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Using recent characterizations of the compactness of composition operators on Hardy-Orlicz and Bergman-Orlicz spaces on the ball ([2, 3]), we first show that a composition operator which is compact on every Hardy-Orlicz (or Bergman-Orlicz) space has to be compact on H ∞ . Then, although it is well-known that a map whose range is contained in some nice Korányi approach region induces a compact composition operator on H p (B N ) or on A p α (B N ), we prove that, for each Korányi region Γ, there exists a map φ : B N → Γ such that, C φ is not compact on H ψ (B N ), when ψ grows fast. Finally, we extend (and simplify the proof of) a result by K. Zhu for classical weighted Bergman spaces, by showing that, under reasonable conditions, a composition operator C φ is compact on the weighted Bergman-Orlicz space A ψ α (B N ), if and only if

In particular, we deduce that the compactness of composition operators on A ψ α (B N ) does not depend on α anymore when the Orlicz function ψ grows fast.

1. INTRODUCTION Let B N = z = (z 1 , . . .z N ) ∈ C N , ∑ N i=1 |z i | 2 <
1 denote the open unit ball of C N . Given a holomorphic map φ : B N → B N , the composition operator C φ of symbol φ is defined by C φ ( f ) = f • φ , for f holomorphic on B N . Composition operators have been extensively studied on common Banach spaces of analytic functions, in particular on the Hardy spaces H p (B N ) and on the Bergman spaces A p (B N ), 1 ≤ p < ∞. The continuity and compactness of these operators have been characterized in terms of Carleson measures ( [START_REF] Cowen | Composition Operators on Spaces of Analytic Functions[END_REF]). In dimension one, the boundedness of C φ for any φ : D → D is a consequence of the Littlewood subordination principle ( [START_REF] Shapiro | Composition operators and classical function theory[END_REF]). In C N , N > 1, it is well-known that there exists some map φ : B N → B N such that the associated composition operator is not bounded on H p (B N ). Whatever the dimension, it appears that both boundedness and compactness of C φ on H p (B N ) (resp. A p (B N )) are independent of p. On the other hand, every composition operator is obviously bounded on H ∞ and it is not difficult to check that C φ is compact on H ∞ if and only if φ ∞ < 1. Thus there is a "break" between H ∞ and H p (B N ) (resp. A p (B N )), for the compactness in dimension one, and even for the boundedness, when N > 1.

These observations first motivated P. Lefèvre, D. Li, H. Queffélec and L. Rodríguez-Piazza to study composition operators on Hardy-Orlicz spaces H ψ (D) (resp. Bergman-Orlicz spaces A ψ (D)) of the disc ( [START_REF] Èvre | Composition operators on Hardy-Orlicz spaces[END_REF][START_REF] Èvre | Some revisited results about composition operators on Hardy spaces[END_REF][START_REF] Èvre | Compact composition operators on H 2 (D) and Hardy-Orlicz spaces[END_REF][START_REF] Èvre | Compact composition operators on Bergman-Orlicz spaces[END_REF]), and then the author of [START_REF] Charpentier | Composition operators on weighted Bergman-Orlicz spaces on the ball[END_REF][START_REF] Charpentier | Composition operators on Hardy-Orlicz spaces on the ball[END_REF] to look at these questions in C N . These spaces both provide an intermediate scale of spaces between H ∞ and H p (B N ) (resp. A p (B N )) and generalize the latter. In particular, in [START_REF] Èvre | Some revisited results about composition operators on Hardy spaces[END_REF], the authors were interested in the question of whether there are some Hardy-Orlicz spaces on which the compactness of C φ is equivalent to that on H ∞ . In fact, they answer this question in the negative, by proving ([10, Theorem 4.1]) that, for every Hardy-Orlicz space H ψ (D), one can construct a surjective map φ : D → D which induces a compact composition operator C φ on H ψ (D). This result extends that obtained by B. MacCluer and J. Shapiro for H p (D) ( [START_REF] Maccluer | Angular derivatives and compact composition operators on the Hardy and Bergman spaces[END_REF]Example 3.12]). The same problem in the Bergman-Orlicz case has not yet been completely solved. In several variables, the situation is much more surprizing, as we show in [START_REF] Charpentier | Composition operators on weighted Bergman-Orlicz spaces on the ball[END_REF][START_REF] Charpentier | Composition operators on Hardy-Orlicz spaces on the ball[END_REF] that there exist some Hardy-Orlicz and Bergman-Orlicz spaces, "close" enough to H ∞ , on which every composition operator is bounded.

In this paper, we are mainly interested in the possibility to extend some known results about compactness of composition operators on classical Hardy or Bergman spaces, to the corresponding Orlicz spaces. We think that this study may outline some interesting phenomena and precise the link between the behavior of C φ and that of φ .

First of all, we come back to the "break" between H ∞ and H p , 1 ≤ p < ∞, for the compactness of C φ . There is no difference between being compact for C φ on one H p (B N ) and on every H p (B N ), while this property clearly depends on the Orlicz function ψ in H ψ (B N ). Therefore, we can wonder if the above question answered by [START_REF] Èvre | Some revisited results about composition operators on Hardy spaces[END_REF] was the good one; indeed, the study of C φ on Hardy-Orlicz spaces arises the following question: what can we say about a composition operator which is compact on every Hardy-Orlicz space? It turns out that such an operator has to be compact on H ∞ , which seems to us to be a positive result, because it confirms that Hardy-Orlicz spaces covers well the "gap" between every H p and H ∞ . This result also stands when we replace Hardy-Orlicz spaces by Bergman-Orlicz spaces.

Moreover, in Hardy or Bergman spaces, compactness (and boundedness) of composition operators is handled in terms of geometric conditions, emphasizing the importance of the manner in which the symbol φ approaches the boundary of B N . To be precise, if we denote by Γ (ζ , a) ⊂ B N , for ζ ∈ S N and a > 1, the Korányi approach region

Γ (ζ , a) = z ∈ B N , |1 -z, ζ | < a 2 1 -|z| 2 ,
it is known ( [START_REF] Maccluer | Compact composition operators on H p (B N )[END_REF]) that if φ takes the unit ball into a Korányi region Γ (ζ , a) with a small enough angular opening a, then C φ is compact on H p (B N ) and on A p α (B N ). When N = 1, the Korányi regions are just non-tangential approach regions. In this paper, we show that this result does not hold anymore for Hardy-Orlicz spaces on B N ; for Bergman-Orlicz spaces, we obtain such a result in dimension one only.

In [START_REF] Maccluer | Angular derivatives and compact composition operators on the Hardy and Bergman spaces[END_REF], the authors related the compactness of the composition operator C φ on H p (D) or A p α (D) to the existence of angular derivative for φ at the boundary. We say that the angular derivative of φ exists at a point ζ ∈ T if there exists ω ∈ T such that φ (z) -ω z -ζ has a finite limit as ζ tends non-tangentially to ζ through D. The Julia-Caratheodory Theorem then asserts that the non-existence of an angular derivative for φ at some ζ ∈ T is equivalent to

(1.1) lim z→ζ 1 -|z| 1 -|φ (z)| = 0.
Shapiro and Taylor [START_REF] Shapiro | Compact, nuclear and Hilbert-Schmidt composition operators on H 2[END_REF] pointed out that if C φ is to be compact on H p (D), then φ cannot have an angular derivative at even a single point in T, which may be written:

(1.2) lim |z|→1 1 -|z| 1 -|φ (z)| = 0.
In [START_REF] Maccluer | Angular derivatives and compact composition operators on the Hardy and Bergman spaces[END_REF], it is proven that (1.1) is not sufficient to the compactness of C φ on Hardy spaces of the unit disc in general, yet it is when φ is univalent. However, this condition is necessary and sufficient for C φ to be compact on every weighted Bergman spaces of the disc. The last main goal of this paper is to extend some of these results to Hardy-Orlicz and Bergman-Orlicz spaces of the unit ball.

In several variables, we can also define the angular derivative of φ : B N → B N at a point in the unit sphere S N and the Julia-Caratheodory Theorem also holds in B N [START_REF] Rudin | Function Theory in the Unit Ball of C n[END_REF]Theorem 8.5.6]). Here, as we already said, the situation is complicated by the fact that some composition operators are not bounded on Hardy or Bergman spaces, and the fact that even the boundedness of C φ on A p α (B N ) depends on α. In [START_REF] Zhu | Compact composition operators on Bergman spaces of the unit ball[END_REF], K. Zhu proves that C φ is compact on A p α (B N ) if and only if Condition (1.2) is satisfied, whenever C φ is bounded on some A p β (B N ), for some -1 < β < α. This assumption is somehow justified by the above observation and by [START_REF] Maccluer | Angular derivatives and compact composition operators on the Hardy and Bergman spaces[END_REF]Section 6], in which the authors show that, for any α > -1 and any 0 < p < ∞, there exists φ : B N → B N with no angular derivative at any point of S N , such that C φ is bounded on A p α (B N ) but not compact. There even exists such a map φ such that C φ is not bounded on A p α (B N ). In the present paper, we generalize Zhu's result to weighted Bergman-Orlicz spaces on the ball, by using recent characterizations of boundedness and compactness of composition operators on these spaces ( [START_REF] Charpentier | Composition operators on weighted Bergman-Orlicz spaces on the ball[END_REF]). We show that, if C φ is bounded on some

A ψ β (B N ), -1 < β < α, then it is compact on A ψ α (B N ) if and only if (1.3) lim |z|→1 ψ -1 1/ (1 -|φ (z)|) N(α) ψ -1 1/ (1 -|z|) N(α) = 0,
where N (α) = N + α + 1, under a mild and usual regularity condition on the Orlicz function ψ.

Our proof is quite simple, while that of K. Zhu uses a Schur test in H 2 (B N ) and the fact that the compactness of composition operators on H p (B N ) does not depend on p. Combining this result with the automatic boundedness of every composition operator on A ψ α (B N ) when ψ satisfies the ∆ 2 -Condition, we get that the compactness on such A ψ α (B N ) does not depend on α anymore. To be precise, C φ is compact on

A ψ α (B N ) if and only if lim |z|→1 ψ -1 (1/ (1 -|φ (z)|)) ψ -1 (1/ (1 -|z|)) = 0,
whenever ψ satisfies the ∆ 2 -Condition.

We have to mention that Condition (1.3) is, in any case, necessary. Moreover, the authors of [START_REF] Èvre | Composition operators on Hardy-Orlicz spaces[END_REF] obtained such a result in dimension one, as announced in [START_REF] Li | Compact composition operators on Hardy-Orlicz and Bergman-Orlicz spaces[END_REF]. However, their proof uses the characterization of the compactness of composition operators in terms of the Nevanlinna counting function and is more complicated.

We organize our paper as follows: a first preliminary part is devoted to the definitions and the statements of the already known results we need. The main part contains the three most important results mentionned above.

Notation. Throughout this paper, we will denote by dσ N the normalized invariant measure on the unit sphere S N = ∂ B N , and by dv α = c α 1 -|z| 2 α dv, α > -1, the normalized weighted Lebesgue measure on the ball.

Given two points z, w ∈ C N , the euclidean inner product of z and w will be denoted by z, w , that is z, w = ∑ N i=1 z i w i ; the notation |•| will stand for the associated norm, as well as for the modulus of a complex number.

If α > -1 is a real number, we will denote by N (α) the quantity N + α + 1.

PRELIMINARIES

2.1. Hardy-Orlicz and Bergman-Orlicz spaces -Definitions. A strictly convex function ψ : R + → R + is called an Orlicz function if ψ (0) = 0, ψ is continuous at 0 and ψ (x)

x ----→ x→+∞ +∞.

If (Ω, P) is a probability space, the Orlicz space L ψ (Ω) associated to the Orlicz function ψ on (Ω, P) is the set of all (equivalence classes of) measurable functions f on Ω such that there exists some C > 0, such that Ω ψ | f | C dP is finite. L ψ (Ω) is a vector space, which can be normed with the so-called Luxemburg norm defined by

f ψ = inf C > 0, Ω ψ | f | C dP ≤ 1 .
It is well-known that L ψ (Ω) , • ψ is a Banach space (see [START_REF] Rao | Theory of Orlicz spaces[END_REF]).

Taking Ω = S N and dP = dσ N , the Hardy-Orlicz space H ψ (B N ) on B N is the Banach space of analytic functions f :

B N → C such that f H ψ := sup 0<r<1 f r ψ < ∞, where f r ∈ L ψ (S N ) is defined by f r (z) = f (rz). Every function f ∈ H ψ (B N ) admits a radial boundary limit f * such that f * ψ = sup 0<r<1 f r ψ < ∞ ([3, Section 1.3]).
For simplicity, we will sometimes denote by • ψ the norm on H ψ (B N ), emphasizing that H ψ (B N ) can be seen as a subspace of L ψ (S N ).

With Ω = B N and dP = dv α , α > -1, the weighted Bergman-Orlicz space A ψ α (B N ) is L ψ (B N )∩ H (B N )
, where H (B N ) stands for the vector space of analytic functions on the unit ball.

A ψ α (B N ) is a Banach space.
From the definitions, it is easy to verify that the following inclusions hold:

H ∞ ⊂ H ψ (B N ) ⊂ H p (B N ) and H ∞ ⊂ A ψ α (B N ) ⊂ A p α (B N ) for every Orlicz function ψ and any 1 ≤ p < ∞. Moreover, if ψ (x) = x p , for some 1 ≤ p < ∞ and for every x ≥ 0, then H ψ (B N ) = H p (B N ) and A ψ α (B N ) = A p α (B N ).

Four classes of Orlicz functions.

Let ψ be an Orlicz function. In order to distinguish the Orlicz spaces and to get a significant scale of intermediate spaces between L ∞ and L p (Ω), we define four classes of Orlicz functions.

-The two first conditions are regularity conditions: we say that ψ satisfies the ∇ 0 -condition if it satisfies one of the following two equivalent conditions:

(i) For any B > 1, there exists some constant

C B ≥ 1, such that ψ (Bx) ψ (x) ≤ ψ (C B By) ψ (y)
for any

x ≤ y large enough;

(ii) For any n > 0, there exists

C n > 0 such that ψ (Bx) n ψ (x) n ≤ ψ (C n y) ψ (By)
for any x ≤ y large enough.

Let us notice that (2) ⇒ (1) is obvious, while an easy induction allows to prove (1) ⇒ (2); the details are left to the reader.

If the constant C B can be chosen independently of B, then ψ satisfies the uniform ∇ 0 -Condition.

-The ∇ 2 -class consists of those Orlicz functions ψ such that there exist some β > 1 and some

x 0 > 0, such that ψ (β x) ≥ 2β ψ (x), for x ≥ x 0 .
-The third one is a condition of moderate growth: ψ satisfies the ∆ 2 -Condition if there exist x 0 > 0 and a constant K > 1, such that ψ (2x) ≤ Kψ (x) for any x ≥ x 0 .

-The fourth condition is a condition of fast growth: ψ satisfies the ∆ 2 -Condition if it satisfies one of the following equivalent conditions:

(i) There exist C > 0 and x 0 > 0, such that ψ (x) 2 ≤ ψ (Cx) for every x ≥ x 0 ;

(ii) There exist b > 1, C > 0 and x 0 > 0 such that ψ (x) b ≤ ψ (Cx), for every x ≥ x 0 ;

(iii) For every b > 1, there exist

C b > 0 and x 0,b > 0 such that ψ (x) b ≤ ψ (C b x), for every x ≥ x 0,b .
Finally, we mention that these conditions are not independent (see [START_REF] Èvre | Composition operators on Hardy-Orlicz spaces[END_REF]Proposition 4.7]):

Proposition 2.1. Let ψ be an Orlicz function.

(1) If ψ satisfies the uniform ∇ 0 -Condition, then it satisfies the ∇ 2 -Condition;

(2) If ψ satisfies the ∆ 2 -Condition, then it satisfies the uniform ∇ 0 -Condition.

For any 1 < p < ∞, every function x -→ x p is an Orlicz function which satisfies the uniform ∇ 0 -Condition, (so ∇ 2 and ∇ 0 -conditions too) and the ∆ 2 -Condition. At the opposite side, for any a > 0 and b ≥ 1, x -→ e ax b -1 belongs to the ∆ 2 -Class (and then to the uniform ∇ 0 -Class), yet not to the ∆ 2 -one. In addition, the Orlicz functions which can be written x → exp a (ln (x + 1)) b -1 for a > 0 and b ≥ 1, satisfy the ∇ 2 and ∇ 0 -Conditions, but do not belong to the ∆ 2 -Class.

For a complete study of Orlicz spaces, we refer to [START_REF] Śkii | Convex functions and Orlicz spaces[END_REF] and [START_REF] Rao | Theory of Orlicz spaces[END_REF]. We can also find precise and useful information in [START_REF] Èvre | Composition operators on Hardy-Orlicz spaces[END_REF], such as other classes of Orlicz functions and their links with each other. 

S (ζ , h) = {z ∈ B N , |1 -z, ζ | < h} and S (ζ , h) = z ∈ B N , |1 -z, ζ | < h .
We say that a finite positive Borel measure µ on B N is a ψ-Carleson measure, ψ an Orlicz function, if

µ (S (ζ , h)) = O h→0 1 ψ (Aψ -1 (1/h N )) ,
uniformly in ζ ∈ S N and for some constant A > 0. µ is a vanishing ψ-Carleson measure if the above condition is satisfied for every A > 0 and with the big-Oh condition replaced by a little-oh condition.

A finite positive Borel measure

µ on B N is a (ψ, α)-Bergman-Carleson measure if µ (S (ζ , h)) = O h→0 1 ψ Aψ -1 1/h N(α) ,
uniformly in ζ ∈ S N and for some constant A > 0. µ is a vanishing (ψ, α)-Bergman-Carleson measure if the above condition is satisfied for every A > 0 and with the big-Oh condition replaced by a little-oh condition. When ψ satisfies the ∆ 2 -Condition, a (vanishing) ψ-Carleson measure (resp. (vanishing) (ψ, α)-Bergman-Carleson measure) is a (vanishing) Carleson measure (resp. (vanishing) Bergman-Carleson measure) (see [START_REF] Charpentier | Composition operators on weighted Bergman-Orlicz spaces on the ball[END_REF][START_REF] Charpentier | Composition operators on Hardy-Orlicz spaces on the ball[END_REF]Sections 3]).

For φ : B N → B N , we denote by µ φ the pull-back measure of σ N by the boundary limit φ * of φ , and by µ φ ,α that of dv α by φ . To be precise, for any [START_REF] Charpentier | Composition operators on Hardy-Orlicz spaces on the ball[END_REF]Section 3]). The main theorem is the following: Theorem 2.2. Let ψ be an Orlicz function which satisfies the ∇ 2 -Condition and let φ : B N → B N be holomorphic.

E ⊂ B N (resp. E ⊂ B N ), µ φ (E) = σ N (φ * ) -1 (E) and µ φ ,α (E) = v α φ -1 (E) .

Results for Hardy-Orlicz spaces (see

( Due to the non-separability of small Hardy-Orlicz spaces, [3, Theorem 3.2] is not a direct consequence of Carleson-type embedding theorems obtained in [3, Section 2]; however, if we follow the proofs of these embedding theorems directly for composition operators, by working on spheres of radius 0 < r < 1, then we get the following characterizations of both boundedness and compactness of composition operators: Theorem 2.3. Let ψ be an Orlicz function satisfying the ∇ 2 -Condition and let φ : B N → B N be holomorphic.

(1) If ψ satisfies the uniform ∇ 0 -Condition, then C φ is bounded on H ψ (B N ) if and only if there exists some A > 0 such that

(2.1) sup 0<r<1 µ φ r (S (ζ , h)) = O h→0 1 ψ (Aψ -1 (1/h N )) uniformly in ζ ∈ S N . (2) If ψ satisfies the ∇ 0 -Condition, then C φ is compact on H ψ (B N ) if and only if, for every A > 0, (2.2) sup 0<r<1 µ φ r (S (ζ , h)) = O h→0 1 ψ (Aψ -1 (1/h N )) uniformly in ζ ∈ S N .
In the further, we will see how these two characterizations are useful depending on the situations.

Results for Bergman-Orlicz spaces (see [2, Section 3]

). The main result is similar to that stated in the previous paragraph: Theorem 2.4. Let ψ be an Orlicz function, let α > -1 and let φ : B N → B N be holomorphic.

( 

) If ψ satisfies the uniform ∇ 0 -Condition, then C φ is bounded from A ψ α (B N ) into itself if and only if µ φ is a (ψ, α)-Bergman-Carleson measure. (2) If ψ satisfies the ∇ 0 -Condition, then C φ is compact from A ψ α (B N ) into itself if and only if µ φ is a vanishing (ψ, α)-Bergman-Carleson measure. (3) If ψ satisfies the ∆ 2 -Condition, then C φ is bounded (resp. compact) from A ψ α (B N ) into itself if 1 
(3) C φ is compact on H ∞ (B N ); (4) φ ∞ < 1. Proof. It is well-known that C φ is compact on H ∞ (B N ) if and only if φ ∞ < 1. Using the fact that a composition operator is compact on H ψ (B N ) (resp. A ψ α (B N )) if and only if for every bounded sequence ( f n ) n ⊂ H ψ (B N ), f n ψ ≤ 1, (resp. ( f n ) n ⊂ A ψ α (B N ), f n A ψ α ≤ 1)
which tends to 0 uniformly on every compact subset of B N , then

f n • φ ψ ---→ n→∞ 0 (resp. f n • φ A ψ α ---→ n→∞ 0), it is not difficult to show that if φ ∞ < 1, then C φ is compact on H ψ (B N ) (resp. A ψ α (B N )
.) It remains to prove (1)⇒( 4) and ( 2)⇒(4). We first deal with the proof of (1)⇒( 4). We will use the necessary part of Theorem 2.3. Let us assume that φ induces a compact composition operator on every Hardy-Orlicz space. According to (2.2), this means that sup 0<r<1 sup

ζ ∈S N µ φ r (S (ζ , h)) = o h→0 1 ψ (Aψ -1 (1/h N )) ,
for every A > 0 and every Orlicz function ψ, which in turn implies

(3.1) sup 0<r<1 sup ζ ∈S N µ φ r (S (ζ , h)) ≤ 1 ψ (Aψ -1 (1/h N )) ,
for every A > 0, for every Orlicz function ψ and for h sufficiently small. We intend to show that sup 0<r<1 sup

ζ ∈S N µ φ r (S (ζ , h)) = 0,
for all 0 < h ≤ h 0 , h 0 ∈ (0, 1). By contradiction, we suppose that sup 0<r<1 sup

ζ ∈S N µ φ r (S (ζ , h)) = 0 for every h > 0, since h -→ sup 0<r<1 sup ζ ∈S N µ φ r (S (ζ , h))
is an increasing function on (0, 1). A straightforward computation shows that inequality (3.1) is satisfied for every A > 0, for every Orlicz function ψ and for h small enough, if and only if we have, by putting x = 1/h,

(3.2) ψ -1 x N ψ -1 1/ sup 0<r<1 sup ζ ∈S N µ φ r (S (ζ , 1/x)) ≤ 1 A ,
for every A > 0, for every Orlicz function ψ and for x large enough. The following lemma ensures that this cannot occur: ν (g (x)) ≥ δ > 0, for every x large enough.

We assume for a while that this lemma has been proven, and we finish the proof of Theorem 3.1. With the notations of the lemma, we put

f (x) = x N and g (x) = 1/ sup 0<r<1 sup ζ ∈S N µ φ r (S (ζ , 1/x)) .
It is clear that lim x→+∞ f (x) = +∞; since C φ is supposed to be compact on every H ψ (B N ), it is in particular bounded on H p (B N ) ([3, Corollary 3.5]), then we have g (x) ----→ x→+∞ +∞ (Theorem 2.2, 3). Now, the above lemma provides a constant δ > 0 and a continuous increasing concave function ν, tending to infinity at infinity, such that

ν x N /ν    1 sup ξ ∈S N µ φ S f (ξ , 1/x)    ≥ δ > 0,
for every x large enough. It is not difficult to check that ν can be constructed such that ψ = ν -1 is an Orlicz function, i.e. such that

x ν (x) ----→ x→+∞ +∞ (
that is what we are doing in the proof of the lemma below). Therefore, we get a contradiction with Condition (3.2), so we must have

sup 0<r<1 sup ξ ∈S N µ φ r S f (ξ , h) = 0,
for every h > 0 small enough. It follows that there exists some 0 < r 0 < 1 such that

(3.3) sup 0<r<1 µ φ r (C (r 0 , 1)) = 0,
where C (r 0 , 1) = {z ∈ B N , r 0 < |z| < 1}. We intend to show that φ -1 (C (r 0 , 1)) = / 0, which should give the result. Let 0 < r < 1 and let us look at the set φ -1 r (C (r 0 , 1))

∩ S N = {ζ ∈ S N , φ r (ζ ) ∈ C (r 0 , 1)} . Condition (3.3) implies σ N φ -1 r (C (r 0 , 1)) ∩ S N = 0. Since φ r is continuous on B N , φ -1
r (C (r 0 , 1)) ∩ S N must be an open subset of S N and then must be empty. So we have proven that, for any r ∈ (0, 1),

{ζ ∈ S N , φ r (ζ ) ∈ C (r 0 , 1)} = φ -1 (C (r 0 , 1)) ∩ rS N = / 0, where rS N = z ∈ B N , |z| = r , hence φ -1 (C (r 0 , 1)) = 0<r<1 φ -1 (C (r 0 , 1)) ∩ rS N = / 0.
The proof in the Bergman-Orlicz context is much easier. Proceeding as above and using the necessary part of the second point of Theorem 2.4, we get that Condition µ φ (C (r 0 , 1)) = 0 must hold, for some 0 < r 0 < 1. By continuity of the map φ on B N , φ -1 (C (r 0 , 1)) cannot be but empty.

To finish the proof, we have to do that of Lemma 3.2:

Proof of Lemma 3.2. The proof will be constructive. Let f and g be given as in the statement of the lemma. We are going to build by induction a sequence (a n ) n which will be of interest in the construction of the desired function ν. We put a 0 = 0, a 1 = 1, and we deduce a n+2 from a n and a n+1 in the following way: we define

b n+2 = sup {g (x) , f (x) ≤ a n+1 } and a n+2 = max {b n+2 , a n+1 + (a n+1 -a n )} .
We observe that:

(1) If f (x) ≤ a n+1 , then g (x) ≤ a n+2 ; (2) a n+2 -a n+1 ≥ a n+1 -a n ≥ 1.
We now construct the concave function ν as a continuous affine one, whose derivative is equal to

ε n = 1 √ n (a n+1 -a n )
on the interval (a n , a n+1 ), and with ν (0) = 0. Of course ν is increasing and then maps [0, +∞[ into itself. Since ε n is decreasing, because of 2) above, ν is concave. In order to check that ν tends to infinity at infinity, we compute ν (a n ):

ν (a n+1 ) = ν (a n ) + ε n (a n+1 -a n ) = ν (a n ) + 1 √ n . Therefore ν (a n+1 ) = ∑ n+1 k=1 1 √ k which shows that lim x→+∞ ν (x) = +∞, since a n → +∞.
We now check that ν

• f (x) ν • g (x)
is bounded below by some constant δ > 0, when x is big enough.

Let x ∈ [0, +∞[, and let n be an integer such that

a n ≤ f (x) ≤ a n+1 ; we have ν ( f (x)) ≥ ν (a n ).
Using the first property of the sequence (a n ) n above, we get ν (g (x)) ≤ ν (a n+2 ). This yields, for

n ≥ 1, ν ( f (x)) ν (g (x)) ≥ ν (a n ) ν (a n+2 ) = ∑ n k=1 1 √ k ∑ n+2 k=1 1 √ k ≥ δ > 0,
hence the result.

Korányi regions and compactness of C φ on Hardy-Orlicz and Bergman-Orlicz spaces.

For ζ ∈ S N and a > 1, we recall that the Korányi approach region Γ (ζ , a) of angular opening a is defined by

Γ (ζ , a) = z ∈ B N , |1 -z, ζ | < a 2 1 -|z| 2 .
[5, Theorem 6.4] and the third part of Theorem 2.2 yields the following result: ( Indeed, the first point is nothing but the continuity of every composition operator on the disc, and the second one is contained in [5, Proposition 3.25] which says that, whenever φ (D) is contained in some nontangential approach region in D, then C φ is Hilbert-Schmidt in H 2 (D), hence compact on every H p (D), 1 ≤ p < ∞.

) If φ (B N ) ⊂ Γ (ζ , b N ), then C φ is bounded on H ψ (B N ); (2) If φ (B N ) ⊂ Γ (ζ , b), for some ζ ∈ S N and for some 1 < b < b N , then C φ is compact on H ψ (B N ). 1 
(2) Following the proof of [4, Theorem 3.3], it is not difficult to show that the boundedness or compactness of C φ on H ψ (B N ) implies that on A ψ α (B N ), for any α > -1, as soon as the Orlicz function ψ satisfies the ∆ 2 -Condition. Thus, the first two points of the previous theorem also holds for Bergman-Orlicz spaces.

The following result shows that Theorem 3.3 does not hold as soon as the Orlicz function grows fast.

Theorem 3.5. Let ψ be an Orlicz function satisfying the ∆ 2 -Condition. Then, for every ζ ∈ S N and every b > 1, there exists a holomorphic self-map φ taking

B N into Γ (ζ , b), such that C φ is not compact on H ψ (B N ).
Remark 3.6. Observe that there is no assumption on N.

Proof of Theorem 3.5. The proof will use the necessary part of the second point of Theorem 2.2. First of all, we recall that ∆ 2 -Condition implies ∇ 2 -Condition (see Paragraph 2.2). We denote by e 1 the vector (1, 0 . . .0) in C N . It is clearly enough to prove the theorem for ζ = e 1 . For any b > 1, we set

(3.4) β = 2 cos -1 (1/b) π in (0, 1)
. We need a lemma whose proof is included in that of [START_REF] Cowen | Composition Operators on Spaces of Analytic Functions[END_REF]Theorem 6.4]: Proof. Without going into details, we briefly give the ideas of the proof. It uses the deep Alexandrov's result which gives the existence of non-constant inner functions in B N ( [START_REF] Alexandrov | Existence of inner functions in the unit ball[END_REF]). Therefore, we consider a function φ which can be written

φ = κ • ϕ, 0 ′ ,
where 0 ′ is the (n -1)-tuple (0, . . ., 0), ϕ is an inner function with ϕ (0) = 0, and where κ is a biholomorphic map from D onto the non-tangential approach region Γ (1, b) in the disc, defined by

Γ (1, b) = z ∈ D, |1 -z| < b 2 1 -|z| 2 .
One can show that the lower-estimate (3.7) holds for this map φ , using the fact that inner functions ϕ are measure preserving maps of S N into T (see [15, p. 405]) in the following sense:

σ N (ϕ * ) -1 (E) = σ 1 (E) ,
for any Borel set E in T.

Let φ be as in the statement of the theorem. According to the necessary part of the second point of Theorem 2.2, the previous lemma ensures that, if we show that for any Orlicz function ψ satisfying the ∆ 2 -Condition, for any β ∈ (0, 1), there exists some A > 0 such that

(3.6) 1 ψ (Aψ -1 (1/h N )) ≤ h 1/β ,
for every h small enough, then C φ would not be compact on H ψ (B N ). Now, putting y = ψ -1 1/h N , an easy computation implies that (3.6) is equivalent to ψ (y) The previous remark leads us to say some words about weighted Bergman-Orlicz spaces in dimension one. Indeed, we can adapt the proof of Lemma 3.7 to get the following result. Lemma 3.9. Let α > -1, let b > 1 and let β be defined by (3.4). There exists a holomorphic map

φ : D → D, φ (D) ⊂ Γ (1, b), such that (3.7) v α φ -1 (S (1, h)) ≥ Ch (2+α)/β ,
for some constant C > 0 depending only on α, φ and b.

For the seek of completeness, we prefer to give some details of the proof of this lemma, in order to point out the slightly difference with that of [START_REF] Cowen | Composition Operators on Spaces of Analytic Functions[END_REF]Theorem 6.4,[START_REF] Charpentier | Composition operators on Hardy-Orlicz spaces on the ball[END_REF]].

Proof. We consider a biholomorphic map κ from D onto

Γ (1, b) = z ∈ D, |1 -z| < b 2 1 -|z| 2 ,
for some b > 1. As it is explained in the proof of [START_REF] Cowen | Composition Operators on Spaces of Analytic Functions[END_REF]Theorem 6.4,[START_REF] Charpentier | Composition operators on Hardy-Orlicz spaces on the ball[END_REF]], if β ∈ (0, 1) is defined by (3.4), then the function g (z) := 1 -κ (z) (1z) β is continuous and non-zero in D∩V , where V is a closed disc (with non-empty interior) centered at 1, and κ -1 (S (1, h)) ⊂ D ∩ V , for h > 0 sufficiently small. Then, for such h, we follow the computation at the end of the proof of [START_REF] Cowen | Composition Operators on Spaces of Analytic Functions[END_REF]Theorem 6.4,[START_REF] Charpentier | Composition operators on Hardy-Orlicz spaces on the ball[END_REF]

] to get κ -1 (S (1, h)) ⊃ S 1, Ch 1/β ,
for some constant C > 0, depending only on κ and b. Therefore,

v α κ -1 (S (1, h)) ≥ Ch (2+α)/β ,
where C > 0 depends on α, κ and b. The proof of the previous proposition does not work directly when N > 1, because we do not know if there exists a non-constant inner function which is measure-preserving from B N to D in the following sense:

v α φ -1 (E) = A α (E) ,
for any E ⊂ D, where A α is the weighted area measure in D.

3.3.

Another characterization of the compactness of C φ on weighted Bergman-Orlicz spaces.

The following result generalizes that obtained in [START_REF] Zhu | Compact composition operators on Bergman spaces of the unit ball[END_REF] for classical Bergman spaces:

Theorem 3.11. We assume that α > -1. Let φ : B N → B N be holomorphic and let ψ be an Orlicz function which satisfies the ∇ 0 -Condition. We assume that C φ is bounded from A

ψ β (B N ) into itself for some -1 < β < α. Then C φ is compact from A ψ α (B N ) into itself if and only if (3.8) lim |z|→1 ψ -1 1/ (1 -|φ (z)|) N(α) ψ -1 1/ (1 -|z|) N(α) = 0.
Proof. The proof of the necessary part is the same as that of [START_REF] Èvre | Composition operators on Hardy-Orlicz spaces[END_REF]Theorem 5.7]. We deal with the proof of the sufficiency of (3.8). Without loss of generality, we assume that φ (0) = 0. According to the second point of Theorem 2.4, by the convexity of the Orlicz function ψ, it is sufficient to show that for every B > 0, there exists h 0 ∈ (0, 1), such that

(3.9) ψ -1 1/µ φ ,α (S (ξ , h)) ≥ Bψ -1 1/h N(α) ,
uniformly in ξ ∈ S N , and for any 0 < h < h 0 . Let α and β be as in the statement of the theorem. We have

µ φ ,α (S (ξ , h)) = φ -1 (S(ξ ,h)) 1 -|z| 2 α dv (z) ≤ 2 α-β sup z∈φ -1 (S(ξ ,h)) (1 -|z|) α-β φ -1 (S(ξ ,h)) 1 -|z| 2 β dv (z) = 2 α-β sup z∈φ -1 (S(ξ ,h)) (1 -|z|) α-β µ φ ,β (S (ξ , h)) ≤ 2 α-β sup z∈φ -1 (S(ξ ,h)) (1 -|z|) α-β 1 ψ C β ψ -1 1/h N(β ) , (3.10)
where the last inequality stands for some constant C β ≥ 1 and for h small enough, since C φ is supposed to be bounded on A ψ β (B N ). Now, since αβ > 0, the hypothesis (3.8) is equivalent to the fact that, for any A > 0,

(1 -|z|) α-β ≤ 1 ψ Aψ -1 1/ (1 -|φ (z)|) N(α) α-β N(α)
, whenever |z| is close enough to 1. Moreover, let us observe that if z ∈ φ -1 (S (ξ , h)), then

1 -|z| ≤ 1 -|φ (z)| ≤ |1 -φ (z) , ξ | < h
so that, for any A > 0, sup z∈φ -1 (S(ξ ,h))

(1 -|z|) α-β ≤ 1

ψ Aψ -1 1/h N(α) α-β N(α)
, for any h > 0 small enough, using the fact that ψ is a non-decreasing function and that αβ > 0. Thus, it follows from (3.10) that µ φ ,α (S (ξ , h)) ≤ 2 α-β 1

ψ Aψ -1 1/h N(α) α-β N(α) 1 ψ C β ψ -1 1/h N(β ) ,
for any A > 0 and h small enough. Using (3.9), the last inequality ensures that C φ will be compact on A ψ α (B N ) if, for any B > 0, there exists a constant A > 0 such that (3.11) ψ -1 ψ Aψ -1 1/h N(α) α-β N(α) .ψ C β ψ -1 1/h N(β ) ≥ Bψ -1 1/h N(α) , for h small emough. Putting x = ψ -1 1/h N(α) , (3.11) is equivalent to α) .ψ C β ψ -1 (ψ (x)) N(β )/N(α) , which is in turn satisfied, using the convexity of ψ and C β ≥ 1, if ψ (Bx) N(α) ≤ ψ (Ax) α-β .ψ (x) N(β ) , for x large enough. Let us notice that this last inequality is equivalent to ψ (Bx) N(β )/(α-β ) ψ (x) N(β )/(α-β ) ≤ ψ (Ax) ψ (Bx) , for x large enough, which is nothing but the ∇ 0 -Condition (see Paragraph 2.2).

ψ (Bx) ≤ ψ (Ax) α-β N(
Remark 3.12. We mention that the proof of the necessary part of the previous theorem does not use the boundedness of C φ on some "smaller" weighted Bergman-Orlicz space. Also, it is not necessary to assume that ψ satisfies the ∇ 0 -Condition.

Since every composition operator is bounded on every A ψ α (B N ) as soon as ψ satisfies the ∆ 2 -Conditon, we have the following corollary: = 0, since ψ satisfies the ∆ 2 -Condition. Indeed, it is easy to deduce from the definition of the ∆ 2 -Condition that, if a > 1, then ψ -1 (x a ) ≤ Cψ -1 (x) for some constant C > 0 and for x large enough.

This corollary highlights an important difference with the classical weighted Bergman case: when ψ satisfies the ∆ 2 -Condition, the compactness (as well as the boundedness, Theorem 2.4) of composition operators on A ψ α (B N ) does not depend on α > -1.

Yet, this independency does not stand for α = -1, i.e. for Hardy-Orlicz spaces; indeed, it was shown ([7, Theorem 5.8]) that there exists some Orlicz function ψ which satisfies the ∆ 2 -Condition (to be precise, ψ (x) = e x 2 -1) such that there exists a holomorphic self-map of D inducing a compact operator on A ψ α (D), but not compact on H ψ (D). Nevertheless, the same proof as that of the necessary part of Theorem 3.11 for Hardy-Orlicz spaces yields: ψ -1 (1/ (1 -|z|)) = 0.

2. 3 .

 3 Background results. All the results of the present paper are based on characterizations of the boundedness and compactness of composition operators on Hardy-Orlicz and Bergman-Orlicz spaces ([2, 3]). As I already said, these characterizations essentially depend on the manner in which the Orlicz function grows. The characterizations of the boundedness and compactness of C φ involve adapted Carleson measures, and then geometric notions. For ζ ∈ S N and 0 < h < 1, let us denote by S (ζ , h) and S (ζ , h) the non-isotropic "balls", respectively in B N and B N , defined by

Theorem 3 . 3 .

 33 Let ψ be an Orlicz function satisfying the ∆ 2 ∩∇ 2 -Condition. Let also φ : B N → B N be holomorphic. We assume that N > 1 and we fix b N = (cos (π/ (2N))) -1 .

)

  Both of the above results are sharp in the following sense: given c > b N , there exists φ with φ (B N ) ⊂ Γ (ζ , c), for some ζ ∈ S N , and C φ not bounded on H ψ (B N ); there also exists some φ with φ (B N ) ⊂ Γ (ζ , b N ), for some ζ ∈ S N , and C φ not compact on H ψ (B N ).Remark 3.4. (1) If N = 1, the two first point of the previous theorem are true if we put b 1 = +∞ and Γ (ζ , +∞) = D.

Lemma 3 . 7 .

 37 Let b > 1 and let β be defined by(3.4). There exists a holomorphic map φ : B N → B N , with φ (B N ) ⊂ Γ (e 1 , b), such that(3.5) σ N φ -1 (S (e 1 , h)) ≥ Ch 1/β , for some constant C > 0 depending only on φ and b.

Now, it isProposition 3 . 10 .

 310 sufficient to argue as in in the end of the proof of Theorem 3.5 to get: Let α > -1, let b > 1 and let ψ be an Orlicz function satisfying the ∆ 2 -Condition. There exists a holomorphic map φ : D → D, with range contained in some nontangential approach region Γ (ζ , b), ζ ∈ T, such that the induced composition operator C φ is not compact on A ψ α (D).

Corollary 3 . 13 .ψ -1 1 /

 3131 Let α > -1, let ψ be an Orlicz function satisfying the ∆ 2 -Condition and let φ :B N → B N be holomorphic. Then C φ is compact on A ψ α (B N ) if and only if lim |z|→1 ψ -1 (1/ (1 -|φ (z)|)) ψ -1 (1/ (1 -|z|)) = 0.Proof. It is sufficient to remark that we have lim|z|→1 (1 -|φ (z)|) N(α) ψ -1 1/ (1 -|z|) N(α) = 0 ⇐⇒ lim |z|→1 ψ -1 (1/ (1 -|φ (z)|)) ψ -1 (1/ (1 -|z|))

Proposition 3 . 14 .

 314 Let φ : B N → B N be holomorphic and let ψ be an Orlicz function. If C φ is compact on H ψ (B N ), then lim |z|→1 ψ -1 (1/ (1 -|φ (z)|))

  1) If ψ satisfies the uniform ∇ 0 -Condition, then C φ is bounded from H ψ (B N ) into itself if and only if µ φ is a ψ-Carleson measure. (2) If ψ satisfies the ∇ 0 -Condition, then C φ is compact from H ψ (B N ) into itself if and only if µ φ is a vanishing ψ-Carleson measure. (3) If ψ satisfies the ∆ 2 -Condition, then C φ is bounded (resp. compact) from H ψ (B N ) into itself if and only if µ φ is a Carleson measure (resp. a vanishing Carleson measure). (4) If ψ satisfies the ∆ 2 -Condition, then C φ is bounded on H ψ (B N ). first two points are contained in [3, Theorem 3.2]; according to [5, Theorem 3.35], the third point means that, if ψ satisfies the ∆ 2 -Condition, then C φ is bounded (resp. compact) on H ψ (B N ) if and only if it is on H p (B N ) (see [3, Corollary 3.4]). The last point is [3, Theorem 3.7].

	The

  and only if µ φ is a Bergman-Carleson measure (resp. a vanishing Bergman-Carleson measure). (4) If ψ satisfies the ∆ 2 -Condition, then C φ is bounded on A According to [5, Theorem 3.37], the third point means that, if ψ satisfies the ∆ 2 -Condition, then C φ is bounded (resp. compact) on A ψ α (B N ), if and only if C φ is bounded (resp. compact) on A p α (B N ). Let φ : B N → B N be a holomorphic map. The following assertions are equivalent: (1) C φ is compact on H ψ (B N ), for every Orlicz function ψ;(2) For some α > -1, C φ is compact on A
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ψ α (B N ), for every Orlicz function ψ;

  Remark 3.8. When N = 1, the proof of Lemma 3.7 can be simplified: first, because the existence of a non-constant inner function in the unit disc is trivial, and then because it clearly suffices to take ϕ (z) = z, what just turns the proof of Lemma 3.7 into considering a biholomorphic map κ from D onto an non-tangential approach region.
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