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ABSTRACT 

Background: Congenital hyperinsulinism (CHI) is characterized by an over secretion of 

insulin by the pancreatic β-cells. This condition is mostly caused by mutations in ABCC8 or 

KCNJ11 genes encoding the SUR1 and KIR6.2 subunits of the ATP-sensitive potassium 

(KATP) channel.  CHI patients are classified according to their responsiveness to diazoxide and 

to their histopathological diagnosis (either focal, diffuse or atypical forms). Here, we raise the 

benefits/limits of the genetic diagnosis in the clinical management of CHI patients.  

Methods: ABCC8/KCNJ11 mutational spectrum was established in 109 diazoxide-

unresponsive CHI patients for whom an appropriate clinical management is essential to 

prevent brain damage. Relationships between genotype and radiopathological diagnosis were 

analysed. 

Results: ABCC8 or KCNJ11 defects were found in 82% of the CHI cases. All patients with a 

focal form were associated with a single KATP channel molecular event. In contrast, patients 

with diffuse forms were genetically more heterogeneous: 47% were associated with 

recessively inherited mutations, 34% carried a single heterozygous mutation and 19% had no 

mutation. There appeared to be a predominance of paternally inherited mutations in patients 

diagnosed with a diffuse form and carrying a sole KATP channel mutation. 

Conclusions: The identification of recessively inherited mutations related to severe and 

diffuse forms of CHI provides an informative genetic diagnosis and allows prenatal diagnosis. 

In contrast, in patients carrying a single KATP channel mutation, genetic analysis should be 

confronted with the PET imaging to categorize patients as focal or diffuse forms in order to 

get the appropriate therapeutic management. 
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 Congenital hyperinsulinism (CHI; MIM #256450) characterized by an inappropriate 

over secretion of insulin from pancreatic β-cells is the most frequent cause of persistent 

hypoglycaemia with an estimated incidence of 1 / 50 000 births in most populations.(1, 2) The 

clinical challenge concerns patients who are unresponsive to the medical treatment, as severe 

and persistent hypoglycaemias lead to irreversible brain damage. 

 CHI is related to different genetic aetiologies. In rare cases, CHI results from 

anomalies of either the glucokinase (GCK), the glutamate dehydrogenase (GLUD1),  short-

chain L-3-hydroxyacyl-CoA dehydrogenase (HADH) genes (3 for review) or the hepatocyte 

nuclear factor 4A (HNF4A), the latter being associated with transient forms of CHI (4), and 

more recently the monocarboxylate transporter 1 (SLC16A1), which causes exercise-induced 

HI.(5) However, CHI is mostly associated with molecular defects of the β-cell ATP-sensitive 

potassium (KATP) channel genes, KCNJ11 and ABCC8, respectively encoding the channel 

subunits Kir6.2 and SUR1.(2, 6-9)  

 The management of patients depends on the responsiveness to medical therapy. The 

treatment of CHI is primarily based on the use of diazoxide, a KATP channel agonist. Since 

ABCC8 and KCNJ11 defects can impair the channel response to its agonist,(10) another 

alternative is to use octreotide and frequent or continuous feeding.(11) Pancreatic surgery 

should be restricted to medically unresponsive CHI. It is therefore essential since their 

medical care will be different to classify patients correctly according to the two main 

histopathological forms of CHI.(12-14) The focal form consists of abnormal pancreatic β-

cells restricted to a limited pancreatic area and can be cured by the targeted removal of the 

pathological tissue. In contrast, the diffuse form affects all the β-cells and thus requires near 

total pancreatectomy when patients are unresponsive to an intensive medical treatment. 

Besides these two well-defined forms of CHI, some histopathological forms are not well-
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characterized, neither being typically focal nor typically diffuse, some of them presenting a 

mosaicism of their pancreatic β-cells resulting in an atypical form of CHI.(15-17)  

Focal and diffuse forms of CHI related to a KATP channel defect involve distinct molecular 

mechanisms. Focal forms are sporadic defects resulting from two events: a paternally 

inherited KCNJ11 or ABCC8 mutation and the loss of the corresponding maternal allele in 

some pancreatic β-cells leading to a focal lesion.(18, 19) Diffuse forms are classically 

associated with an autosomal recessive mode of inheritance.(6, 8, 20) Both focal CHI and 

recessively inherited CHI related to a KATP channel defect are usually resistant to 

diazoxide.(8) By contrast, the rare diffuse forms described with a dominant inheritance are 

sensitive to diazoxide.(21, 22) Altogether, ABCC8 and KCNJ11 mutations would account for 

about 50% of CHI patients.(2, 8) However, the proportion of KATP channel mutations 

identified in CHI remains inaccurately defined since large studies have not been performed by 

sequence analysis, and most mutations were reported through case reports.(9) Furthermore, 

CHI cases related to ABCC8/KCNJ11 mutations were mostly described independently of their 

responsiveness to diazoxide.  

Here, we describe the ABCC8 and KCNJ11 mutational spectrum in a large series of 

diazoxide-unresponsive CHI patients. We discuss the benefits/limits of the ABCC8/KCNJ11 

genetic testing according to the radiological and histological diagnosis, and the clinical 

situations that warrant a molecular analysis to improve the clinical management of diazoxide-

unresponsive CHI patients. 
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METHODS 

Patients  

From 1999 to 2009, we studied 109 diazoxide-unresponsive unrelated CHI patients (57 boys, 

52 girls) who were referred for clinical and/or radiological investigations or surgery to 

Necker-Enfants Malades Hospital (Paris, France). Most of them (92/109, 84.4%) were 

diagnosed during the neonatal period, whereas 16 patients were diagnosed between 1 and 6 

months of life, and 1 girl at 22 months. The series includes 87 Euro-Caucasians (80%), 13 

North-Africans, 3 Turkish, 3 Asians, 1 African and 2 from the Indian Ocean region. 

Clinical diagnosis of CHI was based on the observation of recurrent non ketotic 

hypoglycemias (blood glucose concentration < 3 mmol/l) associated with concomitant 

inappropriate plasma insulin concentration.(8) Non-responsiveness to diazoxide was defined 

as two confirmed blood glucose measurements lower than 3 mmol/l in a 24-hours period after 

at least five consecutive days of diazoxide therapy at 15 mg/kg/day (neonates) or 10 

mg/kg/day (infants) divided in 3 oral doses.(8) Patients with syndromic CHI (e.g. 

hyperinsulinism-hyperammonemia (HI/HA) syndrome or CHI associated with overgrowth 

syndromes) were excluded, as each syndrome warrants its specific molecular testing and 

because they are diazoxide-sensitive. For all studied patients, we obtained the written 

informed consent in accordance with the French ethical guidelines. 

 

Radiological and histopathological diagnosis 

Radiological investigations were based on transhepatic catheterization of the portal and 

pancreatic veins with pancreatic veins sampling (PVS) for patients explored before 2005 and 

positons emission tomography (PET) performed with [18F] fluoro-L-DOPA since 2005.(14, 

23-26) In cases treated by surgery, the histological diagnosis (focal, diffuse or atypical form) 
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was assessed by analysis of intraoperative frozen samples, formalin fixed and paraffin 

embedded sections, as described.(12, 15, 27).  

All the pancreatic tissue samples were analysed by two pediatric pathologists, at the time of 

surgery and before inclusion in this study. We subdivided CHI patients into three 

radiopathological groups. The first one consisted of 37 patients with a focal form of CHI, 35 

of them underwent surgery. The second group included 64 patients with a diffuse form of 

CHI. In this group, patients were subclassified in “diffuse CHI” (27 operated patients, with 

pathological confirmation) and “suspected diffuse CHI” (37 patients with radiological 

diagnosis and no histological confirmation). The third group consisted of 8 operated patients 

with an atypical histopathological form as previously described.(17, 28) 

Median values of clinical characteristics were used for analysis. Categorical data were 

compared with Fisher exact test. A p value of less than 0.05 was considered of statistical 

significance. 

 

Genetic analysis 

The search for germline events was performed on genomic DNA extracted from peripheral 

lymphocytes. The study followed five steps:  

(i) Sequencing of the coding sequence and exon/intron boundaries of KCNJ11 and ABCC8 

genes and the ABCC8 promoter region in probands. In four patients, sequence analysis was 

also performed on pancreatic DNA extracted from frozen sections to search for somatic 

events. 

(ii) Variant validation. First, we performed bioinformatic analysis using Polyphen, Sift and 

GVGD for missense variants; SpliceSiteFinder, NNSPLICE, GeneSplicer and MaxEntScan 

for splice site variants. Variants were considered as mutations when these algorithms 
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predicted them to be deleterious. Second, the variants were excluded from 400 

geographically-matched control chromosomes.  

(iii) Cosegregation analysis in the parents. In case of a suspected de novo event, we genotyped 

14 microsatellite markers (Individual Panel 15 for Linkage Mapping Set v2.5, Applied 

Biosystems) including 6 markers on chromosome 11 in both patient and parents.  

(iv) In all probands except those with compound heterozygous mutations, search for ABCC8 

genomic rearrangements by multiplex ligation-dependent probe assay (MLPA)  

(v) GCK screening in patients with no ABCC8 and KCNJ11 mutation.  

Sequence analysis 

KCNJ11 and ABCC8 sequencing. The sequence analysis included first the amplification by 

polymerase chain reaction (PCR) of the single exon of KCNJ11, the promoter region of 

ABCC8 and its 39 exons. The purified PCR products were sequenced in both directions using 

the ABI PRISM BigDye Terminator chemistry (Applied Biosystems). Sequencing reactions 

were run on an ABI3100 Genetic Analyzer and analyzed with the Seqscape software Version 

2.2 (Applied Biosystems). The mutation nomenclature is based on the reference sequences 

KCNJ11 NM_000525.3 and ABCC8 NM_000352.3 corresponding to the L72808 isoform 

(1,582 amino acids) which incorporates the extra serine residue in exon 17.(9)  

GCK sequencing. The sequence analysis of the coding exons of the pancreatic isoform of 

GCK (NM_000162.3) was performed for all patients with normal KCNJ11 and ABCC8 

investigation. 

All primer sequences and amplification conditions are available on request.  

MLPA analysis 

We used the SALSA MLPA KIT P117 ABCC8 (MRC Holland, The Netherlands) for the 

search for genomic rearrangements. The procedure was carried out according to 

manufacturer’s instructions. Ligation products were separated on an ABI3730 Genetic 
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Analyzer. The analysis was performed using GeneMapper, Version 4.0 (Applied Biosystems). 

Single-exon deletions were checked by real-time quantitative PCR based on SYBR-Green I 

fluorescence. 

 

Microsatellite marker analysis  

A panel of 11 microsatellite markers from the chromosome 11-region around ABCC8 and 

KCNJ11 (D11S2071, D11S1363, D11S922, D11S2344, D11S2347, D11S1901, D11S419, 

D11S1397, D11S921, D11S902 and D11S1888) were analyzed on DNA extracted from 

leucocytes and pancreatic frozen sections. The analysis was performed using GeneMapper, 

Version 4.0.  
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RESULTS 

We identified a KATP channel defect in 89 out of 109 probands (81.6%), most of them 

involving the ABCC8 gene (79/89, 88.8 %). Two mutations were found in 28% (30/109) of 

the probands, which is therefore consistent with a recessive mode of inheritance (table 1). 

Among them, 11/30 had a homozygous mutation, 5/11 belonging to a consanguineous family 

and 19/30 patients were compound heterozygotes. In 59 probands (59/109, 54%), a single 

heterozygous mutation was identified (table 1). The analysis of both parents for 41/59 showed 

35/41 (85%) paternally inherited mutations and 1/41 maternally inherited mutation. De novo 

ABCC8 mutations occurred in 5/41 probands (12.2%). Lastly, no evidence for KATP channel 

defect was found in 20/109 (18%) probands. A de novo GCK mutation was identified in one 

of these. 

 

Characteristics of ABCC8 and KCNJ11 molecular defects 

Eighty-nine probands were identified with KATP channel defects. A total of 118 mutations 

were found, including 106 ABCC8 mutations (90%) and 12 KCNJ11 mutations (10%) (table 

2). Ninety-four out of 118 were different mutations, 41 were previously reported. Out of the 

53 (56%) new mutations, 47 (ABCC8, n = 40 and KCNJ11, n= 7, table 2) were only observed 

once in our series. 

Eighty-one different ABCC8 point mutations were identified (table 2). Regarding their type, 

39/81 (48%) were missense mutations whereas 42/81 (49%) were either truncating mutations 

predicted to generate premature stop codons (15 nonsense mutations, 8 out-of-frame 

mutations and 14 splice site defects) or in-frame small deletions/duplications (5/42). Most 

ABCC8 missense mutations (74%) were located in the nucleotide-binding domains (NBD1, 

amino acids 679-929 and NBD2, amino acids 1344-1578), particularly in the second domain 

whereas only 38% of truncating mutations affected those domains (14/37, Table 2).  
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Eleven different KCNJ11 mutations, 10 missense and 1 frameshift mutations were identified 

in 12 probands (table 2). One mutation, p.Gln128Arg, was located in the pore-forming helix; 

one was in an extra-cellular loop and affects a residue strongly involved in the interaction of 

K+ along the pore (p.Arg136Cys)(29); other mutations were located in the cytoplasmic 

domains.  

Patients with normal ABCC8 and KCNJ11 sequencing and those carrying a single ABCC8 

heterozygous mutation were investigated in search for ABCC8 deletions. We detected by 

MLPA technique and confirmed by fluorescent quantitative PCR single-exon deletions of 

ABCC8 in two compound heterozygous patients: a deletion of exon 8 

(p.Thr393_Gln444del52) and a deletion of exon 22 (p.Asp854_Trp899del46) (table 2 and 

Supplemental material). In order to exclude KCNJ11 deletions in negative patients, four 

recurrent polymorphisms located in the KCNJ11 coding sequence were analysed to rule out a 

possible hemizygosity. Ten patients were homozygous for the KCNJ11 gene. Gene deletion 

could be excluded for all of them using the fluorescent quantitative multiplex PCR method. 

 

Correlation between the ABCC8/KCNJ11 genotype and the radiopathological diagnosis 

Mutations were dispersed throughout the ABCC8 and KCNJ11 genes in focal forms as well as 

in diffuse or suspected diffuse forms. Most mutations were observed only once, thus very few 

mutations were identified in both focal and diffuse (c.428G>A, c.536A>G, c.1792C>T, 

c.3133_3152del20 and c.3644G>A) or suspected diffuse (c.1630+1G>T) forms (table 2).  

The 37/109 patients diagnosed with a focal form were all associated with a unique 

heterozygous mutation affecting the KATP channel, 32 detected in ABCC8 and 5 in KCNJ11 

(tables 1 and 2). Mutations were paternally inherited (24 out of 26 tested parents) or arose de 

novo (2/26). All were distinct, 46% of them (17/37) were missense mutations whereas 51% 

were truncating (19/37) and one led to a deletion of two amino acids (table 2).  
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Among the 64/109 cases diagnosed with a diffuse form (confirmed by histology, 27/64 

patients) or suspected to have a diffuse CHI (on PET or PVS examination, 37 patients), 47% 

(30/64) were either homozygotes (11/30) or compound heterozygotes (19/30), 34% (22/64) 

carried a single heterozygous mutation and 19% (12/64) had none (table 1). No significant 

difference was observed in the number (2, 1 and 0) of KATP mutations identified between 

patients with a diagnosis of diffuse form proved by histology and those with a diagnosis of 

diffuse form based on radiological investigation only (table 1). In patients with a recessive 

form of CHI, 55% of KATP mutations were missense mutations whereas 45% were truncating. 

In contrast, truncating mutations were less frequently observed in patients carrying a single 

KATP heterozygous mutation (23% vs. 45%).  

Among the 22 patients with a single heterozygous KATP channel mutation, 10 had a diagnosis 

of diffuse CHI confirmed by histology. For 5 of them, the segregation analysis of both parents 

showed that the mutation had arisen de novo in 2 and was paternally inherited in 3 (table 1). 

To exclude a focal form, we analyzed 11 microsatellite markers in the pancreatic tissue of 

four patients compared to 2 patients with focal forms and 1 patient with a diffuse form due to 

2 mutations. Our results showed a loss of the maternal allele in the two focal forms, as 

expected, while in the diffuse forms no difference was found between patients with one or 

two mutations (supplemental material). Futhermore, pathological comparisons between 

pancreatic specimens from diffuse cases with two mutations and those with one mutation 

showed the same features characterized by enlarged pancreatic β-cell nuclei throughout the 

entire pancreas. We also excluded a somatic coding mutation by sequencing ABCC8 and 

KCNJ11 of pancreatic DNA of these four patients.  

In the 12 patients with diffuse form of CHI suspected by PET imaging and carrying a 

heterozygous ABCC8 mutation, segregation analysis of both parents for 10 cases showed that 

the mutation had arisen de novo in 1 case, was maternally inherited in 1 and paternally 
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inherited in 8 (table 1). In the maternally inherited case, several episodes of hypoglycemia-

related seizures in infancy were reported in the mother, although she was asymptomatic at the 

age of 28. There is strong evidence that the identified mutation Gly716Asp is pathogenic: (i) 

it is located in the first nucleotide binding domain. (ii) the same residue was reported to be 

altered (Gly716Val) in a homozygous recessive form of CHI resistant to diazoxide (30) and 

(iii) the functional study of Gly716Val showed a reduced surface expression of the mutant 

channel.(31)  

Among the 8 paternally inherited cases, no clinical symptom was reported in the fathers at the 

time of the child’s diagnosis. Two families displayed the recurrence of severe CHI. For one of 

them, DNA was available from the affected sibling; the analysis of six microsatellite markers 

located in 11p15.1 showed that they did not share the same maternal haplotype and thus 

excluded a recessive inheritance (data not shown).  

Last, no ABCC8/KCNJ11 mutation was found in 3 patients with a diagnosis of diffuse form 

and in 9 with diffuse form suspected by PET (table 1). One of the operated patients was 

subsequently found to carry a de novo GCK mutation, c.191C>T; p.Ser64Phe.  

Finally, no germline ABCC8/KCNJ11 and GCK mutations were identified in the 8 patients 

with a histological diagnosis of atypical CHI. Paternal isodisomy at the ABCC8 locus was 

excluded at the pancreatic level for 3 of them. Since one patient had a monozygotic healthy 

twin, we also excluded the presence of a somatic mutation. 
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DISCUSSION 

We have shown that mutations in the ABCC8 and KCNJ11 genes respectively encoding the 

SUR1 and KIR6.2 subunits of the KATP channel are major causes of CHI refractory to 

diazoxide, as they account for 82% of all cases in a large series of 109 patients. This estimate 

is higher than those previously reported in several series in which a molecular aetiology was 

found in about 50% to 65% of cases.(2, 8, 32-34) This discrepancy is probably due to 

differences in the clinical phenotype of patients, particularly their response to medical 

treatment, and in the sensitivity of the screening method used for the detection of mutations.  

Our study shows that ABCC8 gene defects are the most important cause of diazoxide-

unresponsive CHI (89% of mutated patients). The mutational spectrum underlines the allelic 

diversity of ABCC8 and KCNJ11 mutations since 80% of identified molecular events were 

distinct in this series and half of them were not reported in the recent update of KATP channel 

mutations (9) or in subsequent publications. A genomic rearrangement was identified in only 

two recessive forms of CHI, each one deleting a single exon, demonstrating the rarity of large 

deletions in CHI.  

We classified CHI patients into three groups according to ABCC8/KCNJ11 mutation status (2 

recessively inherited mutations, 1 single mutation and no mutation) and investigated the 

correlation between genotypes and histopathological or radiological diagnosis.  

In 28% of patients (30/109), we found recessively inherited mutations, either homozygous or 

compound heterozygous, all associated with a diagnosis of diffuse form of CHI. Nearly two 

third of these patients were refractory to all medical treatment and consequently, required 

near-total pancreatectomy. These patients characterized by a severe clinical presentation were 

also frequently large for gestational age. Half of them had a birth weight above 4,000 g. 

In 54% of patients (59/109), we detected a single mutation in the coding sequence and 

boundary regions of ABCC8 or KCNJ11. We studied the allelic segregation in 41 families and 
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found that 12% arose de novo, one was maternally inherited and 85% of mutations were 

paternally inherited. The 37 patients diagnosed with a focal form were all included in this 

group. This result emphasized the absence of genetic heterogeneity of focal forms of CHI 

which are exclusively related to functional abnormalities of the KATP channel. This 

corroborates our previous results (8, 19) and a recent study by Suchi et al. who found a KATP 

channel gene mutation in 86% of patients with a focal form.(35)  

The 22 remaining patients had a diagnosis of either diffuse form (n=10) proved on 

histological examination or suspected diffuse form (n=12) based on PET-scan analysis. To 

explain the identification of a unique KATP mutation, we considered different hypotheses: (i) 

misdiagnosed focal forms, (ii) dominant forms of CHI, (iii) unidentified second recessive 

mutation and (iv) post-zygotic event. Firstly, we excluded the specific features of the focal 

forms at the histological and molecular levels. In the ten patients who had surgery, a diffuse 

lesion was confirmed by pathological examination of the pancreatic tissue showing a pattern 

dramatically different from a focal lesion. At the molecular level, the analysis of 

microsatellite markers excluded any loss of the maternal allele. Additionally, we and others 

have demonstrated the accuracy of the PET imaging on both focal and diffuse forms of 

CHI.(25, 26, 36-37). Altogether, our results did not support a bias related to the type of 

investigation since we observed a similar proportion of single mutations in diffuse forms in 

both operated (10/27) and non operated patients (12/37). Secondly, segregation analysis of 5 

diffuse forms and 10 suspected diffuse forms showed that 3 and 8 were paternally inherited 

respectively. One suspected diffuse form had a maternally inherited mutation and 

corresponded to a dominant form. Except for this case, all patients bearing one mutation in a 

KATP channel gene had parents with no clinical history of hypoglycaemia. In addition diabetes 

was not reported in parents and second-degree relatives of the probands, as originally 

described in dominant KATP CHI.(21) These two arguments, the recurrence of CHI in two 
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siblings with asymptomatic parents and the fact that dominant inactivating ABCC8 or 

KCNJ11 mutation are usually associated with diazoxide-responsive forms of CHI (21, 38) are 

not in favour of a dominant inheritance that would explain the cases with a single KATP 

heterozygous mutation. Nevertheless, these observation could be related to a non penetrance 

as reported for dominant forms of CHI and transient neonatal diabetes associated with KATP 

channel mutations.(38-39) Thirdly, despite an exhaustive molecular analysis including the 

search for point mutations and for genomic rearrangements, we cannot exclude that rare 

variants located in intronic and regulatory regions which are not usually screened may be 

involved. However, the analysis of affected siblings showed that they did not share the same 

maternal haplotype and excluded a recessive inheritance. Lastly, another hypothesis may be 

the occurrence of a post-zygotic mutation. The recurrence of CHI in the aforementioned 

affected siblings could only be explained by the occurrence of independent post-zygotic 

events. Unfortunately, pancreatic material was not available for these patients. However, the 

exclusion of somatic point mutations in the pancreatic tissue of four patients was not in favour 

of the involvement of coding post-zygotic events as a general molecular mechanism. 

Nevertheless, the sensitivity of sequence analysis would not allow identifying mutations 

restricted to the endocrine tissue or with a low level of mosaicism.  

The predominance of paternally inherited mutations in suspected diffuse forms remains 

unexplained and needs to be confirmed on larger series. Interestingly, Fernandez-Marmiesse 

et al reported five diazoxide-unresponsive CHI patients who underwent surgery and whose 

histology did not show a focal lesion. All five inherited the mutation from their father.(34) 

Epigenetic anomalies could be involved since ABCC8 and KCNJ11, which are not known to 

be imprinted genes, are located in the vicinity of the 11p15.5 imprinted region. DNA 

methylation abnormalities of the 11p15.5 locus are observed in Beckwith-Wiedemann 

syndrome, a congenital overgrowth syndrome that can be associated with 
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hyperinsulinism.(40) Preliminary experiments performed in six patients did not show 

evidence of abnormal methylation at the H19, IFG2 and KCNQ10T1 loci in DNA extracted 

from leucocytes (data not shown). Further experiments should be done on pancreatic sections 

of these diffuse forms to exclude somatic epigenetic defects. 

In the third and last group comprising patients with diffuse (n=3), suspected diffuse (n=9) or 

atypical (n=8) forms, neither a point mutation nor a large rearrangement in ABCC8/KCNJ11 

was found. This third group of patients seems to have a less severe phenotype. Only 25% 

were large for gestational age and 40% were refractory to octreotide therapy. We screened the 

GCK gene since three de novo activating GCK mutations have been reported in patients 

unresponsive to diazoxide.(41, 42) We found one novel de novo GCK mutation which is 

predicted to be pathogenic and which altered an amino acid previously reported to be the 

target of a mutation in a patient with CHI.(43) This confirms the low prevalence of GCK 

activating mutations in severe forms of CHI. Even though the proportion of CHI patients with 

unexplained molecular aetiology was significantly decreased compared to previous studies, 

unknown genes remain to be identified in CHI refractory to diazoxide. 

Finally, a mosaic paternal uniparental disomy (UPD) has been reported in an “atypical 

diffuse” form of CHI with a paternally inherited ABCC8 mutation.(17) Contrary to focal 

forms characterized by a paternal UPD of the 11p15.1-15.5 imprinted region, this atypical 

form was related to a paternal UPD observed both in DNA from leucocytes and pancreatic 

tissue but restricted to the 11p15.1 region. We excluded a similar molecular mechanism in our 

cases of atypical CHI.  

 

In conclusion, 82% of patients with CHI unresponsive to diazoxide were related to ABCC8 or 

KCNJ11 mutations in our series. The molecular analysis alone provides an informative 

genetic diagnosis for the clinical management of CHI patients with recessively inherited 
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pathogenic mutations. Genetic counselling and prenatal diagnosis may be offered to families 

with such previous CHI cases.  In contrast, in patients with a single KATP channel mutation, 

the molecular analysis should be systematically confronted with the parental segregation 

analysis and the PET imaging diagnosis. If the mutation is de novo or paternally-inherited and 

the PET diagnosis in favour of a focal form, the surgery will be offered for the resection of the 

focal lesion. But, when the PET imaging suspects a diffuse form, the molecular diagnosis has 

a limited added value for the clinical management of CHI patients. 
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Table 1  Correlations between the ABCC8/KCNJ11 genotype and the radiopathological diagnosis  

 Histopathological diagnosis Radiological diagnosis#   
  Focal Diffuse Atypical Focal (PET/PVS) Diffuse (PET/PVS) Total 
n 35 27 8 2 37 109 
         

2 mutations, n (%) 0 14 (52%) 0 0 16 (43%) (12/4) 30 (28%) 
ABCC8/KCNJ11, n  14 / 0    13 / 3   
         
1 mutation, n (%) 35 10 (37%) 0 2 (2/0) 12 (32%) (12/0) 59 (54%) 
ABCC8/KCNJ11, n 32 / 3 8 / 2   0 / 2 12 / 0   
         

   Paternal inheritance, n 22 3   2 8 35 

   Maternal inheritance, n 0 0   0 1 1 

   De novo, n 2 2   0 1 5 

   Absent in the mother$, n 1 1   0 1 3 

   Unknown inheritance, n 10 4   0 1 15 
         
No ABCC8/KCNJ11 mutation, n (%) 0 3 (11%) * 8 0 9 (24%) (7/2) 20 (18%) 
#non operated patients; n, number of patients, $ paternal sample unavailable, * 1 patient had a GCK mutation 
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Table 2: Characteristics of ABCC8 and KCNJ11 mutations 

Gene Location Nucleotide sequence 
change Protein effect Occurrence 

Histopathological / 
Radiological 
diagnosis‡ 

Genetic 
Status$ References 

ABCC8 Exon 1 c.62T>A p.Val21Asp 1 DPVS hmz Sandal et al, 2009 

ABCC8 Exon 2 c.221G>A p.Arg74Gln 1 DH c-htz Flanagan et al, 2008 

ABCC8 Exon 2 c.259_268del p.Cys87fs 1 FH  This report 

ABCC8 Exon 3 c.403C>G p.Leu135Val 1 DH c-htz This report 

ABCC8 Exon 4 c.428G>A p.Trp143X 3 FH, DH, DPET c-htz (x2) This report 

ABCC8 Exon 4 c.496C>T p.Gln166X 1 DPET c-htz This report 

ABCC8 Exon 4 c.536A>G p.Tyr179Cys 2 FH, DPET hmz Damaj et al, 2008 

ABCC8 Intron 4 c.580-1G>C p.? 1 DH c-htz This report 

ABCC8 Exon 5 c.655C>T p.Gln219X 2 DPET, DPVS c-htz;htzP Flanagan et al, 2008 

ABCC8 Exon 5 c.683G>A p.Gly228Asp 1 FH  Flanagan et al, 2008 

ABCC8 Exon 5 c.727_756del30 p.Lys243_Lys252del 1 DH hmz This report 

ABCC8 Exon 5 c.742C>T p.Arg248X 1 DPET hmz Flanagan et al, 2008 

ABCC8 Exon 6 c.950delC p.Pro317fs 1 DPET c-htz This report 

ABCC8 Exon 7 c.1176G>A p.? 1 DPET htzP Flanagan et al, 2008 

ABCC8 Exon 8 c.1177-?_1332+?del p.Thr393_Gln444del52 1 DH c-htz This report 

ABCC8 Exon 8 c.1331A>G p.Gln444Arg 1 FH  Damaj et al, 2008 

ABCC8 Exon 10 c.1508T>C p.Leu503Pro 1 FH  Flanagan et al, 2008 

ABCC8 Exon 10 c.1531C>A p.Leu511Met 2 DH htz, htznovo This report 

ABCC8 Intron 10 c.1630+1G>T p.? 3 FH (x2), DPET htzP Flanagan et al, 2008 

ABCC8 Exon 12 c.1732_1746dup15 p.Ala578_Leu582dup5 1 DPET htzP Flanagan et al, 2008 

ABCC8 Exon 12 c.1738C>T p.Leu580Phe 1 DPET hmz This report 

ABCC8 Exon 12 c.1792C>T p.Arg598X 2 FH, DH c-htz Flanagan et al, 2008 

ABCC8 Intron 13 c.1923+5G>T p.? 1 FH  This report 

ABCC8 Exon 14 c.2035_2036insCTGT p.Val679fs 1 DH hmz This report 
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ABCC8 Exon 15 c.2051G>A p.Gly684Glu 1 FH  This report 

ABCC8 Exon 15 c.2064G>A p.Trp688X 1 FH  Giurgea et al, 2004 

ABCC8 Intron 15 c.2116+2T>C p.? 1 DH c-htz This report 

ABCC8 Exon 16 c.2124_2127delGACT p.Thr709X 1 FH  This report 

ABCC8 Exon 16 c.2147G>A p.Gly716Asp 1 DPET htzm This report 

ABCC8 Exon 16 c.2153delG p.Gly718fs 1 DH htzP This report 

ABCC8 Exon 20 c.2425C>T p.Gln809X 1 DH c-htz Damaj et al, 2008 

ABCC8 Exon 20 c.2473G>A p.Glu825Lys 1 DPET htzP This report 

ABCC8 Exon 22 c.2560-?_2697+?del p.Asp854_Trp899del46 1 DH c-htz This report 

ABCC8 Exon 22 c.2581G>C p.Asp861His 1 DPVS c-htz This report 

ABCC8 Exon 22 c.2669A>C p.Lys890Thr 1 DH htzP Flanagan et al, 2008 

ABCC8 Exon 22 c.2672T>C p.Leu891Pro 1 DH htznovo This report 

ABCC8 Exon 23 c.2702T>C p.Ile901Thr 2 DH, DPET c-htz This report 

ABCC8 Exon 23 c.2784G>A p.Trp928X 1 FH  This report 

ABCC8 Exon 23 c.2803C>T p.Gln935X 1 DPET c-htz This report 

ABCC8 Exon 24 c.2860C>T p.Gln954X 1 FH  Flanagan et al, 2008 

ABCC8 Intron 24 c.2924-9G>A p.? 1 DPET htzP This report 

ABCC8 Intron 24 c.2924-2A>G p.? 2 DPET hmz This report 

ABCC8 Exon 25 c.2994G>A p.Trp998X 1 DH c-htz This report 

ABCC8 Exon 25 c.3111G>A p.Trp1037X 1 FH  This report 

ABCC8 Exon 25 c.3133_3152del20 p.Thr1045fs 2 FH, DPVS c-htz Flanagan et al, 2008* 

ABCC8 Exon 27 c.3391A>C p.Thr1131Pro 1 DPVS c-htz Flanagan et al, 2008 

ABCC8 Exon 29 c.3577delG p.Asp1193fs 1 DPET c-htz Flanagan et al, 2008 

ABCC8 Exon 29 c.3644G>A p.Arg1215Gln 2 FH, DH hmz Flanagan et al, 2008 

ABCC8 Exon 30 c.3751C>T p.Arg1251X 1 DH c-htz Flanagan et al, 2008 

ABCC8 Intron 32 c.3991+2_3991+15del14 p.? 1 FH  Flanagan et al, 2008 

ABCC8 Intron 32 c.3992-3C>G p.? 1 FH  Flanagan et al, 2008 

ABCC8 Intron 32 c.3992-9G>A p.? 1 FH  Flanagan et al, 2008 
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ABCC8 Exon 33 c.4040_4045delTCCAGA p.Ile1347_Gln1348del 1 FH  Damaj et al, 2008 

ABCC8 Exon 33 c.4092C>G p.His1364Gln 1 FH  This report 

ABCC8 Exon 34 c.4126G>A p.Gly1376Arg 1 FH  This report 

ABCC8 Exon 34 c.4150G>A p.Gly1384Arg 1 DH c-htz This report 

ABCC8 Exon 34 c.4154_4155delAG p.Lys1385fs 1 FH  Flanagan et al, 2008 

ABCC8 Exon 34 c.4160C>T p.Ser1387Phe 1 DPET htz Flanagan et al, 2008 

ABCC8 Exon 34 c.4166C>A p.Ser1389Tyr 1 DPET htz This report 

ABCC8 Exon 34 c.4169T>C p.Leu1390Pro 1 DH htz Flanagan et al, 2008 

ABCC8 Exon 34 c.4177T>A p.Phe1393Ile 1 FH  This report 

ABCC8 Exon 35 c.4213_4215delATT p.Ile1405del 2 DH, DPET c-htz This report 

ABCC8 Exon 35 c.4228A>T p.Ile1410Phe 1 DH c-htz This report 

ABCC8 Exon 35 c.4241C>T p.Pro1414Leu 1 FH  Flanagan et al, 2008 

ABCC8 Exon 35 c.4255C>T p.Arg1419Cys 1 DPVS c-htz This report 

ABCC8 Exon 35 c.4261C>T p.Arg1421Cys 1 DPET c-htz Flanagan et al, 2008 

ABCC8 Exon 35 c.4300G>A p.Gly1434Ser 1 DH c-htz This report 

ABCC8 Exon 35 c.4309C>G p.Arg1437Gly 1 DH c-htz This report 

ABCC8 Exon 36 c.4325delC p.Pro1442fs 1 FH  This report 

ABCC8 Exon 36 c.4345_4347dupAGC p.Ser1449dup 1 DH c-htz This report 

ABCC8 Exon 36 c.4352T>G p.Leu1451Arg 1 DPVS c-htz Flanagan et al, 2008 

ABCC8 Exon 36 c.4372G>A p.Ala1458Thr 1 FH  Flanagan et al, 2008 

ABCC8 Exon 36 c.4372G>C p.Ala1458Pro 1 DH hmz This report 

ABCC8 Exon 36 c.4373C>T p.Ala1458Val 1 DPET htzP This report 

ABCC8 Exon 36 c.4390delG p.Val1464X 1 DPET htzP This report 

ABCC8 Exon 36 c.4414G>A p.Asp1472Asn 1 FH  Flanagan et al, 2008 

ABCC8 Exon 36 c.4414G>C p.Asp1472His 1 DH c-htz Henwood et al, 2005 

ABCC8 Intron 36 c.4415-13G>A p.? 1 FH  Flanagan et al, 2008 

ABCC8 Exon 37 c.4442A>T p.Asn1481Ile 1 DPET htznovo This report 

ABCC8 Exon 37 c.4480C>T p.Arg1494Trp 1 FH  Flanagan et al, 2008 
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ABCC8 Exon 37 c.4481G>A p.Arg1494Gln 1 DH htz Flanagan et al, 2008 

ABCC8 Exon 37 c.4518C>G p.Asp1506Glu 1 DH htz This report 

ABCC8 Intron 38 c.4612-2A>T p.? 1 DH c-htz Flanagan et al, 2008 

KCNJ11 Exon 1 c.101G>A p.Arg34His 1 DPET hmz Flanagan et al, 2008 

KCNJ11 Exon 1 c.383A>G p.Gln128Arg 1 FH  This report 

KCNJ11 Exon 1 c.406C>T p.Arg136Cys 1 FPET  This report 

KCNJ11 Exon 1 c.492_493insGGTT p.Cys166fs 1 DPET c-htz This report 

KCNJ11 Exon 1 c.637G>A p.Ala213Thr 1 FH  This report 

KCNJ11 Exon 1 c.667A>C p.Thr223Pro 1 DH htz This report 

KCNJ11 Exon 1 c.777T>G p.His259Gln 1 FH  This report 

KCNJ11 Exon 1 c.881C>T p.Thr294Met 2 DH, DPET c-htz;htzP 
Shimomura et al, 

2009 

KCNJ11 Exon 1 c.901C>T p.Arg301Cys 1 FPET  Lin et al, 2008  

KCNJ11 Exon 1 c.902G>A p.Arg301His 1 DPET c-htz Flanagan et al, 2008 

KCNJ11 Exon 1 c.998T>C p.Phe333Ser 1 DPET c-htz This report 

* Reported as c.3130_3149del20; $ Genetic status for diffuse forms; hmz: homozygous; c-htz: compound heterozygous; htz: heterozygous without 
information on the inheritance; htzp for paternally inherited, htzm for maternally inherited and htznovo for de novo mutations; ‡ D and F stand for diffuse 
and focal forms, respectively. When the diagnosis was based on histological data, H was added in lowercase. When only radiological diagnosis was 

available, the corresponding technique (PET, PVS) was indicated in lowercase.  
 


