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Exact Analytical Method for Magnetic Field Computation
in the Air-Gap of Cylindrical Electrical Machines
Considering Slotting Effects

Thierry Lubin, Smail Mezani, and Abderrezak Rezzoug.

Groupe de Recherche en Electrotechnique et Electronique de Nancy,
University Henri Poincaré, Nancy, FRANCE

This paper deals with an analytical method for magnetic field calculation in the air-gap of cylindrical electrical machines including
slotting effects. The analytical method is based on the resolution of the two-dimensional Laplace’s equation in polar coordinates by the
separation of variables technique. The originality of the proposed model is to take into account the mutual influence of slots on the air-
gap magnetic field. The proposed method is sufficiently general to be used as a tool for air-gap magnetic field calculation of slotted
electrical machines as reluctance or permanent magnet motors or actuators. Magnetic field and electromagnetic torque computed with
the proposed analytical method are validated through finite element analysis.

Index Terms— Analytical solution, electrical machines, magnetic field, slotting effect.

I. INTRODUCTION

IN ANALYTICAL modeling of electrical machines, one of the
most difficult task is to take into account the slotting effect
in air-gap magnetic field prediction. As electromagnetic
torque results from the interaction between the rotor and the
stator through the magnetic field in the air-gap space, an
accurate knowledge of the air-gap magnetic field distribution
is necessary. The presence of stator or/and rotor slots have a
large influence on the air-gap magnetic field distribution and
therefore on the electromagnetic torque. The consequences
can be torque ripples causing vibration, noise and speed
fluctuations.

The air-gap magnetic field with slotting effects can be
evaluated by a variety of techniques including analytical or
semi-analytical methods as well as numerical techniques like
finite elements or boundary integral methods. Finite elements
give accurate results considering geometric details and
nonlinearity of magnetic materials. However, this method is
computer time consuming and poorly flexible for the first step
of design stage of electrical machines.

Analytical methods are useful tools for first evaluation of
electrical motors performances and for design optimization
since continuous derivatives issued from the analytical
solution are of great importance in most optimization
methods.

A significant number of publications on the analytical
solution of the air-gap magnetic field in slotted machines can
be found in the literature [2]-[15]. The publications focus
essentially on the determination of cogging torque in
permanent magnet motors of radial field topology. Two
analytical methods are mainly developed. The first one
concerns the use of conformal mapping to consider slotting
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effects [2]-[5]. This method has an important drawback since
it is assumed that the slot width is much smaller than its
height. The second method consists of analytical solution of
Laplace or Poisson equations in the different sub-domains
(magnet, air-gap and slots) by applying the boundary
conditions on the interface between sub-domains [6]-[15].

To the authors’ knowledge, the most complete analytical
models using the sub-domain method are given in [13]-[15].
Analytical solutions of the field equation are computed in the
air-gap and in the slots of a permanent magnet motor.
However, the sub-domain models in [13]-[15] are developed
for a single slot, so the interaction between neighboring slots
is ignored. In fact, good results are obtained [14] for air gap
flux density distribution and cogging torque waveform except
for an 8-pole/12 slot PM motor for which the hypothesis cited
above is not verified.

Compared to previously sub-domain model based on single
slot hypothesis, the proposed model includes the mutual
influence of slots on the air-gap magnetic field.

The emphasis of this paper is to show the effectiveness of
the proposed analytical method and not to study a particular
electrical machine. The developed tool can obviously treat
problems like electromagnetic torque or cogging torque
estimation in conventional electrical actuators ie. permanent
magnet and switched reluctance motors, but it is sufficiently
general to handle more complicated structures like magnetic
gears [18].

The paper is organized as follows. The problem description
and the assumptions of the model are presented in section II.
Section III describes the analytical method for magnetic field
calculation in the air-gap and in the slot domains. The
analytical results are then verified with finite-element method
in section IV.
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Current Sheet
K@)

Fig. 1. Geometry of the studied model (with O = 8 and 6, = 0 rad).

II. PROBLEM DESCRIPTION AND ASSUMPTIONS

The geometric representation of the model used to study the
slotting effects on the air-gap magnetic field of cylindrical
electrical machines is shown in Fig. 1. The geometrical
parameters are the inner radius of the rotor yoke R;, the radius
of the rotor surface R, and the stator bore radius R;. The rotor
has Q slots. The slot opening angle is £. The angular position
of the i-th rotor slot is defined as

+2l—”+60
o

9. -5

; with
2

1<i<Q (1)

where 6, is the angular position of the rotor.

In order to simplify the theoretical analysis, we assume that
the source term is represented by a current sheet distributed
over the stator inner radius (r = R;). The expression of the
current sheet is

K()= iKm.cos(mp(H— a))-e, )

m=1

where K, is the peak value of the m-th harmonic component

of the current sheet in (A/m), « is the angular position of the
current sheet and p is the number of pole pairs. e, is the unit
vector along the z axis.

All the calculus are made by using the following
assumptions:

e End effects are neglected.

e The stator and rotor iron cores are infinitely permeable.
e No current in the slots.

e The rotor slots have radial sides.

The whole structure is divided into the air-gap region
(domain /) which has an annular shape and Q slots (numbered
from / to Q). The i-th slot is shown in Fig. 2. A magnetic
vector potential formulation is used in 2D polar coordinates to
describe the problem. According to the adopted assumptions,
the magnetic vector potential has only one component along
the z-direction and only depends on the » and € coordinates.
The notations used in the paper are

Ap=4,(r,0)-e,
A; = A4,(r,0) e,

for the air-gap domain 3)
for the i-th slot domain “4)

III. ANALYTICAL SOLUTION

The solution of any partial differential equation (PDE)
depends on the domain in which the solution is to be valid as
well as the boundary conditions that the solution must satisfy.
By using separation of variables, we now consider the
solution of Laplace’s equation for the slots and the air-gap.
For the sake of clarity and simplicity of the general solutions
in the different domains, we adopt the following notations

P.(x,y) = @ +(ljz (5)
y X

E.(x,y)= @ —[ljz (6)
y X

A. General Solution of Laplace’s equation in the i-th slot
domain

The i-th slot domain and the associated boundary conditions
are shown in Fig. 2. We have to solve the Laplace’s equation
in a domain of inner radius R; and outer radius R, delimited
by the angles 6, and 6+4

0%4,

1 94,
+——L+

1
a2 ror s 0

024, R <r<R
) {lr 2o

B 0.<0<6, +

The boundary conditions for the i-th slot domain are (the
tangential component of the magnetic field at the sides and at
the bottom of the slot are null)

% =0 and % =0 ()
06 0=06; 06 0=6;+p

04,

il =0 9
or Ry ©)

The continuity condition between the i-th slot and the air-
gap leads to

Ai(R299):A[(R2’0) (10)
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Fig. 2. i-th slot domain with its boundary conditions.

The general solution of (7) can be found by using the
method of the separation of variables, so the solution can be
written as
4;(r,0)=p;(0,;(0) (11
Substituting (11) into (7), we obtain two ordinary

differential equations where A4 (AeR) is the separation
constant

0,"-10, =0 (12)

r2p,"+rp; "+ Ap; =0 (13)
Using (11), the boundary conditions (8) become

0,'6,)=0 and 6,'(6,+5)=0 (14)

We are now confronted to the problem of finding the values
of the parameter A for which non-trivial solutions of (12)
satisfying the boundary conditions (14) exist (Sturm-Liouville
problem). Under the latest condition, the values of the
parameter A are called eigenvalues and the solutions are called
eigenfunctions. A general method to compute the eigenvalues
and eigenfunctions for a Sturm-Liouville problem is given in
[1]. The eigenvalues of the problem (12), (14) are

2, =0 (15)

k 2
A = —(7”} with & =1,23,..... (16)

The eigenfunctions corresponding to 4, and A, are given
by
0,,(0)=1 (17)

0,(6) =cos(%”(e—@)J (18)

For Ay and 4, the general solutions of (13) can be written as

Pio(r)= Ay +BjInr (19)
_z Kz
pu(m=dir P +Bir? (20)

where 4}, B{, A and Bj are arbitrary constants.

Writing the general solution as a linear combination of the
previous solutions, we have

4,(r,0) =B,y ()0 (1) + D Oy (O)py (r) (L2}
k=1
therefore
A(r,0)= A, + By Inr
kx kx (22)

+ i(A,ir7 +BirP) -cos(k—ﬂ- - 90)
P B

Considering the boundary condition (9) and the continuity
condition (10), the general solution of the magnetic vector
potential in the i-th slot domain can be written as

S P R
A(r,0)=4)+ D 4 ~M~cos(k—”(6—9i)J (23)
f=1 Pk;r/ﬁ(RlaRZ) ﬂ

where £, 5(r,Ry) is defined by (5).

The constants 4,, A, are determined using a Fourier series

expansion of the air-gap magnetic vector potential A; over the
slot interval [g, 8+ at r=R,.

0;i+p
AS:% J'A,(Rz,e)-de
;
6;+p
j A,(Rz,e)-cos[%(e—@)j-de

6

24

2

A =5 (25)

The expression for the coefficient A; is given in the

appendix (the calculus of Aé is not necessary to compute the

flux density expression).

The radial and the tangential components of the flux density
in the i-th slot are related to the magnetic vector potential by
the well-known relations

p
04;
Big=-=" @7
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Fig. 3. Air-gap domain with its boundary conditions.

B. General solution of Laplace’s equation in the air-gap

The air-gap domain and the associated boundary conditions
are shown in Fig. 3. The problem to solve is

2 2 R, <r<R
9y oA VO g gy (2SR g
or ror  r* 00 0<6<L2x

Considering the current sheet K(6) and infinite

permeability of the stator back iron, the boundary condition
for the air-gap domain at » = Ry is

o4

or 29

= MoK ()
r=R3

where 1 is the vacuum permeability.
The boundary condition at the internal radius r =R, is

more difficult to handle because of the existence of the rotor
slots as shown in Fig. 1. Considering the continuity of the
tangential magnetic field at the interface between the rotor
slots and the air-gap and considering that the tangential
magnetic field is equal to zero elsewhere (infinite permeability
of the rotor back iron), the boundary condition at » =R, can

be written as

04
a—r’ = f(6) (30)
r=R»
with
04,
0) =—4 fi 0, <60<6 +
/©) or =R o ' i+h (31)
f(6)=0 elsewhere

A f(e) A

slot 1

slot Q

Fig. 4. Schematic representation of f{6) along the air-gap at » = R,.

where 4;(r,6) is the magnetic vector potential in the i-th slot
given by (23). The distribution of f(6) along the air-gap

domain interval [0, 27] is schematically shown in Fig. 4.

The general solution of (28) is well known [1] (periodic
Sturm-Liouville problem in an annulus). By taking into
account the boundary conditions (29) and (30), the general
solution of the magnetic vector potential in the air-gap domain
can be written as

4,(r.0) = 4

+Z(Ay{ RZ Pn(raR:i) +B}£ R3 P}’L(rsRZ) )COS(nH) (32)
T B (RyuRs) " B, (RyRy)

+Z(C’5 R, F,(r,R3) D,{ Ry F,(r.Ry) )sin(18)
n=1 n En(RZ’R3) n En(R}’RZ)

where n is a positive integer, P,(r,R;) and E,(R,,R;) are
defined by (5) and (6). The coefficients 4’ , B!, C! and D]
are determined using a Fourier series expansions of 1,K(8)

and f(€) over the air-gap interval [0, 27]

2
Al = % j £(6)cos(nB)-do (33)
0
, P 2z
Bl=o— .[ oK (8)cos(n8) - do (34)
0
2r
cl = % If(H) sin(n6)-do (35)
0
, 2 2z .
D= j 11oK (8)sin(n) - d@ (36)
0

The expressions for the coefficients 4., B!, C! and D]

n?
are given in the appendix.
The flux density in the air-gap domain is given by
B, =B,.(r,0)-e.+B;(r,0)-eg 37

where the radial and the tangential components B, , By are
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respectively
By, (r,0) =
+i_(AI R2 Ez(rrRZ») "rB] R3 I)n(r’R2) )s1n(n6’)
—~ " r E,(R,,Ry) " r E,(Ry,R,)
+i(c1 RZ I)n(r’RB) +Dl R3 Ijn(r’RZ) )COS(V[H)
=" "1 E,(Ry,Ry) " 1 E,(RyRy)
(38)
By(r,0)=
+i_(AI RZ Er/(rzR3) +BI R3 En(r’RZ) )cos(n@)
~ " r E,(RyRy) " r E,(Ry,Ry)
+i_(cl R, E,(r,Rs) +D! Ry E,(r.Ry) )sin(n8)
~ " r E,(Ry,R) " r E,(R3,Ry)
(39)

C. Electromagnetic torque

The electromagnetic torque is obtained using the Maxwell
stress tensor. A circle of radius R, in the air-gap is taken as the
integration path so the electromagnetic torque is expressed as

follows

2
LR T

Hy

T ()=

I B, (R..0,) B ,y(R,.0,a)-dO
0

(40)

where L is the axial length and « the angular position of the
current sheet as defined in (2). According to (38) and (39), the
analytical expression for the electromagnetic torque becomes

oo

RS 1, X, +

T ()= Y,Z,) (41)
0 p=1
where
W __AI R2 IJn(Re’R3) _BI R3 Pn(Re’RZ)
"~ ""R,E(Ry,Ry) "R, E,(R;,R
e n( 2> 3) e n( 3 2)
_ R2 En(ReaR3) _nl R3 En(RgaRz)
n = Cn Dn
Re En(RZ’RS) Re En(RS’RZ) (42)

— C[ R2 Pn(Re’RS)

DI R3 Pn(Re’RZ)

"R, E,(Ry,Rs)

7 =—A1 RZ En(Re’RS)

"R, E,(Rs,Ry)

_B] R3 En(Re’R2)

n

" R, E,(Ry,Ry)

"R, E,(Ry.R,)

IV. APPLICATION EXAMPLES

In order to validate the proposed model, the analytical

results

have been compared with 2D finite element

simulations obtained from COMSOL Multiphysics. The mesh

in the air-gap and in the slot regions has been refined until
convergent results are obtained.

Thereafter, results are given for a one-slot rotor and for a
four-slot rotor. The geometrical parameters given in Table I
are considered in the simulation studies. The analytical
solutions in the air-gap and in the slot domains have been
computed with a finite number of harmonic terms N and K as
indicated in Table I.

A. Results for a one-slot rotor (Q = 1)
Figure 5 shows the magnetic flux lines for the one-slot rotor

with ¢ =0 and 6, =135°. Only the fundamental component
of the current sheet is considered. The number of pole pairs is
fixed to p=1. The value of K, is given in Table I. The
current sheet expression is then

K(0)=K,cosb-e, 43)

The flux density distributions in the middle of the air-gap
domain (7 =7.5¢cm) and in the middle of the slot domain
(7 =5.5¢m ) are plotted respectively in Fig. 6 and in Fig. 7.

Fig. 5. Magnetic flux line distribution for the one-slot rotor computed using
FEM with =0 and 6, = 135°.

TABLE I
PARAMETERS OF THE MODEL
Symbol Quantity value
R, Inner radius of the rotor yoke 4 cm
R, Radius of the rotor surface 7 cm
R; Stator bore radius 8cm
L Axial length 10 cm
Vi Slot opening /4 rad
K; Peak value of the fundamental component of 1.10°A/m
the current sheet
N Number of harmonics used for magnetic field 50
calculation in the air-gap domain
K Number of harmonics used for magnetic field 50

calculation in the slot domain
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From the figures, the effect of the slots is very clear. In fact,
one can see the distortion of the flux density waveforms at the
vicinity of the slot opening while they are practically
sinusoidal elsewhere.

The analytical result for the electromagnetic torque
computed with (41) is given in Fig. 8. We can observe an
excellent agreement with the torque deduced from FEM.

Zhu et al. [16] have shown that the cogging torque
waveform of a permanent magnet machine can be analytically
synthesized from the cogging torque waveform of a single slot
machine. However, they used finite-element analysis to
compute the cogging torque waveform for a one slot machine.
With the proposed method, it is possible to compute
analytically the cogging torque waveform for a one-slot
machine by considering a cylindrical permanent magnet
region instead of the current sheet.

B. Results for a four-slot rotor (Q = 4)
For the four-slot rotor analysis, only the fundamental
component of the current sheet is considered in the simulation.
The number of pole pairs is fixed to p = 2. The current
sheet expression is then

K(0)=K,cos2(0-a)-e, (44)

15

— Analytical
¢ FEM

-

e

v ™

e
™,

p
/
—,

Flux density (radial), (T)
o

15
0 45 90 135 180 225 270 315 360
Circular angle 6 (degree)
(a)
0.2 . .

015 e — Analytical ﬁ
5 TR
= 01
5 0.05 $ B
o
: /
& o
2 i
®-0.05
S * r |
o
x -0.1
e
: ¥

-0.15

-0.2

0 45 90 135 180 225 270 315 360
Circular angle 6 (degree)

(b)

Fig. 6. One-slot rotor; Flux density distribution for radial component (a) and
tangential component (b) in the middle of the air-gap (» = 7.5 cm).

Figures 9, 10 show the magnetic flux lines for the four-slot
rotor computed respectively for =0 and o =7/4.

The flux density distributions in the middle of the air-gap
domain (at »=7.5cm) for a =0 and a=x/4 are plotted
respectively in Fig. 11 and Fig. 12. One can observe very
good agreement between the analytical and finite element
predictions for both radial and tangential components.

0 T T

‘—Analytical‘
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£ -004
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Fig. 7. One-slot rotor; Flux density Distribution for radial component (a) and
tangential component (b) in the middle of the slot (» = 5.5 cm).
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Fig. 8. Electromagnetic torque versus angular position of the current sheet
for the one-slot rotor.
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The tangential component of the air-gap flux density at
r =R, computed with the analytical method is given in Fig.
13. Because of the discontinuity of the tangential component,
a large number of harmonics (K = N =200) are required to
represent correctly the flux density. The small oscillations in
Fig. 13 are due to the well-known Gibbs’ phenomenon.

The analytical result for the electromagnetic torque

computed with (41) is given in Fig. 14. We can observe a
good agreement with the torque deduced from FEM. The
torque characteristic shown in Fig. 14 corresponds to the
classical result obtained for a 4-pole Synchronous Reluctance
Motor [17].

Fig. 9. Magnetic flux line distribution for the four-slot rotor computed using
FEM for =0 and 6,=0.

0.6
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Fig. 11. Four-slot rotor; Flux density distribution for radial component (a) and

tangential component (b) in the middle of the air-gap for o= 0.

Fig. 10. Magnetic flux line distribution for the four-slot rotor computed using
FEM for a=7/4 rad and 6, = 0.
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Fig. 12. Four-slot rotor; Flux density distribution for radial component (a) and
tangential component (b) in the middle of the air-gap for &= 1/4 rad.
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Fig. 13. Flux density distribution (tangential component) on the air-gap

surface (r = R,) for o= m/4 rad.

V. CONCLUSION

In this paper, an exact analytical method for computing the
air-gap field distribution in cylindrical electrical machines
considering slotting effects has been presented. The Laplace’s
equation in polar coordinates has been solved by the technique
of separation of variables in the slots and air-gap domains.
Compared to previously sub-domain model based on single
slot hypothesis, the proposed model includes the mutual
influence of slots on the air-gap magnetic field. The model
developed in this work has been validated by finite-element
analysis. The methodology described in this paper can be used
as a preliminary tool for the resolution of many problems like
analytical estimation of electromagnetic torque in reluctance
machine or cogging torque estimation in permanent magnet
machine. The analytical model described in this paper will be
extended in future works to predict the electromagnetic torque
in magnetic gear.

APPENDIX

For the determination of the integration coefficients (25),
(33) and (35), we have to calculate integrals of the form

0i+p
I cos(né)- cos(k—” @- ei)) -d6
0;i+p
I sin(n6)- cos[k—” @- 0,.)} -d6
0; ﬁ

Sk,n,i)= (A.1)

g(k,n,i)= (A.2)

The development of (A.1) and (A.2) gives the following
functions that will be used in the expressions of the integration
coefficients

- for kx#np
nﬁ’z((—l)k sinn(ﬁw,.)—sin(ne,.))

Krt—n’p?

Fk,n,i)=—

(A3)

20

— Analytical

* FEM
16 /
12
8 /
4

0 75 15 225 30 375 45

N

Electromagnetic torque (Nm)

Current sheet angle o (degree)

Fig. 14. Electromagnetic torque versus angular position of the current sheet
for 4-slot rotor.

npB? ((—1)k cosn(B+6,) - cos(ne,.))

g(k,n,i)= PErE—y (A4)
- for kr=np
LB 1. .
f(k,n,i)= —(cos(n@l-) +——(sinn(6, +28)—sin(n6, )))
2 2kx
(A.5)
g(k,n,i)= ﬁ(sin(n@,-) b (cos n(f; + 2,[)’)— cos(né, ))j
2 2krx
(A.6)

e Expressions of the coefficients 4’ , B!, C! and D! for the

air-gap domain
The development of (34) and (36) gives

B! = Z MoK, cos(mpcr) for

n=mp
m=1 (A7)
Bl =0 for n#mp
D! = K, sin(mpa) for n=m
n ;ﬂo m p p (AS)
Dl =0 for n#mp

The coefficient 4’ and C; defined in (33) and (35) can be
written as

2 &4
A= =i cos(nb)-d6 (A.9)
27 S 5 or r=Ry
0 0i+p
c,{—iz j 9l Gin(ne)-de (A.10)
TS o; " lr=py
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where Q is the number of rotor slots. The development of
(A.9) and (A.10) gives

Q= E, . 5(R.R

Aé ZZZ_AIZ k Eizip(R 2)-f(k,n,i) (A1)
=1 =l BRy Piyip(Ri,Ry)
2& Erp 5(R,R

c! :ZZ_A, k Eizip(R 2)~g(k,n,i) (A12)

k
PRy Pipip (R, R,)

e Expression of the coefficient 4] for the i-th slot domain
The treatment of (25) yields to the following linear relation

between the coefficient 4] and the coefficients 4! , B!, C!

and D! defined above

oo

4= (4 2R BRRy) (pr2Rs 2 rhoni)
el np E,(R,,Ry) nf E,(R3,R;)
S LER) 2R 2 ) ki)
el np E,(Ry,R;) np E,(Rs,R;)
(A.13)

We have to solve a system of five linear equations (A.7),
(A.8), (A.11), (A.12) and (A.13) with five unknowns. By
rewriting the above equations in matrix and vectors form, a
numerical solution can be found by using mathematical
software (Matlab or Maple).
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