, with ω = 0, ϑ = 1, and
M = 4096. Local error versus critical parameter for time step h = 5 ·10−2 (left) and h = ε (right).

Henceforth, we consider the time-dependent nonlinear Schrödinger equation{
i ∂ tψ(x, t) =

(
− 1

2 ε ∂xx + 1
ε

U(x)+ 1
ε

ϑ
∣∣ψ(x, t)

∣∣2)ψ(x, t) ,

ψ(x,0) = ρ0(x) eiσ0(x)/ε , x ∈Ω , 0≤ t ≤ T ,
(4.2a)

for a function ψ : Ω × [0,T ]→C : (x, t) 7→ ψ(x, t), where Ω ⊂R denotes a (suitably
chosen) bounded interval. For the following, we assume the external real potential
U : Ω → R and the functions ρ0,σ0 : Ω → R defining the initial condition to be suf-
ficiently often differentiable with bounded derivatives. In particular, we study (4.2a)
under a scaled harmonic potential

U(x) = 1
2 ω

2x2 , x ∈Ω , (4.2b)

for a positive weight ω > 0. In view of Section 4.2, we also consider the special
case ϑ = 0, where (4.2a) reduces to a linear Schrödinger equation, and the cubic
Schrödinger equation, where ω = 0.
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Fig. 4.4 Numerical convergence orders of different splitting methods applied to problem (4.2) under the
initial condition (4.3) with ε = 2−2, ω = 1, ϑ = 1, M = 256, and final time T = 1. Global error versus
time stepsize.

For the numerical illustration, the values of the critical parameter ε > 0 are chosen
in the range 2−9 = 1.953125 · 10−3 to 2−2 = 2.5 · 10−1. Further, we let ω = 1 and
ϑ = 1 as well as

ρ0(x) = e−x2
, σ0(x) =− ln

(
ex + e−x) , x ∈Ω . (4.3)

In regard to the space discretisation by the Fourier-spectral method with M = 4096
degrees of freedom, we impose periodic boundary conditions on the bounded interval
Ω = [−a,a]; in the present situation, a = 8 is sufficiently large, so that the artificial
boundary conditions do not cause perturbations of the numerical solution. For the
time integration of (4.2), we apply exponential operator splitting methods of orders
one up to four with constant time stepsize h > 0, namely, the first-order Lie–Trotter
splitting method (2.5), the second-order Strang splitting method (2.6), a third-order
splitting method with coefficients given in Table 2.1, and the fourth-order splitting
method by Yoshida (2.7); on the one hand, we choose the actual time stepsize h = h0
independent of the parameter ε , and, on the other hand, we set h = ε . Numerical ref-
erence solutions are computed by a favourable fourth-order Runge–Kutta–Nyström
splitting method proposed in [6] with a finer time stepsize h ·10−1, see also Table 2.1.

In Figures 4.1 and 4.2, the local errors errlocal(ε) versus the critical parameter val-
ues ε are displayed, see also (3.1) for the definition of the defect; for comparison, we
include the numerical results for the linear case ϑ = 0 and a regular initial condition,
independent of ε , namely

ρ0(x) = e−(x− 1
10 )2

, σ0(x) = 0 , x ∈Ω , (4.4)

as well as for the cubic Schrödinger equation, where ω = 0, see Figure 4.3. In a
logarithmic scale, the slopes of the lines correspond to the ratios of two subsequent
local errors and parameters

ratio(ε) = log
(

errlocal(ε)
errlocal(ε/2)

)
/ log(2) . (4.5)
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Fig. 4.5 Time evolution of the nonlinear Schrödinger equation (4.2) under the initial condition (4.3) with
ϑ = 1. Solution values |ψ(x, t)|2, (x, t) ∈ [0,1.5]× [0,3], for (ε,ω) = (1,1) (top left), (ε,ω) = (10−2,1)
(top right), (ε,ω) = (1,2) (bottom left), and (ε,ω) = (10−2,2) (bottom right).

For instance, for the initial condition (4.3) and a time stepsize independent of ε , it
is observed that in all cases, within the chosen range of h/ε , the ratios approach the
value α = −1 which implies the dependence O(1/ε) of the dominant local error
term with respect to the critical parameter. The numerical results are summarised
in Table 4.1 and analysed in Section 4.2; thereby, bxc denotes the integer part of
x ∈R, i.e. α = 2bp+ 1

2c yields α = 2 if p = 1,2, and α = 4 if p = 3,4, respectively.
Numerical tests not reported here show that qualitatively the same results are obtained
when exchanging the roles of the operators A and B in the splitting scheme (2.4).
We point out that it is crucial to choose the number of Fourier basis functions M
sufficiently large to retain the expected behaviour.

As a further illustration, the global errors errglobal(h) at final time T = 1 versus the
(constant) time stepsizes h = 2− j, 0≤ j≤ 10, are displayed in Figure 4.4 for ε = 2−2

and M = 256. As expected, the slopes

ratio(h) = log
(

errglobal(h)
errglobal(h/2)

)
/ log(2)
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Fig. 4.6 Time evolution of the nonlinear Schrödinger equation (4.2) under the initial condition (4.3) with
ε = 10−2, ω = 1, and ϑ = 1. Solution values ℜψ(x, t) for (x, t) ∈ [0,1.5]× [0,3] (left) and section at time
t = 3 (right).

perfectly reflect the convergence orders of the splitting methods, provided that the
time stepsizes are sufficiently small; this implies the dependence O(hp+1) of the local
error with respect to the time stepsize.

The time evolution of the nonlinear Schrödinger equation (4.2) with ϑ = 1 under
the initial condition (4.3) in classical Wentzel–Kramers–Brillouin form is illustrated
in Figure 4.5. We display the solution values |ψ(x, t)|2, (x, t) ∈ [0,1.5]× [0,3], for the
parameter values ε = 1,10−2 and the values ω = 1,2 of the constant in the confining
potential; Figure 4.6 mirrors the rapid oscillations that arise for ε = 10−2 in the graph
of ψ . We choose the spatial interval [0,1.5] in regard to the fact that the solution is
symmetric with respect to the origin and approaches zero outside; the perspective
is such that the solution values at time t = 3 are visible. For the space integration,
we apply the Fourier-spectral method with M = 8192 degrees of freedom. The shape
of the solution suggests an adaptive time stepsize selection; to this end, we apply
the fourth-order splitting method by [6] as integrator and an embedded third-order
scheme as error estimator, see Table 2.1, utilising a standard local error control as
described in [16]. For absolute tolerances tol = 10−3 j, j = 1,2, the generated time
stepsize sequences which are commensurate with the solution behaviour are shown
in Figures 4.7 and 4.8; in certain cases, it is needed to rigorously reduce the last
timesteps to reach the final time. Furthermore, a comparison of the solution values at
final time t = 3 is given in Figure 4.9; for ε = 1 both curves coincide, whereas small
perturbations occur for ε = 10−2 and tol = 10−3.

4.2 Local error estimate

In this section, we study the local error behaviour of the Lie–Trotter splitting (2.5)
method for the nonlinear Schrödinger equation (4.2) in the semi-classical regime with
initial condition chosen in classical Wentzel–Kramers–Brillouin form (4.3) and reg-
ular initial condition (4.4), respectively. In particular, we discuss the ability of the
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Fig. 4.7 Time evolution of the nonlinear Schrödinger equation (4.2) under the initial condition (4.3) with
ϑ = 1. Discretisation by the Fourier spectral method with M = 8192 and an embedded 4(3) time-splitting
pair. Generated time stepsize sequences for an absolute tolerance of tol = 10−3 for (ε,ω) = (1,1) (top
left), (ε,ω) = (10−2,1) (top right), (ε,ω) = (1,2) (bottom left), and (ε,ω) = (10−2,2) (bottom right).

exact local error representation of Theorem 1

L (h,u0) =
∫ h

0

∫
τ1

0
∂2EF

(
h− τ1,S (τ1,u0)

)
∂2EB

(
τ1− τ2,EA(τ1,u0)

)
×
[
B,A

](
EB
(
τ2,EA(τ1,u0)

))
dτ2 dτ1

(4.6)

to explain the dependence of the dominant local error term with respect to the actual
time stepsize h > 0 and the critical parameter 0 < ε << 1 observed numerically in
Section 4.1. For the theoretical analysis, we first reconsider the linear case [10] and
further the cubic Schrödinger equation, since it is then without significant difficulty
to extend the arguments to the Gross–Pitaevskii equation (4.2). Concerning suitable
choices of the domains of the involved operators, the computation of iterated Lie-
commutators, and a possible extension to unbounded potentials in the context of the
Hermite spectral method, we refer to [13,20,22,25].
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Fig. 4.8 Time evolution of the nonlinear Schrödinger equation (4.2) under the initial condition (4.3) with
ϑ = 1. Discretisation by the Fourier spectral method with M = 8192 and an embedded 4(3) time-splitting
pair. Generated time stepsize sequences for an absolute tolerance of tol = 10−6 for (ε,ω) = (1,1) (top
left), (ε,ω) = (10−2,1) (top right), (ε,ω) = (1,2) (bottom left), and (ε,ω) = (10−2,2) (bottom right).

The nonlinear Schrödinger equation (4.2) may be cast into the form of an abstract
initial value problem (2.1) with linear operator A : D(A) ⊂ X → X and nonlinear
operator B : D(B)⊂ X → X defined by

A = ε Â , Â = 1
2 i∂xx , B = 1

ε
B̂ , B̂(v) =− i

(
U +ϑ |v|2

)
v ; (4.7)

in accordance with the potential and the imposed boundary conditions on the domain
Ω ⊂R, the Sobolev embedding H1(Ω)⊂ L∞(Ω) suggests suitably chosen subspaces
D(Â)⊂ H2(Ω) and D(B̂)⊂ H1(Ω) on the underlying Hilbert space X = L2(Ω).

Concerning the practical realisation of a splitting method (2.4), it is favourable to
rely the numerical solution of the linear subproblem{

d
dt EA(t,v) = AEA(t,v) , 0≤ t ≤ T ,

EA(0,v) = v ,

on a spectral decomposition, see Section 4.1 and [7] for further details. Due to

d
dt

∣∣EB(t,v)
∣∣2 = 2ℜ

(
EB(t,v) d

dt EB(t,v)
)

= 0 , 0≤ t ≤ T ,
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Fig. 4.9 Time evolution of the nonlinear Schrödinger equation (4.2) under the initial condition (4.3) with
ϑ = 1. Solution values |ψ(x, t)|2, x ∈ [0,1.5], at time t = 3, computed by the Fourier spectral method with
M = 8192 and an embedded 4(3) time-splitting pair with tolerances tol = 10−3 j , j = 1,2, for (ε,ω) = (1,1)
(top left), (ε,ω) = (10−2,1) (top right), (ε,ω) = (1,2) (bottom left), and (ε,ω) = (10−2,2) (bottom right).

the invariance property |EB(t,v)|2 = |v|2, 0≤ t ≤ T , follows; therefore, the analytical
solution of the nonlinear subproblem{

d
dt EB(t,v) = B

(
EB(t,v)

)
, 0≤ t ≤ T ,

EB(0,v) = v ,

is given in an explicit manner by

EB(t,v) = e− i t (U+ϑ |v|2)/ε v , 0≤ t ≤ T , (4.8)

realised numerically by a pointwise multiplication.
The Fréchet-derivatives of the linear operator Â(v) = Âv and the nonlinear opera-

tor B̂(v) with respect to v at a point w are equal to

Â′(v)w = Âw = 1
2 i∂xxw , B̂ ′(v)w =− i

(
Uw+2ϑ |v|2 w+ϑ v2 w

)
, (4.9)

and, clearly, it holds A ′= ε Â ′ and B ′= 1
ε

B̂ ′, see also (4.7).
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Stone’s Theorem, see ENGEL AND NAGEL [11], e.g., ensures that the linear dif-
ferential operator Â and the nonlinear multiplication operator B̂ generate unitary evo-
lution operators on L2(Ω); consequently, for any parameter value ε > 0 it holds∥∥EA(t, ·)

∥∥
L2←L2 = 1 ,

∥∥EB(t, ·)
∥∥

L2←L2 = 1 , 0≤ t ≤ T . (4.10a)

Moreover, the exact solution operator is unitary on L2(Ω), that is, the relation∥∥EF(t, ·)
∥∥

L2←L2 = 1 , 0≤ t ≤ T , (4.10b)

is valid; for instance, this follows from the observation that
(
u(t)

∣∣ d
dt u(t)

)
L2 ∈ iR for

the solution of (4.2), written in abstract form as (2.1a), wherefore

d
dt

∥∥EF
(
t,u(0)

)∥∥
L2 = d

dt

∥∥u(t)
∥∥

L2 = 2ℜ
(
u(t)

∣∣ d
dt u(t)

)
L2 = 0 , 0≤ t ≤ T ,

and thus the conservation property
∥∥EF

(
t,u(0)

)∥∥
L2 = ‖u(0)‖L2 is valid for 0≤ t ≤ T .

Clearly, it holds ∂2EA(t,v) = EA(t, ·) for 0≤ t ≤ T which implies that the deriva-
tive of the evolution operator EA with respect to the initial value is a unitary operator
on L2(Ω). For linear Schrödinger equations, this is also valid for ∂2EB(t,u) = EB(t, ·)
and ∂2EF(t,u) = EF(t, ·), 0≤ t ≤ T ; more generally, for nonlinear problems, the op-
erators ∂2EF and ∂2EB satisfy the non-autonomous linear problems{

d
dt ∂2EF(t,v) =

(
A+B ′

(
EF(t,v)

))
∂2EF(t,v) , 0≤ t ≤ T ,

∂2EF(t,v)
∣∣
t=0 = I ,{

d
dt ∂2EB(t,v) = B ′

(
EB(t,v)

)
∂2EB(t,v) , 0≤ t ≤ T ,

∂2EB(t,v)
∣∣
t=0 = I ,

with ∂2EB given explicitly by

∂2 EB(t,v)w = e− i t (U+ϑ |v|2)/ε w− 2i t
ε

ϑ EB(t,v)ℜ(vw) , 0≤ t ≤ T , (4.11)

see also (3.6) and (4.8).
In the following, we study the decisive term[

A,B
]
(w) , w = EB(τ2,v) = e− iτ2 (U+ϑ |v|2)/ε v , v = EA(τ1,u0) , (4.12)

in the exact locar error representation (4.6). Due to the fact that

Â ′(w) B̂(w) = 1
2 ∂xx

(
Uw+ϑ |w|2w

)
= 1

2

(
U∂xxw+2∂xU∂xw+∂xxU w+ϑ w2

∂xxw+4ϑ w |∂xw|2

+2ϑ w(∂xw)2 +2ϑ |w|2∂xxw
)
,

B̂ ′(w) Â(w) = 1
2

(
U∂xxw+2ϑ |w|2 ∂xxw−ϑ w2

∂xxw
)
,

see (4.7) and (4.9), the first Lie-commutator of A and B is given by[
A,B

]
(w) = A ′(w)B(w)−B ′(w)A(w)

= Â ′(w) B̂(w)− B̂ ′(w) Â(w)

= ∂xU∂xw+ 1
2 ∂xxUw+ϑ w2

∂xxw+2ϑ w |∂xw|2 +ϑ w(∂xw)2 ,
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see (3.2); it is notable that in the nonlinear case the second spatial derivative of w
arises, whereas for a linear problem (4.2) with ϑ = 0 the Lie-commutator reduces to
[A,B] = ∂xU∂x + 1

2 ∂xxU I, a first-order differential operator with coefficients involv-
ing the first and second derivative of the potential. A brief calculation yields

∂x w = ∂x e− iτ2(U+ϑ |v|2)/ε v+ e− iτ2(U+ϑ |v|2)/ε
∂xv ,

∂xx w = ∂xx e− iτ2(U+ϑ |v|2)/ε v+2∂x e− iτ2(U+ϑ |v|2)/ε
∂xv+ e− iτ2(U+ϑ |v|2)/ε

∂xxv ,

involving the spatial derivatives

∂x e− iτ2(U+ϑ |v|2)/ε =− i τ2
ε

e− iτ2(U+ϑ |v|2)/ε
(
∂xU +2ϑ ℜ(v∂xv)

)
,

∂xx e− iτ2(U+ϑ |v|2)/ε = e− iτ2(U+ϑ |v|2)/ε

(
− τ2

2
ε2

(
∂xU +2ϑ ℜ(v∂xv)

)2

− i τ2
ε

(
∂xxU +4ϑ |∂xv|2 +4ϑ ℜ(v∂xxv)

))
;

inserting the above relations into (4.12) thus gives[
A,B

]
(w) = e− iτ2(U+ϑ |v|2)/ε

(
g1(v)+ i τ2

ε
g2(v)

)
, v = EA(τ1,u0) ,

g1(v) = ∂xU∂xv+ 1
2 ∂xxUv+ϑ ∂xxvv2 +2ϑ |∂xv|2v+ϑ (∂xv)2 v ,

g2(v) =−(∂xU)2v+ϑ ∂xxU |v|2v− 2ϑ ∂xU ℜ(v∂xv)v

+2ϑ
2 |∂xv|2|v|2v+ϑ

2
∂xxv |v|4 +ϑ

2
∂xxv |v|2v2.

(4.13a)

Provided that the linear operator A (with domain D(A) also including the imposed
boundary conditions) and the differential operators ∂x commute (on a suitably chosen
subdomain), it follows

∂
j

x v = EA(τ1,∂
j

x u0) , j ≥ 0 , (4.13b)

and further ‖∂ j
x v‖L2 = ‖∂ j

x u0‖L2 for j ≥ 0, see (4.10). In particular, for initial condi-
tions in classical Wentzel–Kramers–Brillouin form (4.3) with ρ0 and σ0 sufficiently
often differential, we obtain

u0 = ρ0 eiσ0/ε , ∂xu0 = ∂xρ0 eiσ0/ε + i
ε

∂xσ0 u0 ,

∂xxu0 =
(
∂xxρ0 +2 i

ε
∂xρ0 ∂xσ0

)
eiσ0/ε +

( i
ε

∂xxσ0− 1
ε2 (∂xσ0)2)u0 .

(4.13c)

In general, for ∂
j

x σ0 6= 0, this implies the estimate ‖∂ j
x u0‖L2 ≤ 1

ε j M j with constant
M j > 0 not depending on the critical parameter ε for j ≥ 0; especially, if σ0 = 0, it
follows ‖∂ j

x u0‖L2 ≤M j for j ≥ 0.

Linear Schrödinger equation. For a linear Schrödinger equation, i.e., problem (4.2)
with ϑ = 0, the above considerations simplify to[

A,B
]
(w) = e− iτ2U/ε

(
g1(v)+ i τ2

ε
g2(v)

)
,

g1(v) = ∂xU∂xv+ 1
2 ∂xxUv , g2(v) =−(∂xU)2v ,

v = EA(τ1,u0) , ∂xv = EA(τ1,∂xu0) ,
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see (4.13). On the one hand, due to the fact that∥∥g1(v)
∥∥

L2 ≤
∥∥∂xU

∥∥
L∞

∥∥∂xv
∥∥

L2 +
∥∥∂xxU

∥∥
L∞‖v‖L2 ,∥∥g2(v)

∥∥
L2 ≤

∥∥∂xU
∥∥2

L∞‖v‖L2 ,

for initial values (4.13c) with σ0 = 0 the bound∥∥[A,B
]
(w)
∥∥

L2 ≤
∥∥∂xU

∥∥
L∞

∥∥∂xv
∥∥

L2 +
(∥∥∂xxU

∥∥
L∞ + τ2

ε

∥∥∂xU
∥∥2

L∞

)
‖v‖L2

≤
∥∥∂xU

∥∥
L∞

∥∥∂xu0
∥∥

L2 +
(∥∥∂xxU

∥∥
L∞ + τ2

ε

∥∥∂xU
∥∥2

L∞

)
‖u0‖L2

(4.14)

follows, which implies the local error estimate

ϑ = 0 , σ0 = 0 :
∥∥L (h,u0)

∥∥
L2 ≤ (C0 +C1

h
ε

)
h2

with constants C0,C1 > 0 involving ‖∂xu0‖L2 , ‖u0‖L2 , ‖∂xU‖L∞ , and ‖∂xxU‖L∞ , see
also (4.10). Evidently, the Lie–Trotter splitting method has convergence order one,
see Figure 4.4. Moreover, for a fixed time stepsize h = h0 and critical parameter values
0 < ε < h (or, more precisely, 0 < ε < ch for some constant c > 0) the dominant local
error term is C1h3/ε and thus the ratio α =−1 results, whereas we obtain α = 2 for
h = ε , see (4.5); this is in accordance with the numerical observations summarised
in Table 4.1. On the other hand, for initial values (4.13c) with first spatial derivative
involving 1/ε (that is, ‖∂xu0‖L2 ≤ 1

ε
M1), the bound (4.14) yields

ϑ = 0 , ∂xσ0 6= 0 :
∥∥L (h,u0)

∥∥
L2 ≤

(
C0 h+C1

h
ε

)
h ,

provided that 0 < h < 1; similarly to before, for ratios h/ε where the local error term
C1h2/ε dominates, we retain α =−1 for h = h0 , but α = 1 for h = ε , both confirming
the numerical results given in Table 4.1.

Cubic Schrödinger equation. For the cubic Schrödinger equation, i.e., problem (4.2)
with ω = 0, it is more involved to deduce a local error estimate.

In regard to the regular initial condition (4.4), see also (4.13c) and let σ0 = 0, we
first suppose the initial value u0 and thus v = EA(τ1,u0) to be sufficiently regular with
derivatives bounded by a constant, independent of ε . We note that the following con-
siderations could be made rigorous and that sufficient regularity requirements on u0
are obtained by means of the Sobolev embedding H1(Ω)⊂ L∞(Ω); however, as we
are primarily concerned with the dependence of the local error on the time stepsize
and the critical parameter, we do not specify the regularity assumptions on the ini-
tial value and the precise form of the constants. Setting U = 0 in (4.2), the relations
in (4.13) reduce to[

A,B
]
(w) = e− iτ2 ϑ |v|2/ε

(
g1(v)+ i τ2

ε
g2(v)

)
,

g1(v) = ϑ ∂xxvv2 +2ϑ |∂xv|2v+ϑ (∂xv)2 v ,

g2(v) = 2ϑ
2 |∂xv|2|v|2v+ϑ

2
∂xxv |v|4 +ϑ

2
∂xxv |v|2v2 ,

v = EA(τ1,u0) , ∂xv = EA(τ1,∂xu0) , ∂xxv = EA(τ1,∂xxu0) .

(4.15)
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ε h/ε errlocal(ε) ratio(ε)

5.00000000000e-1 1.250e-1 3.318314040129623e-3 -1.481542464484375e-002
2.50000000000e-1 2.500e-1 3.352566274062347e-3 -3.987567472693236e-002
1.25000000000e-1 5.000e-1 3.446522721795372e-3 -1.370712693825387e-001
6.25000000000e-2 1.000e+0 3.790039267831324e-3 -3.789477377625659e-001
3.12500000000e-2 2.000e+0 4.928540679180661e-3 -6.987314614573381e-001
1.56250000000e-2 4.000e+0 7.999401116445972e-3 -8.998641518757462e-001
7.81250000000e-3 8.000e+0 1.492600476861661e-2 -9.725874814930025e-001
3.90625000000e-3 1.600e+1 2.929014902784553e-2 -9.927998706142481e-001
1.95312500000e-3 3.200e+1 5.828866680385411e-2 -9.974626176915570e-001
9.76562500000e-4 6.400e+1 1.163724799946193e-1 -9.964577528699693e-001
4.88281250000e-4 1.280e+2 2.321742025889134e-1 -9.874763693867023e-001
2.44140625000e-4 2.560e+2 4.603349719843108e-1 -9.501733704707212e-001
1.22070312500e-4 5.120e+2 8.894154215722925e-1 -7.779601700474771e-001
6.10351562500e-5 1.024e+3 1.525084832985217e+0 4.144601950283195e-001
3.05175781250e-5 2.048e+3 1.144271421143380e+0 -4.118896129108623e-001
1.52587890625e-5 4.096e+3 1.522369868884755e+0 7.193399857950300e-003
7.62939453125e-6 8.192e+3 1.514798096013354e+0

Table 4.2 Time integration of the cubic Schrödinger equation (4.2) with ϑ = 1 and ω = 0 under the initial
condition (4.4) by the Lie–Trotter splitting method with h = 6.25 ·10−2. Dependence of the local error on
the critical parameter ε .

Therefore, assuming the initial value u0 to satisfy suitable regularity requirements
such that the quantities g1(v) and g2(v) remain bounded in L2(Ω), the estimate∥∥[A,B

]
(w)
∥∥

L2 ≤C0 +C1
h
ε

follows. The identity ∂2 EB(t,v)z = e− i tϑ |v|2/ε
(
z− 2i t

ε
ϑ ℜ(vz)v

)
, see (4.11), yields

∂2 EB(τ1− τ2,v)
[
A,B

]
(w) = G1(v)+ τ2

ε
G2(v)+ τ1−τ2

ε
G3(v)+ (τ1−τ2)τ2

ε2 G4(v) ,

G1(v) = e− iτ1ϑ |v|2/ε g1(v) , G2(v) = i e− iτ1ϑ |v|2/ε g2(v) ,

G3(v) =−2iϑ e− i(τ1−τ2)ϑ |v|2/ε
ℜ
(
e− iτ2ϑ |v|2/ε g1(v)v

)
v ,

G4(v) =−2iϑ e− i(τ1−τ2)ϑ |v|2/ε
ℜ
(
i e− iτ2ϑ |v|2/ε g2(v)v

)
v ,

(4.16)
and further implies the estimate∥∥∂2 EB(τ1− τ2,v)

[
A,B

]
(w)
∥∥

L2 ≤C0 +C1
h
ε
+C2

h2

ε2 .

With the help of the variation-of-constants formula, see also Theorem 2, and a Gron-
wall inequality, the bound ‖∂2 EF(t,v)‖L2←L2 ≤ C (1 + h

ε
) results, and, as a conse-

quence, we finally obtain the local error estimate

U = 0 , σ0 = 0 :
∥∥L (h,u0)

∥∥
L2 ≤

(
C0 +C1

h
ε
+C2

h2

ε2 +C3
h3

ε3

)
h2

with constants C j > 0 for 0 ≤ j ≤ 3. The above bound shows that for a fixed time
stepsize h = h0 the size of the ratio h/ε (as well as the size of the involved constants)
determines the dominant local error term. Indeed, for ratios h/ε relatively small the
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term C0 h2 dominates, whereas for h/ε large the dominant term is C3 h5/ε3. Fig-
ure 4.3 and further numerical results given in Table 4.2 indicate that, in the present
example, for h/ε in a certain range the local error of the Lie–Trotter splitting method
is dominated by C1 h3/ε which explains the ratio α ≈−1 and that for h/ε exceeding
a certain value the local error becomes unsatisfactorily large. On the other hand, for
time stepsizes h = ε the above considerations for the Lie-Trotter splitting method im-
ply
∥∥L (ε,u0)

∥∥
L2 ≤C ε2, that is, α ≈ 2, in accordance with the numerical example,

see Table 4.1.
At first glance, the numerical results obtained for classical Wentzel–Kramers–

Brillouin initial conditions (4.3), that is, for initial values (4.13c) with ∂xσ0 6= 0, are
astonishing. Indeed, in regard to (4.15) one would suppose that the estimate for the
first Lie-commutator ∥∥[A,B

]
(w)
∥∥

L2 ≤C0
1
ε2 +C1

h
ε3

and the resulting local error bound∥∥L (h,u0)
∥∥

L2 ≤C0
h2

ε2 +C1
h3

ε3 +C2
h4

ε4 +C3
h5

ε5

are optimal with respect to the critical parameter; however, the above local error
estimate is not consistent with the numerical illustrations. In the following, we give
heuristic considerations that are conclusive with the numerical observations; however,
it is left for future work to make these arguments rigorous. It is notable that the initial
value u0 = ρ0 eiσ0/ε fulfills the relations

g1(u0) = ϑ u0 ρ0 ∂xxρ0 +3ϑ u0
(
∂xρ0

)2− i
ε

ϑ u0 ρ
2
0 ∂xxσ0 ,

∥∥g1(u0)
∥∥

L2 ≤C 1
ε
,

g2(u0) = 2ϑ
2 u0 ρ

2
0
(
∂xρ0

)2 +2ϑ
2 u0 ρ

3
0 ∂xxρ0 ,

∥∥g2(u0)
∥∥

L2 ≤C .

Ignoring for a moment the effect of the evolution operator EA, that is, supposing
that v = EA(τ1,u0) coincides with u0, one would obtain ‖[A,B](w)‖L2 ≤C0

1
ε
+C1

h
ε

.
Evidently, the above simplification is not satisfied in general, but, as we conjecture
from calculations based on a stepwise expansion in the lines of

v = EA(τ1,u0) = u0 +
∫ 1

0
τ1Aeστ1Au0 dσ ,

the following estimates are valid∥∥g1(v)
∥∥

L2 ≤ 1
ε

Q1
( h

ε

)
,

∥∥g2(u0)
∥∥

L2 ≤ Q2
( h

ε

)
,

involving (convergent) power series Q j for j = 1,2. The above conjecture yields the
commutator bound ∥∥[A,B

]
(w)
∥∥

L2 ≤ 1
ε

Q1
( h

ε

)
+ h

ε
Q2
( h

ε

)
,

and, regarding (4.16) and ‖∂2 EF(t,v)‖L2←L2 ≤C(1+ h
ε
), we further obtain the local

error estimate

U = 0 , ∂xσ0 6= 0 :
∥∥L (h,u0)

∥∥
L2 ≤ Q

( h
ε

)
h , Q(ξ ) =

∞

∑
j=0

C j ξ
j ,



Splitting methods for nonlinear evolutionary problems involving critical parameters 27

which conforms to the numerical results, see also Table 4.1. In fact, for a fixed time
stepsize h = h0 the ratio h/ε determines the dominant local error term; in the numer-
ical example, the dominant term is C1 h2/ε . On the other hand, for h = ε the ratio
α ≈ 1 is observed.

Gross–Pitaevskii equation. Altogether, the above considerations for the linear Schrö-
dinger equation and the cubic Schrödinger equation imply the following local er-
ror estimate for the Lie-Trotter splitting method (2.5) when applied to the Gross–
Pitaevskii equation (4.2) in the semi-classical regime, see also (2.1a), provided that
the functions ρ0 and σ0 defining the initial condition (4.13c) satisfy suitable regularity
requirements. In case of a regular initial condition (4.4), for time stepsizes 0 < h < 1
and parameter values 0 < ε < 1 the local error estimate

σ0 = 0 :
∥∥L (h,u0)

∥∥
L2 ≤ P

( h
ε

)
h2 , P(ξ ) =

3

∑
j=0

C j ξ
j , (4.17)

is valid; on the other hand, we conjecture that the bound

∂xσ0 6= 0 :
∥∥L (h,u0)

∥∥
L2 ≤ Q

( h
ε

)
h , Q(ξ ) =

∞

∑
j=0

C j ξ
j ,

holds for initial conditions in classical Wentzel–Kramers–Brillouin form (4.3). We
note that the first bound is rigorous, whereas it remains to fill in the blank in the
latter; both local error estimates are consistent with the numerical examples given in
Section 4.1.

5 Conclusions

The present work is a further attempt to contribute to the study of exponential operator
splitting methods for nonlinear evolution equations; our main concern is to expose
the derivation of an exact local error representation that is well-suited in the presence
of unbounded nonlinear operators and critical parameters and its analysis within the
context of nonlinear Schrödinger equations in the semi-classical regime. Such a local
error representation is of relevance from a theoretical and a practical perspective; it is
an essential ingredient in the convergence analysis of splitting methods for nonlinear
evolution equations and provides the basis for an adaptive time stepsize selection,
which is indispensable in the numerical solution of complex practical applications.

Throughout, as we hoped to thereby enhance clarity, general comprehensibility,
and readability, we focused on the first-order Lie–Trotter splitting method and con-
sidered as model problem the time-dependent Gross–Pitaevskii equation in a single
space dimension [4, Example 6], both involving marginal technicalities. Our cen-
tral theme is to demonstrate that, contrary to other approaches, our exact local error
representation is conclusive with the error behaviour observed in the numerical ex-
ample. Our conclusion is that in case of a regular initial condition with bounded spa-
tial derivatives, independent of the critical parameter 0 < ε << 1, time stepsizes of
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the magnitude of ε are needed, whereas for an initial condition in classical Wentzel–
Kramers–Brillouin form time stepsizes sufficiently smaller than the critical parameter
are required. For comparison and as an incentive for future work, we further included
numerical experiments that confirm the expectation that higher-order exponential op-
erator splitting methods possess improved accuracy properties. Furthermore, we illus-
trate the capability of a local time stepsize control, which permits to achieve reliable
numerical results by the specification of the local error tolerance.

A rigorous treatment of higher-order exponential operator splitting methods ap-
plied to general problem classes such as nonlinear evolutionary Schrödinger equa-
tions or nonlinear parabolic problems, respectively, is the objective of future work.
As indicated, the (formal) extension of Theorem 1 to general splitting methods by
means of the calculus of Lie-derivatives seems to be straightforward. Moreover, it
is expected that a generalisation of the error estimate (4.17) relies on the techniques
employed in Section 4.2; however, it seems to be more involved to provide a rigorous
error analysis incorporating classical Wentzel–Kramers–Brillouin initial conditions.
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