N
N

N

HAL

open science

Efficient Encoding of SystemC/TLM in Promela
Kevin Marquet, Matthieu Moy, Bertrand Jeannet

» To cite this version:

Kevin Marquet, Matthieu Moy, Bertrand Jeannet. Efficient Encoding of SystemC/TLM in Promela.
DATICS-IMECS, Mar 2011, Hong Kong SAR China. hal-00557515

HAL Id: hal-00557515
https://hal.science/hal-00557515

Submitted on 19 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00557515
https://hal.archives-ouvertes.fr

Efficient Encoding of SystemC/TLM in Promela

Kevin Marquet Bertrand Jeannet Matthieu Moy
Verimag INRIA Rhénes-Alpes Verimag
Univ. Joseph Fourier Grenoble, France Grenoble INP
Grenoble, France Bertrand. Jeannet @nri al pes. fr Grenoble, France
Kevi n. Mar quet @ mag. fr Mat t hi eu. Moy@ mag. fr

Abstract—To deal with the ever growing complexity of model differently time and concurrency, and that are cotatec
Systems-on-Chip, designers use models early in the design flowto different verification tools.
SystemC is a commonly used tool to write such models. In order Thig paper focuses on the issue mibdel extraction in

to verify these models, one thriving approach is to encode its P
semantics into a formal language, and then to verify it with the context of the verification of SoC modeled as System C

verification tools. Various encodings of SystemC into formal lan- concurrent programs. Our contributions are as follows:
guages have already been proposed, with different performance 1) We presentnew encoding principlesin section|V for

implications. In this paper, we investigate a new, automatic, the extraction of formal representations from SystemC
asynchronous means to formalize models. Our encoding supports programs, and in particular for modeling the semantics of

the subset of the concurrency and communication constructs . L
offered by SystemC used for high-level modeling. We increase SystemC scheduler. We argue that this encoding is simple

the confidence in the fact that encoded programs have the and elegant, although it involves some subtle points. Its
same semantics as the original one by model-checking a set of main goal is however to favor the efficiency of verification

properties. We give experimental results on our formalization tools. This extraction is performed in a fullgutomatic
and compare with previous works. way by our verification chaif.
2) In order tovalidate their correctness we define properties
that must hold for an encoding to be valid. These properties
As the complexity of embedded systems grows, the need and how they are tested are detailed in section
for new methods has appeared for the co-design of hag)- At last, sectionVI presentexperimental resultson Sys-
ware and software. Indeed, low-level hardware description temC examples translated fxomela the asynchronous
languages such as VHDL and Verilog simulate slowly, can formalism used as input to the SPIN model-checker. Our
hardly be used to design complex systems and therefore makeresults show major improvements over past similar works,
early software development difficult. Consequently, highe thanks to the fact that our encoding does not introduce
level modeling tools have appeared, allowing hardware and complex behaviors limiting the applicability of formal ver
software descriptions. fication tools. We show in particular a tremendout reduction
Transaction-Level Modeling4] (TLM) is an approach in of the number of states that SPIN needs to explore.
which the architecture and the behavior of a System-on-CHigfore presenting these, we present SystemC in selitiamd
(SoC) are described in an executable model, but the micasmpare our approach to related works in section
architecture details and precise timing behavior are atisd Il SYSTEMC
away. SystemCA0] has become thde factostandard for TLM] o]]
modeling. It contains a simulation kernel that can execute'We give a very partial overview of SystemC, focusing on
concurrent processes communicating through channels 4@ Points that are relevant for this paper.
shared variables, using C++ libraries. In this paper, we are” SystemC program defines architecture i.e. a set of
interested in TLM programs, written in SystemC. We focu§omPonents and connections between them, abefavioy
on the subset of SystemC needed for TLM modeling, leavif§: components have a behavior defined by one or several
apart the constructs originally introduced in SystemC tievr Processes and communicate with each other through ports.
lower-level programs (like RTL). Once the arch|tecthe is defined (py th@boratlpn phase
SystemC descriptions are C++ concurrent programs trhgrformed at the beginning of exgcutlon), gimulation phase
can be tested and/or verified in order to detect design flaw&a/ts: processes execute according to the SystemC sutgedul
Verifying a concurrent program can be done with varioddlicy: As an example, figuré shows a SystemC module
approaches. One thriving approach is to describe its sérsanfONtaiNINg two processes, one waiting for an event, therothe
formally, and then to verify this semantics using verifioati N°tfYing it. _ _ o
tools. The first step is calleshodel extractiorand leads to the . Ve do not consider here the notion®tycles P, inspired
translation of the program into a formal representatiory affom traditional HDL languages, since it is not useful for
the second step is the verification performed on the formabrpe implementation is open-source and available from
representation. Different representations can be chdben, http:/gitorious.org/pinavm

I. INTRODUCTION

http://gitorious.org/pinavm

SC_MODULE(nyt op) { Ty x To x T3 x Sch T ()T T

Zg_ecyreagz eé v Synchronous automata Asynchronous automata
- nmytop .
SC_THREAD(myFct F); SC.THREAD(nyFet Q +[sc]he[duier Dedlcat[ed] product
} L
void nyFctP() {...; wait(e); ...}
void nyFct Q) {...;, e.notify(); ...} (SystemC)
} Concurrent

program

Fig. 1. A basic SystemC module

T1><T2><T3

T1 X Ty X T3 X Sch
Asynchronous product

TLM models (this implies that we do not support SystemC Asynchronous automata

constructs likewait(SC_ZERO_TIME), which makes a pro- 27, [3] shared variable

cess wait until the next evaluation phase, or components This paper

sc_signal andsc_fifo). We focus on the following constructs

of SystemC, which are the basis for TLM modeling: Fig. 2. Different approaches for translating SystemC pnogranto other
! ’ formalisms

wait(d: int) Stops executing the current process, yields bac
the control to the scheduler and makes the current process

to wait for the given duration. _the formal model accepted by the targeted verification tool,
wait(e: event) Stops executing the current process, yielqgpereas the high-level semantics of SystemC/TLM class li-
back the control to the scheduler and makes the currgbes ishand-codedin the formal model. The verification
process to wait for the event to occur. SystemC alsg) is then applied to the resulting model.
allows_ the con_struc_tsvait(el & _eZ) a_nd wait(el | e2) Representation of the SystemC schedulstodeling the
to W?'t for conjunctions and d|_SJunct|ons of evgpts. semantics of the SystemC library reduces mainly to modeling
event.notify() Makes processes waiting for the specified evepl, SystemC scheduler. Three options can be imagined to

eligib_le (with(?u_t stopping the current _process)_ . __represent the scheduler in a formal representation: (1)einod
event.notify(delay: int) Triggers a notification after the 9V€Nine deterministic behavioof the reference implementation
K hich simplifies th i ¢ this primii described in the SystemC standardd][or (2) model a
S ?pt,év 'Ch Sd'ml.p' |efs”t e semantics o tt IS pr:m:jltll\'/e. more general non-deterministic scheduleither (2a) as an
ystemt, scheduling 1ollows Bon-préempUvesCheduling oy pjicit additional process, or (2b) by incorporating it in
policy. When several Processes are el_lglble at the same % semantics of the synchronization instructions (tyhica
the scheduler runs them in an unspecified order. the ones described above). Choosing arbitrarily a specific,

Concernl_ng communications between Process, W€ Us&erministic scheduler allows only to explore a subsehef t
shared variables to model several threads belonging to aviors. We do not want such restriction and therefore do

same module cor_nmumcatmg by accesses to thg fields of consider solutior.

module. Concerning TLM ports, our implementation does not luti . . it it th ¢

(yet) manage them explicitly; it require the function catisbe SO. ution 2a 'S mterest.mg as it 0es not rESt.”Ct t e_set 0
' ossible behaviors. This is the solution considered 1ir.[

done directly from modules to modules instead of relying owever, encoding the scheduler as a special process inter-

s\?:{;c;fzgrg?g&?o[n]'t‘rllv:'ggti'inaé??ﬁg:])ozyzgalé cal Sugar'acting with the SystemC processes complexifies the behavior
: of the global system. Typically, such an encoding induces

Restricting ourselves to a strict subset of SystemC is not ... S
R ditional communications between processes, compared to
a limitation as far as we are focus on TLM models. Of

course it implies that we cannot handle more general Syste th@ original SystemC semantics. For instance, the encaxfing

i he event.notify() primitive is likely to induce a context-switch
programs, but it also makes our approach more general,in ;)

:) . as it changes the state of the scheduler), which does nat occ
the sense that it could easily be adapted to other discreté

. : . . > 1 the original SystemC semantics. The bad consequence is
event cooperative simulator (like the cooperative versibn . o e
iTLM [2]). that such additional communications may prevent verificati

tools to perform powerful optimizations. Typically, patti
[1l. OVERVIEW OF THE PROBLEM ANDRELATED WORKS order reduction relies on a notion of “independent traossf,

General overview:The challenge raised by formal verifica-2nd cannot be applied if the notion of “transition” of the
tion of SystemC models is that SystemC has not been desigfig@del does not correspond to the notion of atomic sections in
for this purpose. An option could be to consider them azyStemC.
regular C++ programs, but few verification tools are avadab Consequently, we have chosen the approach of @intve
for them, especially when the goal is to chefilnctional do not encode the scheduler as an explicit process composed
properties Moreover, a general verifier would have to analyz# parallel with the SystemC processes. Instead, we integrate
the SystemC class library and to rediscover by itself ithhigthe scheduler in the semantics of the synchronization primi
level semantics. For these reasons, most related work guscelives that are usedequentiallyinside each SystemC process,
differently: the user's code i¢ranslated and abstractedo Without introducing any “artificial” context-switches.

Related work: The related work based on encoding o&n on-the-fly state-space exploration of the model, based on
SystemC programs in other formalisms we are aware of (stbe techniques of the CADPL] toolbox to execute native
Fig. 2) are all based on solutioBa, but they can be further code. These methods showed to be very efficient to explore
classified according to the considered formal model, whithe possible schedulings of a system, but are fundamentally
may be synchronous or asynchronous. limited to explicit-state exploration, and cannot be egxhto

LusSy [L7] is a prototype of a complete verification chainperform symbolic model-checking or abstract interpretati
It encodes the processesid the scheduler in synchronousA hybrid approach is presented if]] which executes C++
automata. The intermediate formalism is calldBIOM. The code natively forSC_METHODs, but relies on translation for
main drawback of this formalism is that it breaks dowi®C_THREADs. This work is probably the closest to the one
relevant information into lower-level ones, making thektaspresented in this paper, as the encoding does not rely on a
harder for verification tools, that are unable to handle caak separate process for the scheduler.
studies. A similar work]] describes how to generate UPPAAL
models from SystemC programs. Several other translation-

based approaches have been propos<éll [10], also intro- ! i o _
ducing a lot of complexity in the encoding. We first remind the general principles of our tool chain for

Other works considers asynchronous formalisms. We agyStemC, then we describe precisely the encoding of SystemC
tually show in sectiorV-C that SystemC’s time semantics isSYnchronization primitives, and last we discuss some radter
encoded naturally and efficiently with deadline variabim¢ tves: Among the primitives mentioned in section we will
ilar to “clocks”) evolving asynchronously, unlike the semtias not consider delayed natifications, or waiting for conjumas

of timed automata used in UPPAAL, in which clocks evolve@r disjunctions of events, but discuss in sectigfC how to
synchronously. extend our encoding to handle such constructs.

In [13], a SystemC process is encoded withMicMac A, Translating User Processes from C++ with PinaVM
automaton which distinguishesicro-statesand macro-states Translating SystemC automatically requires the use of
Micro-statesrepresent points where the process can not yielg, complete SystemC front-end. Borrowing some ideas
contrarily to macro-stateshat are yielding points (typically from Pinapa [f], we set up a SystemC front-end called

following a wai t ()). MicMac automata can be composeg,ay\ [15] able to take as input a SystemC program and
m_parallel using dedicated product explomng the r.lo_t'dr_' 0produce an intermediate representation. This front-ebdsed
mlq;p-st_ates. TT'S e;]pproach cannot be usfed Q|rectly |m::!g|s on the compiler infrastructure LLVMI[/] and the intermediate
ver |cat|onf. tools that ;re not aware o m|cro—§tateg._][representation is mainly composed of basic blocks comtgini
proposes first to encode a Systemc programs into MicMag 5 (Static Single Assignmérihstructions. PinaVM executes
automataand thento encode MicMac automata into Promelath elaboration phase like Pinapa, and usedust-In-Time

However, the last translation loses the specific benefits Qf ., ier 1o retrieve SystemC information on events or ports
Mlc_Mac formalls:jn.dMoreovEr,_we ShOV\I' that Sor_neISys_temE) enrich intermediate representation obtained from LLVM.
nothns aref encoded naturally in (Fj’roms_a ('T partlgtu amm From the intermediate representation produced by our-front
sections ol Systemlc coLr$spop to. irectly to tieom Ced end, a back-end produces automatically a Promela program.
statement in Promela), while using MicMac as an intermedigt; o, ssa instruction is translated into an equivalent in

formalism preve?ts_sqchhdlrect t?nslatlon and mtrr(])dum}s Promela instruction. Although Promela provides some of the
necessary complexity in the encoding. To sum up, the apbro%(fructuring mechanisms of a call definition, these mechanis

implies the re-encoding in an explicit and asynchronous way, iqe no benefit for the verification engine compared to
of some mechanisms that verification tools, including SPII&, static inlining, therefore, we chose to inline directly al
can tackle very efficientlywhen the corresponding nativefunction calls

mechanisms are used _ _ _Inthis translation, each SystemC thread generates a Paomel
Our approach: asynchronous formalism + shared variableg; qcess. We do not consider in this paper dynamic creation of

This paper proposes a solution based on an asynchrongiSeesses, that are seldom encountered in SoC models.
model (hamely Promela) to encode TLM concurrent programs,

that consists in modeling the asynchronous communicatios Encoding synchronization primitives

and the semantics of the scheduler by inserting synchronizain the encoding of SystemC synchronization primitives, we

tion primitives manipulating shared variables into the e&odely on three features related to concurrency that are geali

of the processes. The expected gain of this approach isbip Promela:

minimize the interactions between processes, so as to ldt) The ability to use shared variables.

verification tools freely apply reduction techniques sush a 2) Theblocked(cond) primitive, which stops the execution

symmetry or partial order reductions. of the current process until conditiotond on shared
Other Validation ApproachesAlternatives to formal verifi- variables becomes true, and gives the control to another

cation are based on code execution, for instance standstrd te process (the actual syntax in Promela is sinfptpnd).

ing, run-time verification §] or explicit model-checking q]. 3) The notion of atomic section, that can be interrupted with

In [5] the original C++ code is instrumented so as to enable the blocked primitive.

IV. TRANSLATION FROM C++ AND ENCODING OF
SYSTEMC SCHEDULER

prwait(EF): p:: EF notify(): prwait(d):
1 W,:=k 3VieP|W;, ==K 1 Tp:=Tp+d
2 blocked{V, == 0) 4 W; =0 2 blocked{, == Hél}Ijl (T3))
Wi==0
TABLE |
ENCODING EVENTS ALONE prwait(EF): pi E* notify():
3 W; =K 5Vi€P|Wi==k
. 4 blocked{¥; == 0) 6 W;:=0
pwait(d): 7 T; :="1Tp
1Tp:=T,+d
ENCODING EVENTS AND TIME
TABLE II
ENCODING TIME ALONE int e[NBTHREADS] ;
int T[NBTHREADS] ;
bool end[NBTHREADS] ;
In the sequel we denote biy* the eventk, with 1 < k < N, Hmiine pntcoding(i)
and the set ofV, processes is denotdd. do :: i == NBTHREADS -> break;
. . . . 1 else ->
Events: SystemC events amgon persistentthe instruction e[i] = 0; T[i] = 0. end[i] = fal se:
wait(E*) is blocking, and takes into account only notifications i ++ od;
taking place after its execution: if the eveAt® is notified }
before the execution of avait(E*) instruction, it will be inline notify(pid, nevent, i) {
ignored by this instruction. An important consequence & th do : ?'i < NBTHREADS &% e[i] == nevent ->
a process can be waiting for at most one event (we currently oeli=o TLiT=TOpidl; i+
do not consider the construehi t (el & e2) of SystemC). Hp 5 NBTHREADS & eli] b= mevent -2
For encoding events, we thus associate to each prgcass o a_i == NBTHREADS -> break; od;
bounded integed < W, < N, such that: } e
« W, == k when procesg waits for E¥; . L
. .. inline wait(pid, time) {
« W, == 0 when procesg is not waiting for an event and Tlpid] = Tlpid] + tinme;
is eligible; ((eng[gl) [(9[2] 5= 8) [($[p! g] <= 1[2]) ﬁ
. = <=
and we define thevait and notify instructions in Tabl. We §22d{2}§ H §2H 1= o§ H ET{ Sl d} <= T% z}i);
need for this encodingv, log,(1 + N,) bits. }
Time: SystemC time management internally assumes a inii ne wait_e(pid, nevent) {
discrete time semantics, although in the API timed fundation ZH‘;: g% ;”gf’e”“
use floating-point durations. We thus assume that we have a '
specific constructvait(d:int) to wait for thediscreteduration Fig. 3. Encoding in Promel<Compared to Tablll, we
d to elapse. add theend array to handle the particular case where

For encoding time, we attach an intermigadline variable a task is completed in theai t (d: i nt) instruction.

T, : int to each procesp. It represents the next deadline for

p whenp is waiting, and the current date whens running. It a process is waiting for an everf, is not updated. The
is not necessary to examine the state of the propdss each main invariant becomes thughe deadline variable of a
value of 7;,, we only need to respect the schedulings allowed 1 nning or eligible process is the minimum of the deadline
by the durations waited for by the processes. Consequently, | 4riables of processes not waiting for an event”

we define the encodingai t (d) in Tab. Il (2) Concerning thewait(d) instruction, the blocked process

« T is incremented withi; _ S o becomes eligible as soon as its deadline variable is the
« p becomes .el|g|ble_ if its deadline variable is the minimum inimum of deadline variablesf processes not waiting
of all deadline variables. for an eventaccording to principle 1).
Alternatively, we could maintain a global clod to min(7;) (3) when proces notifies an eventz*, not only should the
and replace the blocking condition Wyocked(Z, == T,). variablesW; be reset (for processeswaiting for E*),
The advantages and drawbacks of this option w.r.t. the effi- but also should their deadline variable be updated to the
ciency of the verification process is hard to assesgsiori. current date (which is equal to the deadline variabje
Interaction between time and eventsvents and time inter- of the running procesg). This is because of principle

act together, and things become subtle when some processeq1): these deadline variables becomes meaningful again,

are waiting for events and others for a time duration. We and the invariant above should be maintained. This is

propose the encoding given on talile based on the following important to make a sequeneait(E*); wait(d) behave

principles: correctly in a process.

(1) The value of a deadline variablg, is meaningfulonly Fig. 3 depicts the Promela code corresponding to the
if W # 0 (processp is not waiting for an event). When pseudo-codeof Talll .

C. Discussion and Improvements processp waiting for an event is made eligible by a notifying

Our encoding implements in some way an asynchronoBEcess (line (7) of Figlil), the deadlinel;, does not change
time semantics, as opposed as the synchronous time segantittil its election as the running process.” These can bdyeasi
of timed automata used in tools like UPPAALT], in which translated to a relative time setting discussed in sediied.
clocks evolves synchronously. Our approach thus does notiWo techniques were used to verify them with SPIN: direct
enable the use of these tools. Notice however that we haedc@§Sertions in the code, or a “monitoring” process for proger
in our approach the fact that we only need to know the neXt related to a specific line number. This process only
deadlines, and not all the possible intermediate valugsathacontains assertions, which can be detected as violatedein th
discrete synchronous clock would take between the curréitiomata product performed by SPIN. As the examples we
time and the next deadline. As a result, multiplying all theonsidered are deadlock-free, we also verified that thedenco
durations by a constant factor does not impact the size of #g does not introduce deadlocks (for instance, by scheguli
reachable state-space with our encoding. processes in the wrong order).

Finite-state model-checkers like SPIN][do not support The examples on which we checked these properties are
unbounded deadline variables. However, it is easy to modffje following. First, we experimented on an adaptation ef th
our encoding by exploiting the fact that two global statgd€ader/writer problem in which two writers and one reader

agreeing on the differencés — T between deadline variables2ccess a FIFO. Second, we considered a model of a commu-
are equivalent w.r.t. the synchronization primitives obTal . Nication between a Memory, a DMA, a bus and a CPU. Third,

In the resultingrelative time encoding, the invariant; “the W€ considered the example used in a previous translatiom fro

minimum of the deadline variables of processes not waitingyStemC to SPINA7], described in the appendices of/].
for an event is zero” is ensured by shifting accordingly ghos
deadline variables imvait(d) instructions.
Implementing delayed notification on a single event could The aim of the previous section was to check that our
be done with the principles we followed in this section. Thigncoding actually reflects SystemC semantics. However, our
would require to add another deadline variable in each gcemotivation for the encoding we propose is to enable better
Implementing waiting for conjunction or disjunction of exe Performances of model-checkers, compared to other encod-
would require the following modifications: ing approaches described in sectidbh. We now compare
« The bounded integer variabl@s< 1, < N, should be experimentally the efficiency of our encoding w.r.t. model-
replaced by, Boolean variable$V, , with 1 < k < N, checking with the encoding proposed iaZ] applied to the
denoting the event*, because a procegsan know wait same example.
for a set of events.

« We should also add a Boolean variable per process to dloé
tinguish whether the process is waiting for a conjunction Our test model is the one used in’] and detailed in 4.

VI. EXPERIMENTS AND EFFICIENCY OF OUR ENCODING

A SystemC example

or a disjunction of events. It consists of a chain of modules. The first module triggers
To sum up, our approach can easily model such constructsaatinterrupt in the next one. This interrupt notifies an event
the cost of additional finite-state variables. allowing the module to trigger an interrupt in the next megul
and so on. The last module contains an assertion which is
V. VALIDATING THE ENCODING PRINCIPLES either always false (bug) or always true (no-bug). The datte

The encoding of SystemC primitives defined above mdgrces SPIN to compute the whole state space when checking
seem intuitively correct, but experience shows that cameur for invalid assertions. While this program may seem artifjcia
systems are often faulty ! it exhibits the characteristics found in more complex real-

The ideal solution would be to prove that our encodingorld models and leading to state explosion: many processes
is correct for any program using it. Such a quantification aynchronized by SystemC events, which can thus be lost
programs requires the use a proof-assistant, which is a velgpending on the execution order of the various statements.
demanding task. This would require to give a formal semantiSuch study allows to experiment on how the state space that
to SystemC (which implies C++) and to Promela, and to proveeeds to be explored grows depending on parameters. As this
that the two programs are equivalent. test model is untimed, we test here only the efficiency of the

The approach we have chosen is to construct a set esfcoding of events.
properties and to verify them on instances of the trangiatio
in order to get confidence in the correctness of the encodirsy, Results
just like certifying compilers 1¢] verify the result of each The results presented in Fig.focuses on the main param-
compilation. Those verifications were actually very usefuéter which is the number of modules. It shows the number of
allowing us to detect bugs in several preliminary versiofis states computed by SPIN during the model-checking of the
our encoding. example presented above.

We considered three invariants (se€f]. (i) the invariant ~ Those results show a reduction by a factor of about 10 com-
stated in sectionV-B; (i) “If processi notifies eventE* for pared to previous results presented #¥][The comparison
which process;j is waiting, thenT; > T}"; (iii) “When a between the two approaches, in the case where there is no

bug is shown in figurel. We can see that, with our encoding, [2] Giovanni Funchal and Matthieu Moy. jTLM: an experimeiaat
SPIN is able to model check up to 21 processes Compared to framework for the simulation of transaction-level models oéteyns-

. on-chip. InDATE, 2011. (to appear).
15 in the other approach. [3] Hubert Garavel, Claude Helmstetter, Olivier Ponsinidawendelin

Serwe. Verification of an Industrial SystemC/TLM Model usit@TOS
and CADP. In7th ACM-IEEE International Conference on Formal

M e~ Methods and Models for Codesign MEMOCODE’20@ambridge, MA

United States, 2009.

[4] Frank Ghenassia. Transaction-Level Modeling with SystemC: TLM
Concepts and Applications for Embedded Syst&psinger-Verlag New

seoe Out of memory. 1 York, Inc., Secaucus, NJ, USA, 2006.

[5] Claude Helmstetter. TLM.open: a SystemC/TLM Front-end floe
CADP \Verification Toolbox. Extended abstract for SBDCES kvor
shop (http://unit.aist.go.jp/cvs/workshop/SBDCES.tiivork financed
by the Multival project.

[6] Claude Helmstetter, Florence Maraninchi, and LaurentllistaCon-
toz. Full simulation coverage for SystemC transaction-lewetlels of
systems-on-a-chipFormal Methods in System DesigB5(Number 2 /
October, 2009):pages 152-189, 06 2009.

- ‘ ‘ ‘ ‘ ‘ [7] Paula Herber, Joachim Fellmuth, and Sabine Glesner. Molleck-

2 4 6 8 10 12 14 16 18 20 22 ing SystemC designs using timed automata. AODES/ISSS ’08:

b of components Proceedings of the 6th IEEE/ACM/IFIP international comfiece on
Hardware/Software codesign and system synthpaiges 131-136, New
Fig. 4. Experimental results of the two approaches York, NY, USA, 2008.

[8] Gerard J. Holzmann. Design and validation of computer protocols
Prentice-Hall, Englewood Cliffs, NJ, 1991.

[9] B. Jeannet. Relational interprocedural verificationcohcurrent pro-
grams. InSoftware Engineering and Formal Methods, SEFM'(EEE,

. - . : - November 2009. to appear.

We mvestlgated the formalization of models of SoC m_ thﬁ.o; D. Karlsson, P. Eles, and Z. Peng. Formal verificationystamc designs

form of asynchronous automata. We proposed an encoding of using a petri-net based representationPtoceedings of the conference

synchronization primitives related to events and time gisin ~ on Design, automation and test in Europe: Proceedingsge 1233.

shared variables and sequential instrumentation of pseses ., CUroPean Design and Automation Association, 2006.

- _ - . . [11] K. G. Larsen, P. Pettersson, and W. Yi.PRAAL in a Nutshell. Int.
This choice contrasts with other approaches in which pelrall ~ Journal on Software Tools for Technology Transfe(l-2):134-152,

instrumentation is used, under the form of an additionat pro _ October 1997.

. Chris Lattner and Vikram Adve. LLVM: A compilation framexk for
cess modeling the SystemC scheduler added to the system. lifelong program analysis & transformation. (GO '04: Proceedings

ensured that the encoding principles are correct by vexfyi of the international symposium on Code generation and dpdition
a number of invariants. The given principles are general and_ page 75, Washington, DC, USA, 2004. IEEE Computer Society.

. . _ [13] F. Maraninchi, M. Moy, J. Cornet, L. Maillet-Contoz, Elelmstetter,
are appllcable to different back-end Ianguages. and C. Traulsen. SystemC/TLM semantics for heterogeneousnsys

We experimented on the SPIN model-checker, showing on on-chip validation. INEWCAS-TAISA 2008: Proceedings of the Joint
a typical example that our encoding leads SPIN to explore ten 6th International IEEE Northeast Workshop on Circuits angst8ms

. - . and TAISA Conferenc@ages 281-284, 2008.
times less states during model-checking of the encoded Imo?ﬂ] Kevin Marquet, Bertrand Jeannet, and Matthieu Moy.didfit encoding

compared to an encoding based on parallel instrumentation. of SystemC/TLM in Promela—full version. Technical Report 2Bt0-
This confirms the conjecture we express in sectidn In 7, Verimag Research Report, 2010.

. . . 5] Kevin Marquet and Matthieu Moy. PinaVM: a SystemC fremtd based
addition, the translation has been fu”y automated: out tO% on an executable intermediate representation. Inkernational Con-

reads SystemC code directly, and generates Promela code ference on Embedded Software International ConferencernbeBided
without human intervention. Our results are thus due to our Software page 79, Scottsdale, USA, 10 2010. SD B.4.4, 1.6.4, D.2.4

. e L OpenTLM (projet Minalogic).
encoding and not to some specific optimizations. The tool Cﬁ.%] Matthieu Moy, Florence Maraninchi, and Laurent Mail@ontoz.

be downloaded freely fromttp://gitorious.org/pinavin Pinapa: An extraction tool for SystemC descriptions of systen-a-
Besides experimenting with a wider set of cases studies, we chip. InEMSOFT September 2005.

. - . . .] Matthieu Moy, Florence Maraninchi, and Laurent Mé#{€ontoz.
see at least two point to investigate in the future. First aeeh LusSy: an open tool for the analysis of systems-on-a-chiphat t

yet to compare our time management to other approaches. transaction level. Design Automation for Embedded Syster®806.
We intend to compare this solution to approaches based on Special issue on SystemC-based systems. _ o

. . 18] G.C. Necula and P. Lee. The design and implementation eft#fying
timed automata and relying on the UPPAAL/][tool for compiler. ACM SIGPLAN Notices33(5):333-344, 1998.
model-checking to validate our discussion of sectldhC [19] B. Niemann, C. Haubelt, M. Oyanguren, and J. Teich. Foizina
on the asynchronous enc0d|ng Of t|me |n Systemc A Second TLM with communicating state machinesAdvances in Deslgn and

. . . Specification Languages for Embedded Syst@ages 225-242, 2007.
perspective to evaluate the relevance and the efficiendatié s [20] Open SystemC Initiative. [IEEE 1666 Standard: SystemC Language

7e+06

6e+06 - q

4e+06 |-

Nb of states

3e+06 |-

2e+06 -

le+06 |-

VIl. CONCLUSION

analysis tools such asdBicURINTERPROC([9] for checking Reference Manual005. http://www.systemc.org/

Safety properties of timed Systemc models. [21] Open SystemC Initiative (OSCI). QSC| TLM-2.0 _Language
Reference Manual July 2009. Version JA32, available from
http://www.systemc.org/downloads/standards

REFERENCES [22] Claus Traulsen,glome Cornet, Matthieu Moy, and Florence Maraninchi.

A SystemC/TLM semantics in Promela and its possible applioatitn

[1] J. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Msigu, and 14th Workshop on Model Checking Software SRIaly 2007.

M. Sighireanu. CADP a protocol validation and verificatioolbox. In
Computer Aided Verificatigrpages 437—440. Springer, 1996.

http://gitorious.org/pinavm
http://www.systemc.org/
http://www.systemc.org/downloads/standards

	Introduction
	SystemC
	Overview of the problem and Related Works
	Translation from C++ and encoding of SystemC scheduler
	Translating User Processes from C++ with PinaVM
	Encoding synchronization primitives
	Discussion and Improvements

	Validating the encoding principles
	Experiments and efficiency of our encoding
	A SystemC example
	Results

	Conclusion
	References

