
HAL Id: hal-00557515
https://hal.science/hal-00557515v1

Submitted on 19 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Encoding of SystemC/TLM in Promela
Kevin Marquet, Matthieu Moy, Bertrand Jeannet

To cite this version:
Kevin Marquet, Matthieu Moy, Bertrand Jeannet. Efficient Encoding of SystemC/TLM in Promela.
DATICS-IMECS, Mar 2011, Hong Kong SAR China. �hal-00557515�

https://hal.science/hal-00557515v1
https://hal.archives-ouvertes.fr

Efficient Encoding of SystemC/TLM in Promela
Kevin Marquet

Verimag
Univ. Joseph Fourier

Grenoble, France
Kevin.Marquet@imag.fr

Bertrand Jeannet

INRIA Rhônes-Alpes
Grenoble, France

Bertrand.Jeannet@inrialpes.fr

Matthieu Moy

Verimag
Grenoble INP

Grenoble, France
Matthieu.Moy@imag.fr

Abstract—To deal with the ever growing complexity of
Systems-on-Chip, designers use models early in the design flow.
SystemC is a commonly used tool to write such models. In order
to verify these models, one thriving approach is to encode its
semantics into a formal language, and then to verify it with
verification tools. Various encodings of SystemC into formal lan-
guages have already been proposed, with different performance
implications. In this paper, we investigate a new, automatic,
asynchronous means to formalize models. Our encoding supports
the subset of the concurrency and communication constructs
offered by SystemC used for high-level modeling. We increase
the confidence in the fact that encoded programs have the
same semantics as the original one by model-checking a set of
properties. We give experimental results on our formalization
and compare with previous works.

I. I NTRODUCTION

As the complexity of embedded systems grows, the need
for new methods has appeared for the co-design of hard-
ware and software. Indeed, low-level hardware description
languages such as VHDL and Verilog simulate slowly, can
hardly be used to design complex systems and therefore make
early software development difficult. Consequently, higher-
level modeling tools have appeared, allowing hardware and
software descriptions.

Transaction-Level Modeling [4] (TLM) is an approach in
which the architecture and the behavior of a System-on-Chip
(SoC) are described in an executable model, but the micro-
architecture details and precise timing behavior are abstracted
away. SystemC [20] has become thede factostandard for TLM
modeling. It contains a simulation kernel that can execute
concurrent processes communicating through channels and
shared variables, using C++ libraries. In this paper, we are
interested in TLM programs, written in SystemC. We focus
on the subset of SystemC needed for TLM modeling, leaving
apart the constructs originally introduced in SystemC to write
lower-level programs (like RTL).

SystemC descriptions are C++ concurrent programs that
can be tested and/or verified in order to detect design flaws.
Verifying a concurrent program can be done with various
approaches. One thriving approach is to describe its semantics
formally, and then to verify this semantics using verification
tools. The first step is calledmodel extractionand leads to the
translation of the program into a formal representation, and
the second step is the verification performed on the formal
representation. Different representations can be chosen,that

model differently time and concurrency, and that are connected
to different verification tools.

This paper focuses on the issue ofmodel extraction, in
the context of the verification of SoC modeled as System C
concurrent programs. Our contributions are as follows:
1) We presentnew encoding principles in section IV for

the extraction of formal representations from SystemC
programs, and in particular for modeling the semantics of
SystemC scheduler. We argue that this encoding is simple
and elegant, although it involves some subtle points. Its
main goal is however to favor the efficiency of verification
tools. This extraction is performed in a fullyautomatic
way by our verification chain.1

2) In order tovalidate their correctness, we define properties
that must hold for an encoding to be valid. These properties
and how they are tested are detailed in sectionV.

3) At last, sectionVI presentsexperimental resultson Sys-
temC examples translated toPromela, the asynchronous
formalism used as input to the SPIN model-checker. Our
results show major improvements over past similar works,
thanks to the fact that our encoding does not introduce
complex behaviors limiting the applicability of formal veri-
fication tools. We show in particular a tremendout reduction
of the number of states that SPIN needs to explore.

Before presenting these, we present SystemC in sectionII and
compare our approach to related works in sectionIII .

II. SYSTEMC

We give a very partial overview of SystemC, focusing on
the points that are relevant for this paper.

A SystemC program defines anarchitecture, i.e. a set of
components and connections between them, and abehavior,
i.e. components have a behavior defined by one or several
processes and communicate with each other through ports.
Once the architecture is defined (by theelaboration phase
performed at the beginning of execution), thesimulation phase
starts: processes execute according to the SystemC scheduling
policy. As an example, figure1 shows a SystemC module
containing two processes, one waiting for an event, the other
notifying it.

We do not consider here the notion ofδ-cycles [20], inspired
from traditional HDL languages, since it is not useful for

1The implementation is open-source and available from
http://gitorious.org/pinavm.

http://gitorious.org/pinavm

SC_MODULE(mytop) {
sc_event e;
SC_CTOR(mytop) {

SC_THREAD(myFctP); SC_THREAD(myFctQ);
}
void myFctP() {. . .; wait(e); . . . }
void myFctQ() {. . .; e.notify(); . . . }

}

Fig. 1. A basic SystemC module

TLM models (this implies that we do not support SystemC
constructs likewait(SC ZERO TIME), which makes a pro-
cess wait until the next evaluation phase, or components
sc signal andsc fifo). We focus on the following constructs
of SystemC, which are the basis for TLM modeling:
wait(d: int) Stops executing the current process, yields back

the control to the scheduler and makes the current process
to wait for the given duration.

wait(e: event) Stops executing the current process, yields
back the control to the scheduler and makes the current
process to wait for the event to occur. SystemC also
allows the constructswait(e1 & e2) and wait(e1 | e2)
to wait for conjunctions and disjunctions of events.

event.notify() Makes processes waiting for the specified event
eligible (without stopping the current process).

event.notify(delay: int) Triggers a notification after the given
delay. In SystemC, only the earliest timed notification is
kept, which simplifies the semantics of this primitive.

SystemC scheduling follows anon-preemptivescheduling
policy. When several processes are eligible at the same time,
the scheduler runs them in an unspecified order.

Concerning communications between process, we use
shared variables to model several threads belonging to the
same module communicating by accesses to the fields of the
module. Concerning TLM ports, our implementation does not
(yet) manage them explicitly; it require the function callsto be
done directly from modules to modules instead of relying on
port/socket bindings [21], which is a (useful) syntaxical sugar.
We therefore focus on the notion of method calls.

Restricting ourselves to a strict subset of SystemC is not
a limitation as far as we are focus on TLM models. Of
course it implies that we cannot handle more general SystemC
programs, but it also makes our approach more general in
the sense that it could easily be adapted to other discrete-
event cooperative simulator (like the cooperative versionof
jTLM [2]).

III. OVERVIEW OF THE PROBLEM ANDRELATED WORKS

General overview:The challenge raised by formal verifica-
tion of SystemC models is that SystemC has not been designed
for this purpose. An option could be to consider them as
regular C++ programs, but few verification tools are available
for them, especially when the goal is to checkfunctional
properties. Moreover, a general verifier would have to analyze
the SystemC class library and to rediscover by itself its high-
level semantics. For these reasons, most related work proceeds
differently: the user’s code istranslated and abstractedto

(SystemC)
Concurrent

program

Synchronous automata
+ scheduler

[17], [19]

T1 × T2 × T3 ×Sch

Asynchronous automata
[22], [3]

T1 × T2 × T3 ×Sch

Asynchronous automata
Dedicated product

[13]

T1 × T2 × T3

Asynchronous product
shared variable

This paper

T1 × T2 × T3

Fig. 2. Different approaches for translating SystemC programs into other
formalisms

the formal model accepted by the targeted verification tool,
whereas the high-level semantics of SystemC/TLM class li-
braries ishand-codedin the formal model. The verification
tool is then applied to the resulting model.

Representation of the SystemC scheduler:Modeling the
semantics of the SystemC library reduces mainly to modeling
the SystemC scheduler. Three options can be imagined to
represent the scheduler in a formal representation: (1) model
the deterministic behaviorof the reference implementation
described in the SystemC standard [20]; or (2) model a
more general non-deterministic scheduler, either (2a) as an
explicit additional process, or (2b) by incorporating it in
the semantics of the synchronization instructions (typically
the ones described above). Choosing arbitrarily a specific,
deterministic scheduler allows only to explore a subset of the
behaviors. We do not want such restriction and therefore do
not consider solution1.

Solution 2a is interesting as it does not restrict the set of
possible behaviors. This is the solution considered in [17].
However, encoding the scheduler as a special process inter-
acting with the SystemC processes complexifies the behavior
of the global system. Typically, such an encoding induces
additional communications between processes, compared to
the original SystemC semantics. For instance, the encodingof
theevent.notify() primitive is likely to induce a context-switch
(as it changes the state of the scheduler), which does not occur
in the original SystemC semantics. The bad consequence is
that such additional communications may prevent verification
tools to perform powerful optimizations. Typically, partial-
order reduction relies on a notion of “independent transitions”,
and cannot be applied if the notion of “transition” of the
model does not correspond to the notion of atomic sections in
SystemC.

Consequently, we have chosen the approach of point2b: we
do not encode the scheduler as an explicit process composed
in parallel with the SystemC processes. Instead, we integrate
the scheduler in the semantics of the synchronization primi-
tives that are usedsequentiallyinside each SystemC process,
without introducing any “artificial” context-switches.

Related work: The related work based on encoding of
SystemC programs in other formalisms we are aware of (see
Fig. 2) are all based on solution2a, but they can be further
classified according to the considered formal model, which
may be synchronous or asynchronous.

LusSy [17] is a prototype of a complete verification chain.
It encodes the processesand the scheduler in synchronous
automata. The intermediate formalism is calledHPIOM. The
main drawback of this formalism is that it breaks down
relevant information into lower-level ones, making the task
harder for verification tools, that are unable to handle realcase
studies. A similar work [7] describes how to generate UPPAAL
models from SystemC programs. Several other translation-
based approaches have been proposed [19], [10], also intro-
ducing a lot of complexity in the encoding.

Other works considers asynchronous formalisms. We ac-
tually show in sectionIV-C that SystemC’s time semantics is
encoded naturally and efficiently with deadline variables (sim-
ilar to “clocks”) evolving asynchronously, unlike the semantics
of timed automata used in UPPAAL, in which clocks evolves
synchronously.

In [13], a SystemC process is encoded with aMicMac
automaton which distinguishesmicro-statesandmacro-states.
Micro-statesrepresent points where the process can not yield,
contrarily to macro-statesthat are yielding points (typically
following a wait()). MicMac automata can be composed
in parallel using dedicated product exploiting the notion of
micro-states. This approach cannot be used directly in existing
verification tools that are not aware of micro-states. [22]
proposes first to encode a SystemC programs into MicMac
automataand thento encode MicMac automata into Promela.
However, the last translation loses the specific benefits of
MicMac formalism. Moreover, we show that some SystemC
notions are encoded naturally in Promela (in particular, atomic
sections of SystemC correspond to directly to theatomic
statement in Promela), while using MicMac as an intermediate
formalism prevents such direct translation and introducesun-
necessary complexity in the encoding. To sum up, the approach
implies the re-encoding in an explicit and asynchronous way
of some mechanisms that verification tools, including SPIN,
can tackle very efficientlywhen the corresponding native
mechanisms are used.

Our approach: asynchronous formalism + shared variables:
This paper proposes a solution based on an asynchronous
model (namely Promela) to encode TLM concurrent programs,
that consists in modeling the asynchronous communications
and the semantics of the scheduler by inserting synchroniza-
tion primitives manipulating shared variables into the code
of the processes. The expected gain of this approach is to
minimize the interactions between processes, so as to let
verification tools freely apply reduction techniques such as
symmetry or partial order reductions.

Other Validation Approaches:Alternatives to formal verifi-
cation are based on code execution, for instance standard test-
ing, run-time verification [6] or explicit model-checking [5].
In [5] the original C++ code is instrumented so as to enable

an on-the-fly state-space exploration of the model, based on
the techniques of the CADP [1] toolbox to execute native
code. These methods showed to be very efficient to explore
the possible schedulings of a system, but are fundamentally
limited to explicit-state exploration, and cannot be extended to
perform symbolic model-checking or abstract interpretation.
A hybrid approach is presented in [3], which executes C++
code natively forSC_METHODs, but relies on translation for
SC_THREADs. This work is probably the closest to the one
presented in this paper, as the encoding does not rely on a
separate process for the scheduler.

IV. T RANSLATION FROM C++ AND ENCODING OF

SYSTEMC SCHEDULER

We first remind the general principles of our tool chain for
SystemC, then we describe precisely the encoding of SystemC
synchronization primitives, and last we discuss some alterna-
tives. Among the primitives mentioned in sectionII , we will
not consider delayed notifications, or waiting for conjunctions
or disjunctions of events, but discuss in sectionIV-C how to
extend our encoding to handle such constructs.

A. Translating User Processes from C++ with PinaVM

Translating SystemC automatically requires the use of
a complete SystemC front-end. Borrowing some ideas
from Pinapa [16], we set up a SystemC front-end called
PinaVM [15] able to take as input a SystemC program and
produce an intermediate representation. This front-end isbased
on the compiler infrastructure LLVM [12] and the intermediate
representation is mainly composed of basic blocks containing
SSA (Static Single Assignment) instructions. PinaVM executes
the elaboration phase like Pinapa, and uses aJust-In-Time
compiler to retrieve SystemC information on events or ports
to enrich intermediate representation obtained from LLVM.

From the intermediate representation produced by our front-
end, a back-end produces automatically a Promela program.
Each SSA instruction is translated into an equivalent in
Promela instruction. Although Promela provides some of the
structuring mechanisms of a call definition, these mechanism
provide no benefit for the verification engine compared to
a static inlining, therefore, we chose to inline directly all
function calls.

In this translation, each SystemC thread generates a Promela
process. We do not consider in this paper dynamic creation of
processes, that are seldom encountered in SoC models.

B. Encoding synchronization primitives

In the encoding of SystemC synchronization primitives, we
rely on three features related to concurrency that are provided
by Promela:

1) The ability to use shared variables.
2) Theblocked(cond) primitive, which stops the execution

of the current process until conditioncond on shared
variables becomes true, and gives the control to another
process (the actual syntax in Promela is simply[cond]).

3) The notion of atomic section, that can be interrupted with
the blocked primitive.

p::wait(Ek):
1 Wp := k

2 blocked(Wp == 0)

p::Ek.notify():
3 ∀i ∈ P | Wi == K

4 Wi := 0

TABLE I
ENCODING EVENTS ALONE

p::wait(d):
1 Tp := Tp + d

2 blocked(Tp == min
i∈P

(Ti))

TABLE II
ENCODING TIME ALONE

In the sequel we denote byEk the eventk, with 1 ≤ k ≤ Ne

and the set ofNp processes is denotedP .
Events: SystemC events arenon persistent: the instruction

wait(Ek) is blocking, and takes into account only notifications
taking place after its execution: if the eventEk is notified
before the execution of await(Ek) instruction, it will be
ignored by this instruction. An important consequence is that
a process can be waiting for at most one event (we currently
do not consider the constructwait(e1 & e2) of SystemC).

For encoding events, we thus associate to each processp a
bounded integer0 ≤ Wp ≤ Ne such that:

• Wp == k when processp waits for Ek;
• Wp == 0 when processp is not waiting for an event and

is eligible;
and we define thewait and notify instructions in Tab.I. We
need for this encodingNp log

2
(1 + Ne) bits.

Time: SystemC time management internally assumes a
discrete time semantics, although in the API timed functions
use floating-point durations. We thus assume that we have a
specific constructwait(d:int) to wait for thediscreteduration
d to elapse.

For encoding time, we attach an internaldeadline variable
Tp : int to each processp. It represents the next deadline for
p whenp is waiting, and the current date whenp is running. It
is not necessary to examine the state of the processp for each
value ofTp, we only need to respect the schedulings allowed
by the durations waited for by the processes. Consequently,
we define the encodingwait(d) in Tab. II :

• Tp is incremented withd;
• p becomes eligible if its deadline variable is the minimum

of all deadline variables.
Alternatively, we could maintain a global clockTg to min

i∈P
(Ti)

and replace the blocking condition byblocked(Tp == Tg).
The advantages and drawbacks of this option w.r.t. the effi-
ciency of the verification process is hard to assessa priori.

Interaction between time and events:Events and time inter-
act together, and things become subtle when some processes
are waiting for events and others for a time duration. We
propose the encoding given on tableIII , based on the following
principles:
(1) The value of a deadline variableTp is meaningfulonly

if W 6= 0 (processp is not waiting for an event). When

p::wait(d):
1 Tp := Tp + d

2 blocked(Tp == min
ı∈P

Wi==0

(Ti))

p::wait(Ek):
3 Wi := K
4 blocked(Wi == 0)

p::Ek.notify():
5 ∀i ∈ P | Wi == k

6 Wi := 0
7 Ti := Tp

TABLE III
ENCODING EVENTS AND TIME

int e[NBTHREADS];
int T[NBTHREADS];
bool end[NBTHREADS];

inline init_coding(i) {
i = 0;
do :: i == NBTHREADS -> break;

:: else ->
e[i] = 0; T[i] = 0; end[i] = false;
i++; od;

}

inline notify(pid, nevent, i) {
i = 0;
do :: i < NBTHREADS && e[i] == nevent ->

e[i]=0; T[i]=T[pid]; i++;
:: i < NBTHREADS && e[i] != nevent ->

i++;
:: i == NBTHREADS -> break; od;

i = 0;
}

inline wait(pid, time) {
T[pid] = T[pid] + time;
((end[0]) || (e[0] != 0) || (T[pid] <= T[0]) &&
(end[1]) || (e[1] != 0) || (T[pid] <= T[1]) &&
(end[2]) || (e[2] != 0) || (T[pid] <= T[2]));

}

inline wait_e(pid, nevent) {
e[pid] = nevent;
e[pid] == 0;

}

Fig. 3. Encoding in Promela.Compared to Tab.III , we
add theend array to handle the particular case where
a task is completed in thewait(d:int) instruction.

a process is waiting for an event,Tp is not updated. The
main invariant becomes thus:“the deadline variable of a
running or eligible process is the minimum of the deadline
variables of processes not waiting for an event.”

(2) Concerning thewait(d) instruction, the blocked process
becomes eligible as soon as its deadline variable is the
minimum of deadline variablesof processes not waiting
for an event, according to principle 1).

(3) When processp notifies an eventEk, not only should the
variablesWi be reset (for processesi waiting for Ek),
but also should their deadline variable be updated to the
current date (which is equal to the deadline variableTp

of the running processp). This is because of principle
(1): these deadline variables becomes meaningful again,
and the invariant above should be maintained. This is
important to make a sequencewait(Ek); wait(d) behave
correctly in a processp.

Fig. 3 depicts the Promela code corresponding to the
pseudo-codeof Tab.III .

C. Discussion and Improvements

Our encoding implements in some way an asynchronous
time semantics, as opposed as the synchronous time semantics
of timed automata used in tools like UPPAAL [11], in which
clocks evolves synchronously. Our approach thus does not
enable the use of these tools. Notice however that we hardcode
in our approach the fact that we only need to know the next
deadlines, and not all the possible intermediate values that a
discrete synchronous clock would take between the current
time and the next deadline. As a result, multiplying all the
durations by a constant factor does not impact the size of the
reachable state-space with our encoding.

Finite-state model-checkers like SPIN [8] do not support
unbounded deadline variables. However, it is easy to modify
our encoding by exploiting the fact that two global states
agreeing on the differencesTi−Tj between deadline variables
are equivalent w.r.t. the synchronization primitives of Tab. III .
In the resultingrelative time encoding, the invariant: “the
minimum of the deadline variables of processes not waiting
for an event is zero” is ensured by shifting accordingly those
deadline variables inwait(d) instructions.

Implementing delayed notification on a single event could
be done with the principles we followed in this section. This
would require to add another deadline variable in each process.
Implementing waiting for conjunction or disjunction of events
would require the following modifications:

• The bounded integer variables0 ≤ Wp ≤ Ne should be
replaced byNe Boolean variablesWp,k with 1 ≤ k ≤ Ne

denoting the eventEk, because a processp can know wait
for a set of events.

• We should also add a Boolean variable per process to dis-
tinguish whether the process is waiting for a conjunction
or a disjunction of events.

To sum up, our approach can easily model such constructs, at
the cost of additional finite-state variables.

V. VALIDATING THE ENCODING PRINCIPLES

The encoding of SystemC primitives defined above may
seem intuitively correct, but experience shows that concurrent
systems are often faulty !

The ideal solution would be to prove that our encoding
is correct for any program using it. Such a quantification on
programs requires the use a proof-assistant, which is a very
demanding task. This would require to give a formal semantics
to SystemC (which implies C++) and to Promela, and to prove
that the two programs are equivalent.

The approach we have chosen is to construct a set of
properties and to verify them on instances of the translation,
in order to get confidence in the correctness of the encoding,
just like certifying compilers [18] verify the result of each
compilation. Those verifications were actually very useful,
allowing us to detect bugs in several preliminary versions of
our encoding.

We considered three invariants (see [14]). (i) the invariant
stated in sectionIV-B; (ii) “If process i notifies eventEk for
which processj is waiting, thenTi ≥ Tj”; (iii) “When a

processp waiting for an event is made eligible by a notifying
process (line (7) of Fig.III), the deadlineTp does not change
until its election as the running process.” These can be easily
translated to a relative time setting discussed in sectionIV-C.

Two techniques were used to verify them with SPIN: direct
assertions in the code, or a “monitoring” process for properties
not related to a specific line number. This process only
contains assertions, which can be detected as violated in the
automata product performed by SPIN. As the examples we
considered are deadlock-free, we also verified that the encod-
ing does not introduce deadlocks (for instance, by scheduling
processes in the wrong order).

The examples on which we checked these properties are
the following. First, we experimented on an adaptation of the
reader/writer problem in which two writers and one reader
access a FIFO. Second, we considered a model of a commu-
nication between a Memory, a DMA, a bus and a CPU. Third,
we considered the example used in a previous translation from
SystemC to SPIN [22], described in the appendices of [14].

VI. EXPERIMENTS AND EFFICIENCY OF OUR ENCODING

The aim of the previous section was to check that our
encoding actually reflects SystemC semantics. However, our
motivation for the encoding we propose is to enable better
performances of model-checkers, compared to other encod-
ing approaches described in sectionIII . We now compare
experimentally the efficiency of our encoding w.r.t. model-
checking with the encoding proposed in [22] applied to the
same example.

A. A SystemC example

Our test model is the one used in [22] and detailed in [14].
It consists of a chain of modules. The first module triggers
an interrupt in the next one. This interrupt notifies an event,
allowing the module to trigger an interrupt in the next module,
and so on. The last module contains an assertion which is
either always false (bug) or always true (no-bug). The latter
forces SPIN to compute the whole state space when checking
for invalid assertions. While this program may seem artificial,
it exhibits the characteristics found in more complex real-
world models and leading to state explosion: many processes,
synchronized by SystemC events, which can thus be lost
depending on the execution order of the various statements.
Such study allows to experiment on how the state space that
needs to be explored grows depending on parameters. As this
test model is untimed, we test here only the efficiency of the
encoding of events.

B. Results

The results presented in Fig.4 focuses on the main param-
eter which is the number of modules. It shows the number of
states computed by SPIN during the model-checking of the
example presented above.

Those results show a reduction by a factor of about 10 com-
pared to previous results presented in [22]. The comparison
between the two approaches, in the case where there is no

bug is shown in figure4. We can see that, with our encoding,
SPIN is able to model check up to 21 processes, compared to
15 in the other approach.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 2 4 6 8 10 12 14 16 18 20 22

Nb
 o

f s
ta

te
s

Nb of components

PinaVM

PinaVM
[SPIN 07]

Out of memory

Fig. 4. Experimental results of the two approaches

VII. C ONCLUSION

We investigated the formalization of models of SoC in the
form of asynchronous automata. We proposed an encoding of
synchronization primitives related to events and time using
shared variables and sequential instrumentation of processes.
This choice contrasts with other approaches in which parallel
instrumentation is used, under the form of an additional pro-
cess modeling the SystemC scheduler added to the system. We
ensured that the encoding principles are correct by verifying
a number of invariants. The given principles are general and
are applicable to different back-end languages.

We experimented on the SPIN model-checker, showing on
a typical example that our encoding leads SPIN to explore ten
times less states during model-checking of the encoded model,
compared to an encoding based on parallel instrumentation.
This confirms the conjecture we express in sectionIII . In
addition, the translation has been fully automated: our tool
reads SystemC code directly, and generates Promela code
without human intervention. Our results are thus due to our
encoding and not to some specific optimizations. The tool can
be downloaded freely fromhttp://gitorious.org/pinavm.

Besides experimenting with a wider set of cases studies, we
see at least two point to investigate in the future. First we have
yet to compare our time management to other approaches.
We intend to compare this solution to approaches based on
timed automata and relying on the UPPAAL [7] tool for
model-checking to validate our discussion of sectionIV-C
on the asynchronous encoding of time in SystemC. A second
perspective to evaluate the relevance and the efficiency of static
analysis tools such as CONCURINTERPROC [9] for checking
safety properties of timed SystemC models.

REFERENCES

[1] J. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighireanu. CADP a protocol validation and verification toolbox. In
Computer Aided Verification, pages 437–440. Springer, 1996.

[2] Giovanni Funchal and Matthieu Moy. jTLM: an experimentation
framework for the simulation of transaction-level models of systems-
on-chip. InDATE, 2011. (to appear).

[3] Hubert Garavel, Claude Helmstetter, Olivier Ponsini, and Wendelin
Serwe. Verification of an Industrial SystemC/TLM Model usingLOTOS
and CADP. In7th ACM-IEEE International Conference on Formal
Methods and Models for Codesign MEMOCODE’2009, Cambridge, MA
United States, 2009.

[4] Frank Ghenassia. Transaction-Level Modeling with SystemC: TLM
Concepts and Applications for Embedded Systems. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2006.

[5] Claude Helmstetter. TLM.open: a SystemC/TLM Front-end for the
CADP Verification Toolbox. Extended abstract for SBDCES work-
shop (http://unit.aist.go.jp/cvs/workshop/SBDCES.html) Work financed
by the Multival project.

[6] Claude Helmstetter, Florence Maraninchi, and Laurent Maillet Con-
toz. Full simulation coverage for SystemC transaction-levelmodels of
systems-on-a-chip.Formal Methods in System Design, 35(Number 2 /
October, 2009):pages 152–189, 06 2009.

[7] Paula Herber, Joachim Fellmuth, and Sabine Glesner. Model check-
ing SystemC designs using timed automata. InCODES/ISSS ’08:
Proceedings of the 6th IEEE/ACM/IFIP international conference on
Hardware/Software codesign and system synthesis, pages 131–136, New
York, NY, USA, 2008.

[8] Gerard J. Holzmann. Design and validation of computer protocols.
Prentice-Hall, Englewood Cliffs, NJ, 1991.

[9] B. Jeannet. Relational interprocedural verification ofconcurrent pro-
grams. InSoftware Engineering and Formal Methods, SEFM’09. IEEE,
November 2009. to appear.

[10] D. Karlsson, P. Eles, and Z. Peng. Formal verification of systemc designs
using a petri-net based representation. InProceedings of the conference
on Design, automation and test in Europe: Proceedings, page 1233.
European Design and Automation Association, 2006.

[11] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int.
Journal on Software Tools for Technology Transfer, 1(1–2):134–152,
October 1997.

[12] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. InCGO ’04: Proceedings
of the international symposium on Code generation and optimization,
page 75, Washington, DC, USA, 2004. IEEE Computer Society.

[13] F. Maraninchi, M. Moy, J. Cornet, L. Maillet-Contoz, C.Helmstetter,
and C. Traulsen. SystemC/TLM semantics for heterogeneous system-
on-chip validation. InNEWCAS-TAISA 2008: Proceedings of the Joint
6th International IEEE Northeast Workshop on Circuits and Systems
and TAISA Conference, pages 281–284, 2008.

[14] Kevin Marquet, Bertrand Jeannet, and Matthieu Moy. Efficient encoding
of SystemC/TLM in Promela—full version. Technical Report TR-2010-
7, Verimag Research Report, 2010.

[15] Kevin Marquet and Matthieu Moy. PinaVM: a SystemC front-end based
on an executable intermediate representation. InInternational Con-
ference on Embedded Software International Conference on Embedded
Software, page 79, Scottsdale, USA, 10 2010. SD B.4.4, I.6.4, D.2.4
OpenTLM (projet Minalogic).

[16] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz.
Pinapa: An extraction tool for SystemC descriptions of systems-on-a-
chip. In EMSOFT, September 2005.

[17] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz.
LusSy: an open tool for the analysis of systems-on-a-chip at the
transaction level. Design Automation for Embedded Systems, 2006.
special issue on SystemC-based systems.

[18] G.C. Necula and P. Lee. The design and implementation of a certifying
compiler. ACM SIGPLAN Notices, 33(5):333–344, 1998.

[19] B. Niemann, C. Haubelt, M. Oyanguren, and J. Teich. Formalizing
TLM with communicating state machines.Advances in Design and
Specification Languages for Embedded Systems, pages 225–242, 2007.

[20] Open SystemC Initiative. IEEE 1666 Standard: SystemC Language
Reference Manual, 2005. http://www.systemc.org/.

[21] Open SystemC Initiative (OSCI). OSCI TLM-2.0 Language
Reference Manual, July 2009. Version JA32, available from
http://www.systemc.org/downloads/standards.

[22] Claus Traulsen, J́erôme Cornet, Matthieu Moy, and Florence Maraninchi.
A SystemC/TLM semantics in Promela and its possible applications. In
14th Workshop on Model Checking Software SPIN, July 2007.

http://gitorious.org/pinavm
http://www.systemc.org/
http://www.systemc.org/downloads/standards

	Introduction
	SystemC
	Overview of the problem and Related Works
	Translation from C++ and encoding of SystemC scheduler
	Translating User Processes from C++ with PinaVM
	Encoding synchronization primitives
	Discussion and Improvements

	Validating the encoding principles
	Experiments and efficiency of our encoding
	A SystemC example
	Results

	Conclusion
	References

