

GDP-mannose: GlcNAc2-PP-dolichol mannosyltransferase deficiency (CDG Ik): 5 new patients and 7 novel mutations

Thierry Dupré, Sandrine Vuillaumier-Barrot, Isabelle Chantret, Hassane Sadou Yayé, Christiane Le Bizec, Alexandra Afenjar, Cecilia Altuzarra, Christine Barnérias, Lydie Burglen, Pascale de Lonlay, et al.

▶ To cite this version:

Thierry Dupré, Sandrine Vuillaumier-Barrot, Isabelle Chantret, Hassane Sadou Yayé, Christiane Le Bizec, et al.. GDP-mannose: GlcNAc2-PP-dolichol mannosyltransferase deficiency (CDG Ik): 5 new patients and 7 novel mutations. Journal of Medical Genetics, 2010, 47 (11), pp.729. 10.1136/jmg.2009.072504. hal-00557371

HAL Id: hal-00557371 https://hal.science/hal-00557371

Submitted on 19 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	GDP-mannose: GlcNAc ₂ -PP-dolichol mannosyltransferase deficiency (CDG Ik): 5 new
2	patients and 7 novel mutations
3	
4	Dupré, T., ^{1,2,5} Vuillaumier-Barrot, S., ^{1,2,5} Chantret, I., ^{2,5} Sadou Yayé, H., ¹ Le Bizec, C., ¹
5	Afenjar, A., ⁶ Altuzarra, C., ⁷ Barnérias, C., ⁸ Burglen, L., ⁹ de Lonlay, P., ^{3,4} Feillet, F., ¹⁰ Napuri,
6	S., Seta N., ^{1,3} Moore, S.E.H., ^{2,5}
7	
8	¹ AP-HP, Hôpital Bichat-Claude Bernard, Biochimie Métabolique et Cellulaire, Paris France
9	² INSERM U773 CRB3, Paris France
10	³ Université Paris Descartes, Paris, France
11	⁴ AP-HP, Hôpital Necker-Enfants Malades, Département de Pédiatrie, Paris, France
12	⁵ Université Denis Diderot, Paris 7, Paris, France
13	⁶ AP-HP, Service de Neuropédiatrie et Pathologie du Développement, Hôpital Armand
14	Trousseau, Paris, France.
15	⁷ Service de Pédiatrie, Hôpital Saint Jacques, Besançon, France.
16	⁸ AP-HP, Service de Neuropédiatrie, and Centre de Référence des Maladies
17	Neuromusculaires, Hôpital Necker-Enfants-malades, Paris, France.
18	⁹ AP-HP, Service de Génétique, Génétique Clinique-Neurogénétique. Hôpital A. Trousseau,
19	Paris, France.
20	¹⁰ Centre de Référence des Maladies Héréditaires du Métabolisme CHU Brabois Enfant,
21	Vandoeuvre les Nancy, France.
22	¹¹ Service: Explorations Fonctionnelles Neurologiques Hôpital Sud-Rennes , RENNES, France
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	

1 ABSTRACT

Background: In type I Congenital Disorders of Glycosylation (CDG I), proteins necessary for the biosynthesis of the lipid-linked oligosaccharide (LLO) required for protein Nglycosylation are defective. A deficiency in GDP-mannose: GlcNAc₂-PP-dolichol mannosyltransferase (MT-1) causes CDG Ik (OMIM 608540), and only five patients, with severe multisystemic clinical presentations, have been described with this disease.

Objective: To characterise genetic, biochemical and clinical data in 5 new CDG Ik cases and
 compare these findings with those of the 5 previously described patients.

9 Methods: LLO biosynthesis was examined in skin biopsy fibroblasts, mannosyltransferases 10 were assayed in microsomes prepared from these cells, and *ALG1*-encoding MT-1 was 11 sequenced at both the DNA and cDNA levels. Clinical data for the 5 new patients were 12 collated.

Results: Cells from 5 patients with non-typed CDG I revealed accumulations of GlcNAc₂-PPdolichol, the second intermediate in the biosynthesis of LLO. Assay of MT-1, 2 and 3, the first three mannosyltransferases required for extension of this intermediate demonstrated only MT-1 to be deficient. DNA sequencing of *ALG1* revealed 9 different mutations, 7 of which have not been previously reported. Clinical presentations are severe with dysmorphias, CNS involvement and ocular disturbances being prevalent.

19 **Conclusions:** 5 patients with CDG Ik are described, and their identification reveals that, in 20 France, this disease and CDG Ib (MPI deficiency: OMIM 602579) are the most frequently 21 diagnosed CDG I after CDG Ia (PMM2 deficiency: OMIM 601785) and substantiates 22 previous observations indicating that this disease presents at the severe end of the CDG I 23 clinical spectrum.

24	
25	
26	
27	
28	
29	
30	
31	Key words: GDP-mannose: GlcNAc ₂ -PP-dolichol mannosyltransferase (MT-1) deficiency,
32	Congenital Disorders of Glycosylation type Ik (CDG Ik), protein N-glycosylation, ALG1-
33	CDG
34	

2

1 INTRODUCTION

2 Type I Congenital Disorders of Glycosylation (CDG I) are rare autosomal recessive metabolic disorders affecting protein N-glycosylation¹. About 1000 cases have been identified 3 worldwide. The diseases present with multisystemic signs, and their biochemical hallmark is 4 the presence of hypoglycosylated serum glycoproteins². The underlying deficits in CDG I 5 have been shown to affect steps in the biosynthesis of the lipid-linked oligosaccharide (LLO) 6 7 precursor that is required for N-glycosylation³. LLO is generated by the successive additions 8 of 1 residue of GlcNAc-P, 1 residue of GlcNAc, 9 residues of mannose and 3 residues of 9 glucose to dolichol phosphate to generate Glc₃Man₉GlcNAc₂-PP-dolichol. The 10 oligosaccharide moiety of this LLO is transfered onto nascent polypeptides to yield N-11 glycosyl glycoproteins and dolichol pyrophosphate (dolichol-PP). The so called dolichol cycle is then completed by the regeneration of dolichol-P from dolichol-PP⁴. Many proteins 12 13 are required for dolichol recycling. So far, mutations in genes encoding 15 of them have been 14 shown to underly CDG I. CDG I are subtyped according to the defective protein 5. 15 Phosphomannomutase 2-deficiency (CDG Ia) is the commonest form of CDG I with more 16 than 600 cases described world wide, and other CDG I subtypes appear to be much rarer ⁶. 17 Identification of the molecular bases of type I CDG is important because first, it enables the 18 generation of antenatal tests for the affected families; second, mannose phosphate isomerase 19 (MPI)-deficiency (CDG Ib) is treatable; and third, the establishment of potential 20 genotype/phenotype relationships for the different CDG I subtypes could potentially facilitate 21 future diagnostic procedures.

Here we report that skin biopsy fibroblasts from 5 patients with severe type I CDGlike clinical presentations reveal abnormal accumulations of the immature LLO intermediate GlcNAc₂-PP-dolichol, and display less than 10% normal GDP-mannose: GlcNAc₂-PPdolichol mannosyltransferase (MT-1) activity. Overall 9 mutations in *ALG1* encoding MT-1 were identified. Seven novel mutations are described and the clinical presentations of these 5 MT-1 deficient (CDG Ik) patients are compared to those of the 5 previously described cases ⁷⁻

29

30 MATERIALS, METHODS AND PATIENTS

Patients – 3 girls (patients P1, P2, P4) and 2 boys (patients P3, P5) were diagnosed with type
 I CDG of unknown molecular origin at the ages of 4 months, 16 months, 10 months, 18
 months and 3 years and 7 months respectively. The diagnosis was made after Western Blot of
 serum proteins using blood samples collected onto paper as previously described ¹¹. After

1 parental consent a skin biopsy was performed on the forearm of each child. For gene studies,

2 signed informed consent protocols were obtained from all parents.

3 *Culture and metabolic radiolabeling of cultured skin biopsy fibroblasts* - Skin biopsy 4 fibroblasts from two control subjects and the 5 patients were prepared and cultivated ¹² as 5 previously described. Cells were metabolically radiolabelled for 30 minutes in RPMI 1640 6 medium containing 0.5 mM glucose and 2% dialysed foetal calf serum with either [2-7 ³H]mannose (21.5 Ci/mmol, Perkin Life Sciences, FR) or [6-³H]glucosamine (37.7 Ci/mmol, 8 Perkin Life Sciences, FR).

9 *Recovery of metabolically radiolabeled LLO* – Subsequent to radiolabelling, LLO were 10 extracted from cells as previously described 12 except that the CHCl₃ fractions from the 11 CHCl₃/methanol/water extracts were pooled with the 10/10/3 fractions before analysis.

12 Analysis of lipid linked oligosaccharides - Lipid extracts were dried down, subjected to acid 13 hydrolysis (20 mM HCl) and released oligosaccharides were resolved by TLC using either 14 system A: silica coated plastic sheets (Merck KGaA, DE) developed for 18 h in n-propanol: 15 acetic acid: water, 3/2/1, or system B: cellulose-coated plastic sheets (Merck KGaA, DE) 16 developed in ethyl acetate: pyridine: water: acetic acid, 5/5/3/1 for 8-18 h. Radioactive 17 components were visualised by fluorography after spraying the chromatograms with En³Hance spray (Perkin Life Sciences, FR). Radiolabeled di-N-acetylchitobiose 18 19 ([³H]GlcNAc₂, BIOTREND GmbH, DE) was used as standard.

20 Mutation analysis - Genomic DNA was extracted from blood. RNA was isolated from 21 fibroblasts or from fresh blood cells. Sequencing was performed with the BigDye terminator 22 kit (Applied Biosystems, CA, USA) and analysed on an ABI PRISM 3130 sequencer 23 (Applera, CA, USA). The ALG1 gene (NM 019109.4) was first sequenced on genomic DNA. 24 Primers were designed to amplify all 13 coding exons and flanking intronic sequences, with 25 selected 3'ends matching the correct ALG1 sequence and not those of the ALG1 pseudogenes. 26 At the RNA level, primers were designed to amplify cDNA in five fragments from exon 1 to 27 the 3'UTR region. Primer sequences are available on request.

28 To exclude common polymorphisms, 82 unrelated healthy individuals served as control 29 subjects were sequenced in the region of each of the missense mutations (164 alleles). The 30 PolyPhen (http://coot.embl.de/PolyPhen), PANTHER 31 (http://www.pantherdb.org/tools/csnpScoreForm.jsp), SIFT2 (http://blocks.fhcrc.org/sift/ 32 SIFT) and SNPs3D (<u>http://www.snps3d.org/</u>) algorithms were used to evaluate the potential 33 impact of the missense mutations on protein structure and function. The mutation nomenclature is based on the Human Genome Variation Society recommendations¹³; for 34

cDNA numbering, +1 corresponds to the A of the ATG translation initiation codon in the
reference sequence of the GenBank (NM) accession number, and for protein, the initiation
codon is codon 1.

Microsatellite analysis - Haplotype analysis was performed on CDG Ik families with the 4 c.773C>T (p.Ser258Leu) (n=3), c.1263G>A (p.Cys396X) (n=2) and c.826C>T 5 6 (p.Arg276Trp) (n=2) mutations. Three highly polymorphic microsatellite markers close to 7 ALG1 were selected: 31GT (UCSC hg18: 5 045 841-5 046 102) at -0.16MB, 16GT (UCSC 8 hg18 : 5 144 906-5 145 138) at +0.67 MB and D1S3134 (UCSC hg18 : 5 164 462-5 164 691) 9 at +0.87 MB. Primer sequences were obtained from the Genome Data Base. Fragments were 10 analyzed on an ABI PRISM 3100 with GeneMapper v4.0 software (Applera, CA, USA). 11 Preparation of GlcNAc₂-PP-dolichol from the mannosyltransferase-1 deficient yeast strain

12 alg1-1 - GlcNAc₂-PP-dolichol was generated in the temperature sensitive yeast strain alg1-113 (kindly donated by Professor L. Lehle, Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Regensburg, Germany) deficient in MT-1 activity¹⁴. After extraction and removing organic 14 15 solvents, LLO were taken up in CHCl₃/methanol/water, 10/10/3, and subjected to anion exchange chromatography on DE-52 cellulose (acetate form)¹⁵. LLO was washed twice with 16 17 2 ml H₂O, and GlcNAc₂-PP-dolichol was quantitated by hydrolysing the LLO with 20 mM HCl and assaying the released disaccharide using bovine galactosyltransferase and UDP-18 19 ¹⁴C]galactose ¹⁵.

Assay of mannosyltransferase-1 activity – Microsomes prepared from the different fibroblast 20 lines ¹⁶ were incubated at 37°C for 20 min in 50 µL 50 mM TrisHCl, pH 8.0 containing: 21 protease inhibitors (Sigma), 1 µM GlcNAc₂-PP-dolichol, 1 µM GDP-[¹⁴C]mannose (275 22 23 mCi/mmol, GE Healthcare, FR), 10 mM MgCl₂, 0.1% Triton-X100, and 2-20 µg microsomal 24 protein. Reactions were stopped by addition of 150 μ L ice cold H₂O, 400 μ L methanol and 25 $600 \,\mu L \,CHCl_3$. After vigorous shaking the tubes were centrifuged to generate two phases. The 26 lower CHCl₃ phase was taken for scintillation counting. Radioactive components recovered 27 from the CHCl₃ phase were further characterised after hydrolysis with 20 mM HCl, and 28 released sugars were examined using TLC system B.

Assay of mannosyltransferase-2 and -3 activities – Microsomes generated from HepG2 cells 16 were incubated with 1 μ M GlcNAc₂-PP-dolichol and GDP-[¹⁴C]mannose for 10 min and the resulting [¹⁴C]LLO were extracted and purified as described above then incubated with 20 μ g microsomal proteins derived from a control subject (Ctrl 2) and the 5 patients in either the absence or presence of 20 μ M GDP-Man (Sigma) as described above. After extraction of reaction mixtures with organic solvents, radioactive components recovered from the CHCl₃ phase were further characterised after hydrolysis with 20 mM HCl. Released sugars were
 examined using TLC system A.

3

4 **RESULTS**

5 Patients and clinic – Clinical presentations of the five patients are detailed in the Table. 6 Pregnancies associated with patients P4 and P5 were uneventful whereas pregnancy induced 7 maternal hypertension developed with those associated with P2 and P3, and for P1 and P3 8 foetal growth was retarded. At birth, neurological signs were noted: central hypotonia and 9 psychomotor delay were present. All patients presented with at least one episode of epilepsy; 10 ranging in severity from a unique treatable episode for patient P2 to multiple intractable 11 seizures in patient P4. Exploration of neurological occurrences by EEG revealed more or less 12 serious abnormalities for all children except P2. Using MRI, P2 and P5 presented normally at 13 the time of examination. After MRI examinations at 18 days and 18 months, patient P1 14 revealed a progressive cerebellar hypoplasia. Patients P1, P3 and P4 presented with cortical 15 atrophy. Finally, dysmorphias were found to be present to differing degrees in all children 16 with microcephaly (-2.5 for P5) being noted for 4/5 patients. With the exception of P2 who 17 presented with less severe neurological signs it is notable that the other children presented 18 with ocular problems ranging from simple strabismus to partial blindness. Liver and kidney 19 function appeared normal in all children, and when explored, haematological complications 20 and coagulopathy were absent. Only patient P1 has died (respiratory insufficiency at 4 years 21 and 9 months). These clinical pictures are compatible with those noted for type I CDG in 22 which hypoglycosylation of serum glycoproteins is a hallmark.

23 *Clinical biochemistry* - Western blot analysis of the serum glycoproteins transferrin, 24 haptoglobin, orosomucoid and α 1-antitrypsin revealed the presence hypoglycosylated 25 glycoforms in all patients (Figure 1A). In order to identify the molecular origins of this 26 phenomenon, PMM activity, known to be depressed in CDG Ia, the commonest CDG I 27 subtype ¹⁷, was measured in cell extracts from these patients, and in all cases found to be 28 normal.

Metabolic radiolabelling of lipid linked oligosaccharides – In order to identify potential blocks in the biosynthesis of the LLO precursor required for N-glycosylation, skin biopsy fibroblasts derived from the 5 patients and 2 control subjects were first metabolically radiolabeled with [2-³H]mannose. The use of this radioisotope allows detection of all LLO intermediates containing mannose (Man₁GlcNAc₂-PP-dolichol - Glc₃Man₉GlcNAc₂-PPdolichol). Analysis of [³H-Man]oligosaccharides released from LLO by mild acid hydrolysis

Table Comparison of the clinical presentations of five new cases of CDG Ik with those of the previously described cases

Case
Summaries
Published ^a

	P1	P2	P3	P4	P5		
Date of birth	2001	2006	2004	2005	2001		
Age of CDG I diagnosis	4 months	1 year 4 months	1 year 6 months	10 months	3 years 7 months		
Sex	F	F	Μ	F	Μ		
Complications during pregnancy	Fœtal growth retardation.	Pregnancy-induced hypertension.	Pregnancy-induced hypertension. Fœtal growth retardation.	No	Fœtal growth retardation.	4/5	1/:
Post delivery complications	Hypotonia.	Low blood pressure. Vomiting.	Hypotonia. Absence of occular contact.	Hypotonia.	Not reported	4/5	
Feeding difficulties	Yes	Yes	No	Yes	No	3/5	
Central hypotonia	Yes	Yes	Yes	Yes	Yes	5/5	3/
Psychomotor retardation	Yes	Yes	Yes	Yes	Yes	5/5	
Epilepsy	Multifocal epilepsy.	Once, treatable.	Multifocal epileps.	Intractable seizure.	Multifocal epilepsy.	5/5	5/
MRI	Evolutive cerebellar hypoplasia.	Normal	Cortical atrophy. Demyelination.	Cortical and sub cortical atrophy.	Normal	3/5	2/
EEG	Abnormal	Normal	Abnormal	Abnormal	Abnormal	4/5	
Dysmorphias	Thin lips. Small triangular chin. Turned up nose.	Large cup-shaped ears. Temporal narrowing of forehead. Depressed nasal bridge. Small upturned nose. Thick lower eyelids. Short neck.	No	Triangular face. Almond-shaped eyes.	Thin lips. Large forehead. Large mouth. Epicanthus. Long smooth filtrum.	4/5	4/
Microcephaly	Yes		Yes		Yes	3/5	2/
Occular manifestations	Abnormal VEP ^⁵ test Poor visual contact	Normal	Abnormal VEP test. Partially blind.	Abnormal VEP test. Absence of occular pursuit.	Abnormal VEP test. Strabism.	4/5	3/
Fatal outcome	Yes					1/5	4/
Maternal allele	p.Cys396X/p.Arg438Trp ^C	p.Met377Val	p.Ser150Arg	p.Gly145Asp	p.Cys396X		
Paternal allele		p.Met377Val	p.Ala211_Arg247del	p.Ser258Leu	p.Arg276Trp		
aDete.	taken from references 7,	9017. ^b Viewelly	Evoked Potential tes	t; ^c Deduced from mRNA			

1 revealed no significant differences between the distribution of these components generated in

2 cells from either the patients or control subjects (Figure 1B, lower panel)

3 Blocks in the second and third steps in LLO production potentially lead to the accumulation of GlcNAc-PP-dolichol and GlcNAc2-PP-dolichol and these intermediates can be detected 4 after metabolic radiolabeling of cells with [³H]glucosamine. Examination of [³H]GlcNAc-5 6 labelled oligosaccharides released from LLO by mild acid hydrolysis reveals a disaccharide 7 that comigrates with standard di-N-acetylchitobiose (GlcNAc₂) in pathological but not normal 8 cells (Figure 1B, upper panel). An accumulation of GlcNAc₂-PP-dolichol has previously been 9 shown to be indicative of a deficiency in GDP-mannose: GlcNAc₂-PP-dolichol mannosyltransferase (MT-1) that adds the first mannose residue onto LLO ⁸⁻¹⁰. 10

11 Mutation analysis of ALGI - MT-1 is encoded by ALGI, and the 13 exons and intron-exon 12 boundaries of genomic ALG1 were sequenced using primers designed to discriminate between 13 this gene and its documented pseudogenes. Where appropriate, cDNA was also sequenced. 14 Nine mutations were encountered in the genomic DNA prepared from the five patients 15 (Figure 2 and Table). Patient P3 harbours a previously described disease causing missense mutation c.450C>G (p.Ser150Arg⁸) and a 36 amino acid deletion (p.Ala211 Arg247del) 16 17 caused by skipping of exon 6. Exon skipping is potentially caused by one or both of two 18 mutations on the same allele: the last base of exon 6 and +5 from the donor site (c.740G>T; 19 c.740+5G>A). Patient P4 revealed compound heterozygosity with respect to the false sense 20 mutations c.434G>A (p.Gly145Asp) and c.773C>T (p.Ser258Leu). Whereas the latter mutation has been demonstrated to be deleterious $^{8-10}$, the former is predicted to be deleterious 21 22 to protein function by four *in silico* software packages that were used to evaluate the impact 23 of the missense mutations on protein structure and function (see Supplementary Table). In 24 addition, a synonymous mutation (c.765G>A, p.Thr255Thr: not found in the NCBI SNP 25 database (http://www.ncbi.nlm.nih.gov/projects/SNP/snp ref.cgi?locusId=56052) in exon 7 26 was found to be associated with the maternally inherited c.434G>A (p.Gly145Asp) mutation 27 in patient 4. Patient P1 and P5 have the same splicing mutation of the last base of exon 12 28 (c.1263G>A) resulting in a premature stop codon (p.Cys396X) and loss of exons 12 and 13 29 on one allele. In conjunction with this mutation, patients P1 and P5, harbour the c.1312C>T 30 (p.Arg438Trp) and c.826C>T (p.Arg276Trp) mutations, respectively, on the other allele. 31 Patient P2 is homozygous with respect to the c.1129A>G (p.Met377Val) mutation that is 32 predicted *in silico* to be deleterious. Allelic inheritance was confirmed in all cases by analysis 33 of DNA obtained from the parents, or RNA in the case of patient P1.

Haplotype studies revealed a possible founder effect for the frequent p.Ser258Leu mutation
observed in the three non-related families. In contrast, no specific common haplotype was
associated with p.Arg276Trp and the c.1263G>A splicing mutation, that were each observed
in two families (data not shown).

5 In vitro assays of microsomal GDP-Man mannosyltransferases – The mutations described 6 above are not all predicted to perturb protein function so MT-1 activity was measured in the 7 fibroblast cell lines. To this end, microsomes were prepared from cells from the 5 patients and incubated with GDP-[¹⁴C]Man in either the absence or presence of GlcNAc₂-PP-dolichol. 8 9 Microsomes derived from the control subject are able to incorporate substantial amounts of 10 radioactivity into lipid components only when GlcNAc₂-PP-dolichol is added to the 11 incubation mixtures (Figure 3). By contrast, the microsome preparations generated from cells 12 derived from the patients manifested less than 10% of control GlcNAc₂-PP-dolichol-13 dependent synthesis of radioactive lipid components (Figure 3A, B). In order to examine the 14 radioactive products generated by microsomes derived from the 5 patients under our assay 15 conditions, LLO-derived oligo-, and monosaccharides were resolved by TLC as shown in 16 Figure 4A-C. When incubated with GlcNAc₂-PP-dolichol and GDP-[¹⁴C]Man, control 17 microsomes yielded substantial quantities of components migrating as Man₁₋₅GlcNAc₂ 18 (Figure 4A), consistent with the capacity of MT-1, GDP-mannose: Man₁GlcNAc₂-PP-19 dolichol mannosyltransferase (MT-2) and GDP-mannose: Man₃GlcNAc₂-PP-dolichol 20 mannosyltransferase (MT-3) to generate [¹⁴C]Man₁₋₅GlcNAc₂-PP-dolichol in a GlcNAc₂-PP-21 dolichol-dependent manner. Microsomes derived from cells of the 5 patients generate reduced amounts of all the [¹⁴C]Man₁₋₅GlcNAc₂-PP-dolichol species (Figure 4A). These results are 22 23 compatible with but do not prove MT-1 deficiency. In order to rule out a general reduction in 24 GDP-Man requiring mannosyltransferase activity in these microsome preparations, MT-2 and 25 MT-3 that act subsequent to MT-1 in the dolichol cycle were examined (Figure 4B). Microsomes were incubated with exogenously added [14C]Man₁₋₂GlcNAc₂-PP-dolichol in 26 27 either the absence or presence of GDP-Man. Results demonstrate that control and patient microsome preparations are similarly capable of elongating exogenously added [¹⁴C]Man₁. 28 $_2$ GlcNAc₂-PP-dolichol to yield predominantly [14 C]Man₅GlcNAc₂-PP-dolichol (Figure 4B). 29 30 The ensemble of these assays indicates that only MT-1 is defective in the 5 patients.

Finally, the origin of the high GlcNAc₂-PP-dolichol-independent incorporation of radioactivity into lipids by microsomes originating from patient P4 (Figure 3A) was investigated. Data shown in Figure 4C demonstrate that these microsomes generate substantially more dolichol-P-[¹⁴C]Man than the other microsome preparations, and further
 experiments are being conducted in order to examine the origin of this phenomenon.

3

4 **DISCUSSION**

Here we report upon 5 CDG I patients whose skin biopsy fibroblasts manifest less than 10% 5 normal MT-1 activity. Sequencing of ALG1 revealed 9 mutations, 2 of which (p.Ser150Arg⁸, 6 p.Ser258Leu⁸⁻¹⁰) have been demonstrated to be pathogenic. The c.1263G>A mutation leads 7 8 to loss of exons 12 and 13 and a premature stop codon that causes a 69 amino acid truncation 9 of the MT-1 protein. Interestingly, the underlying mutation in ALG1 of the temperature sensitive alg1-1 S. cerevisiae strain¹⁸ also causes a C-terminal truncation, and it has been 10 suggested that this region of the protein is important for its interactions with yeast MT-2 and 11 MT-3 18 . One or both of two novel mutations (c.740G>A/c.740+5G>A) at the exon6/intron6 12 13 splice site junction leads to skipping of exon 6 and generation of an enzyme with a 36 amino 14 acid deletion. This deleted region contains two amino acids (Asp 216, Phe 222) that are 15 conserved in yeast and mammals. Finally, 4 novel point mutations have been identified. The 16 p.Met377Val mutation is predicted to be deleterious by all four of the pathogenicity software 17 packages (supplemental online table). Met 377 is conserved in yeast and mammals and lies 18 between 2 similarly conserved aspartic acid residues whose substitution affects yeast MT-1 19 activity¹⁸. Pathogenicity predictions for the p.Arg438Trp substitution are ambiguous but Arg 20 438 is adjacent to the C-terminal region that, in the yeast enzyme, affects interactions with 21 MT-2 and MT-3 as described above. Likewise, pathogenicity predictions for the p.Arg276Trp 22 and p.Gly145Asp substitutions are ambiguous but these residues are situated adjacent to the 23 previously described p.Ser258Leu and p.Ser150Arg pathogenic mutations, respectively.

Five patients with CDG Ik were described in 2004⁷⁻¹⁰, and because no further case reports 24 25 have appeared, the 5 patients described here double the descriptions of patients with this disease. CDG Ik seems to be associated with a severe clinical picture ⁷⁻¹⁰. Four of the five 26 27 originally described patients died in the first year of life. Of the five patients described here, 28 only one has died. By contrast, serious neurological complications are a constant feature with 29 central hypotonia (4/5 our patients and 5/5 originally described patients) and epilepsy (5/5 and 30 5/5 cases, respectively) being particularly prominent. Occular complications ranging from 31 absence of visual contact (2/5 and 1/4) to blindness (1/5 and 1/4) are noteworthy. With the 32 exception of microcephaly described in 3/5 of the patients described here, dysmorphias are 33 not constant and when present they appear to be variable. Recurrent infections and/or 34 complications of the immune system were only noted in one of the presently described

1 patients compared to 4/5 of the originally described cases. Another notable difference 2 between the originally described cases and those described herein is the absence of hepatic 3 and renal complications in the latter patients. The 773 C>T (p.Ser258Leu) mutation is present 4 in all the previously described cases, and in two, homozygosity is associated with fatal 5 outcome. In our study, this mutation was only found in patient P4 and occured in the 6 heterozygous state. All other factors being equal, it might be that the p.Ser258Leu mutation 7 may be more severe than the p.Met377Val mutation, present in the homozygous state in P2. 8 Despite these observations, with only 9 patients harbouring 11 different mutations it is 9 difficult to establish potential genotype/phenotype relationships. All CDG Ik descriptions 10 include severe neurological presentations that are also observed in other CDG I subtypes with 11 the exception of CDG Ib where only visceral hepato-intestinal manifestations are observed ¹⁹. 12 In CDG Ih (ALG8 deficiency: OMIM 608104) and CDG Im (DK1 deficiency: OMIM 610768) neurological signs are accompanied by hepato-intestinal ²⁰ and skin/heart ²¹ 13 14 complications, respectively.

15 In our French experience of CDG diagnosis, 131 families have now been demonstrated to be 16 affected by CDG I. The majority of patients (81 families, 62%) are affected by CDG Ia and 17 the next commonest forms of the disease are CDG Ib and CDG Ik with 8 families each, (6%), 18 closely followed by CDG Ic (ALG6 deficiency: OMIM 603147; 5 families, 4%). We have 19 also diagnosed 3 families with CDG Ie (DPM1 deficiency: OMIM 603503), 3 families with 20 CDG Ig (ALG12 deficiency: OMIM 607143), and one family each with CDG Ih and CDG 21 Im. The 20 other families remain to be subtyped (CDG Ix: 15%). These statistics suggest that 22 CDG Ik should be given more consideration when diagnostic strategies are prioritised based 23 on apparent CDG I subtype frequencies.

To summarise, 5 patients with severe type I CDG-like clinical presentations possessing an
underlying MT-1 deficiency are described. The identification of these patients reveals that, in
France, CDG Ik and CDG Ib are the most frequently diagnosed type I CDG after CDG Ia.

27

28 ACKNOWLEDGEMENTS

The authors' laboratories are supported by: The Mizutani Foundation; the GIS - Institut des maladies rares/INSERM funded French CDG Research Network; EUROGLYCANET (LSHM-CT-2005-512131), La Fondation pour la Recherche Médicale (FRM); institutional funding from INSERM. S.E.H.M. is the recipient of a Hospital/INSERM Contrat d'Interface.

33 34

REFERENCES

2	1.	Jaeken J, Matthijs G. Congenital disorders of glycosylation: a rapidly expanding
3		disease family. Annu Rev Genomics Hum Genet 2007;8:261-78.
4	2.	Freeze HH. Congenital Disorders of Glycosylation: CDG-I, CDG-II, and beyond.
5		<i>Curr Mol Med</i> 2007; 7 (4):389-96.
6	3.	Aebi M, Hennet T. Congenital disorders of glycosylation: genetic model systems lead
7		the way. Trends Cell Biol 2001;11(3):136-41.
8	4.	Burda P, Aebi M. The dolichol pathway of N-linked glycosylation. <i>Biochim Biophys</i>
9		Acta 1999; 1426 (2):239-57.
10	5.	Jaeken J, Hennet T, Freeze HH, et al. On the nomenclature of congenital disorders of
11		glycosylation (CDG). J Inherit Metab Dis 2008; 31 (6):669-72.
12	6.	Grunewald S, Matthijs G, Jaeken J. Congenital disorders of glycosylation: a review.
13		Pediatr Res 2002; 52 (5):618-24.
14	7.	de Koning TJ, Toet M, Dorland L, et al. Recurrent nonimmune hydrops fetalis
15		associated with carbohydrate-deficient glycoprotein syndrome. J Inherit Metab Dis
16		1998; 21 (6):681-2.
17	8.	Grubenmann CE, Frank CG, Hulsmeier AJ, et al. Deficiency of the first
18		mannosylation step in the N-glycosylation pathway causes congenital disorder of
19		glycosylation type Ik. Hum Mol Genet 2004;13(5):535-42.
20	9.	Kranz C, Denecke J, Lehle L, <i>et al.</i> Congenital disorder of glycosylation type Ik
21		(CDG-Ik): a defect of mannosyltransferase I. Am J Hum Genet 2004;74(3):545-51.
22	10.	Schwarz M, Thiel C, Lubbehusen J, et al. Deficiency of GDP-Man:GlcNAc2-PP-
23		dolichol mannosyltransferase causes congenital disorder of glycosylation type Ik. Am
24		<i>J Hum Genet</i> 2004; 74 (3):472-81.
25	11.	Seta N, Barnier A, Hochedez F, et al. Diagnostic value of Western blotting in
26		carbohydrate-deficient glycoprotein syndrome. <i>Clin Chim Acta</i> 1996; 254 (2):131-40.
27	12.	Chantret I, Dupre T, Delenda C, et al. Congenital disorders of glycosylation type Ig is
28		defined by a deficiency in dolichyl-P-mannose:Man7GlcNAc2-PP-dolichyl
29		mannosyltransferase. J Biol Chem 2002;277(28):25815-22.
30	13.	den Dunnen JT, Antonarakis SE. Mutation nomenclature extensions and suggestions
31		to describe complex mutations: a discussion. <i>Hum Mutat</i> 2000; 15 (1):7-12.
32	14.	Huffaker TC, Robbins PW. Temperature-sensitive yeast mutants deficient in
33		asparagine-linked glycosylation. J Biol Chem 1982;257(6):3203-10.
34	15.	Chantret I, Dancourt J, Barbat A, et al. Two proteins homologous to the N- and C-
35		terminal domains of the bacterial glycosyltransferase Murg are required for the second
36		step of dolichyl-linked oligosaccharide synthesis in Saccharomyces cerevisiae. J Biol
37		<i>Chem</i> 2005; 280 (10):9236-42.
38	16.	Dancourt J, Vuillaumier-Barrot S, de Baulny HO, et al. A new intronic mutation in the
39		DPM1 gene is associated with a milder form of CDG Ie in two French siblings.
40		<i>Pediatr Res</i> 2006; 59 (6):835-9.
41	17.	Matthijs G, Schollen E, Pardon E, et al. Mutations in PMM2, a phosphomannomutase
42		gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome
43		(Jaeken syndrome). Nat Genet 1997;16(1):88-92.
44	18.	Gao XD, Nishikawa A, Dean N. Physical interactions between the Alg1, Alg2, and
45		Alg11 mannosyltransferases of the endoplasmic reticulum. Glycobiology
46		2004; 14 (6):559-70.
47	19.	de Lonlay P, Seta N. The clinical spectrum of phosphomannose isomerase deficiency,
48		with an evaluation of mannose treatment for CDG-Ib. Biochim Biophys Acta 2008.

- 1 20. 2 3
 - Schollen E, Frank CG, Keldermans L, et al. Clinical and molecular features of three patients with congenital disorders of glycosylation type Ih (CDG-Ih) (ALG8 deficiency). J Med Genet 2004;41(7):550-6. 21. Kranz C, Jungeblut C, Denecke J, et al. A defect in dolichol phosphate biosynthesis causes a new inherited disorder with death in early infancy. Am J Hum Genet
- 6 7 8

4

5

9 LICENCE FOR PUBLICATION STATEMENT

2007;80(3):433-40.

- 10 11 "The Corresponding Author has the right to grant on behalf of all authors and does grant on 12 behalf of all authors, an exclusive licence (or non exclusive for government employees) on a 13 worldwide basis to the BMJ Publishing Group Ltd to permit this article (if accepted) to be 14 published in JMG and any other BMJPGL products and sublicences such use and exploit all 15 subsidiary rights, as set out in our licence: 16 (http://group.bmj.com/products/journals/instructions-for-authors/licence-forms)."
- 17

18 **COMPETING INTERESTS**

19 None

20

21 **ABBREVIATIONS**

22 Man, mannose; Glc, glucose; GlcNAc, N-acetylglucosamine; GlcNH₂, glucosamine; Dol-P,

23 dolichol-phosphate; ER, endoplasmic reticulum; LLO, lipid-linked oligosaccharide; SDS-

24 PAGE, sodium dodecylsulphate polyacrylamide gel electrophoresis.

25

26 **FIGURE LEGENDS**

27 Figure Legend 1

28 Serum glycoprotein hypoglycosylation and defective lipid-linked oligosaccharide biosynthesis 29 in 5 patients with type I CDG – A. Western blot analysis of serum proteins derived from 30 control subjects (Controls), patients P1-5, and a patient diagnosed with CDG Ia (Ia). 31 Migration positions of normal transferrin (TFR), haptoglobin (HAP), orosomucoid (ORO) 32 and alpha 1 antitrypsin (AAT) are indicated by arrowheads whereas hypoglycosylated 33 isoforms of these glycoproteins are indicated by lines. B. Fibroblasts derived from control 34 subjects 1 and 2 (different from above control subjects) and the 5 patients (P1-5) were radiolabeled with either [6-³H]glucosamine ([³H]GlcNH₂, upper panel) or [2-³H]mannose 35 36 (³H]Man, lower panel) and oligosaccharides released from LLO by mild acid hydrolysis 37 were examined by TLC using system B (upper panel) or system A (lower panel). The

1 radioactive components that migrate faster than di-N-acetylchitobiose were not further 2 characterised. The abbreviations used are: $G_{1-3}M_9$, $Glc_{1-3}Man_9GlcNAc_2$; GN_2 , di-N-3 acetylchitobiose.

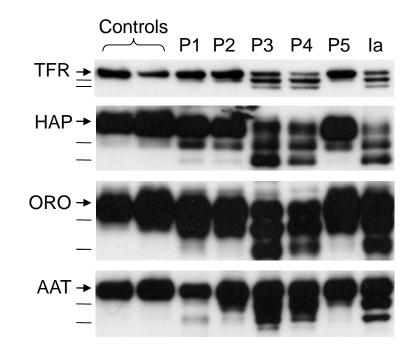
4

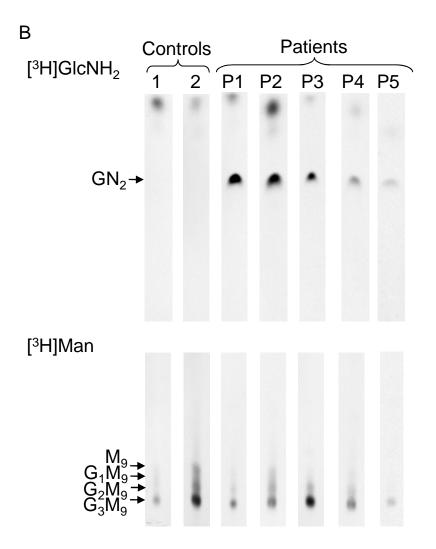
5 Figure Legend 2

Mutations found in genomic DNA corresponding to the exons and intron/exon junctions of the human ALG1 gene derived from patients. Genomic and or cDNA were prepared from blood
leukocytes or cultured skin biopsy fibroblasts as described in Materials, Methods and Patients.
Apart from the maternally inherited synonymous mutation in exon 7 detected in patient 4, the
genotypes of patients P1-5 are given in the Table. Where possible (P2-P5), allelic inheritance
is indicated.

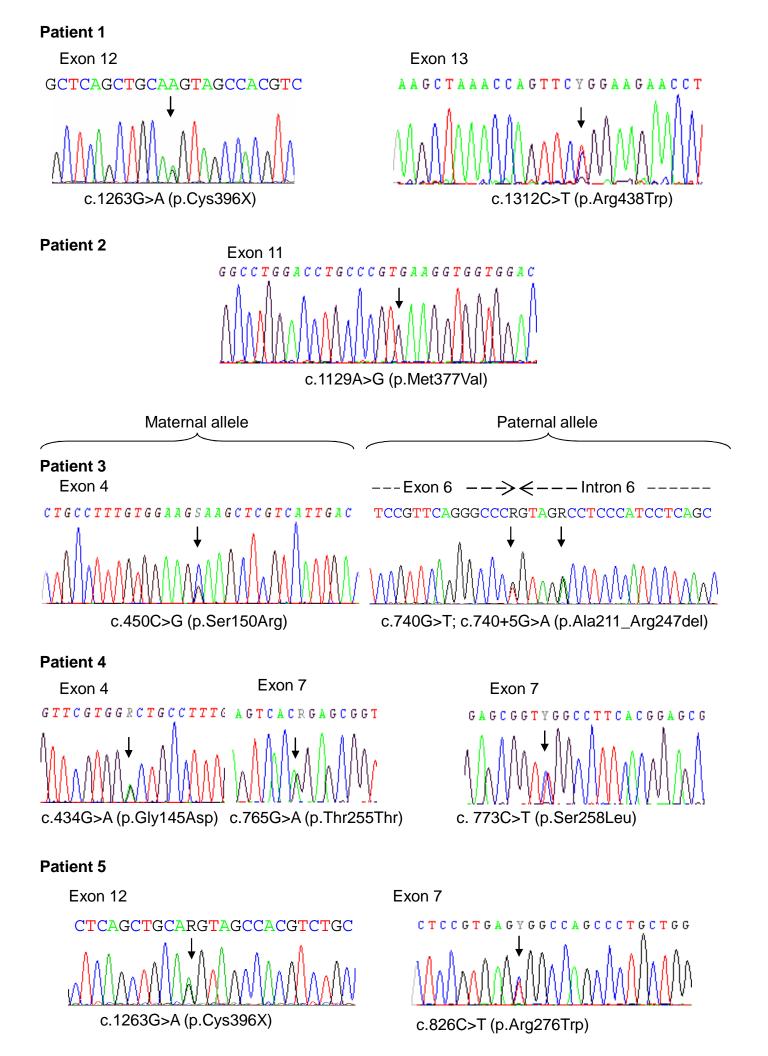
12

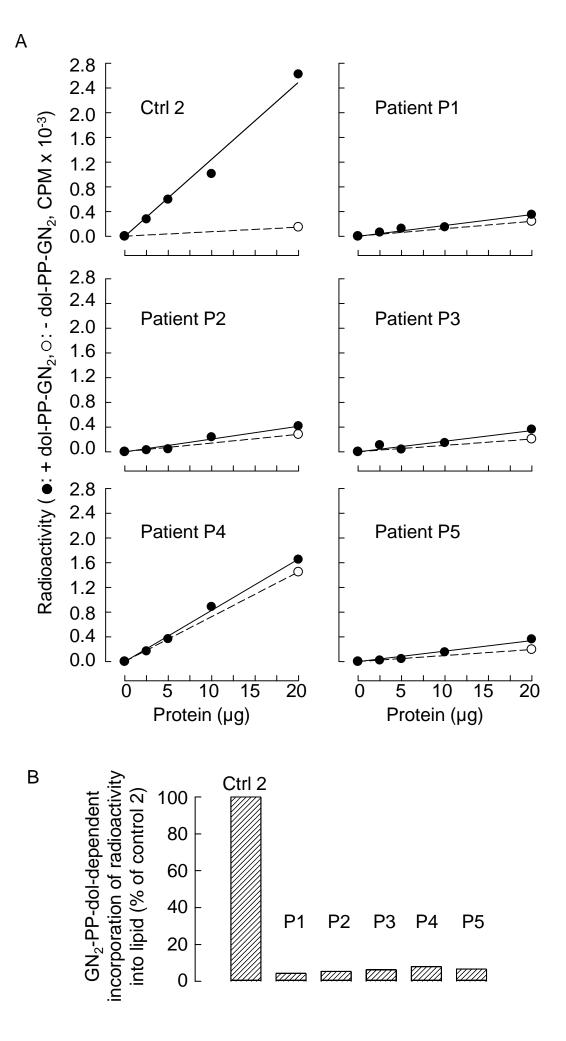
13 Figure Legend 3

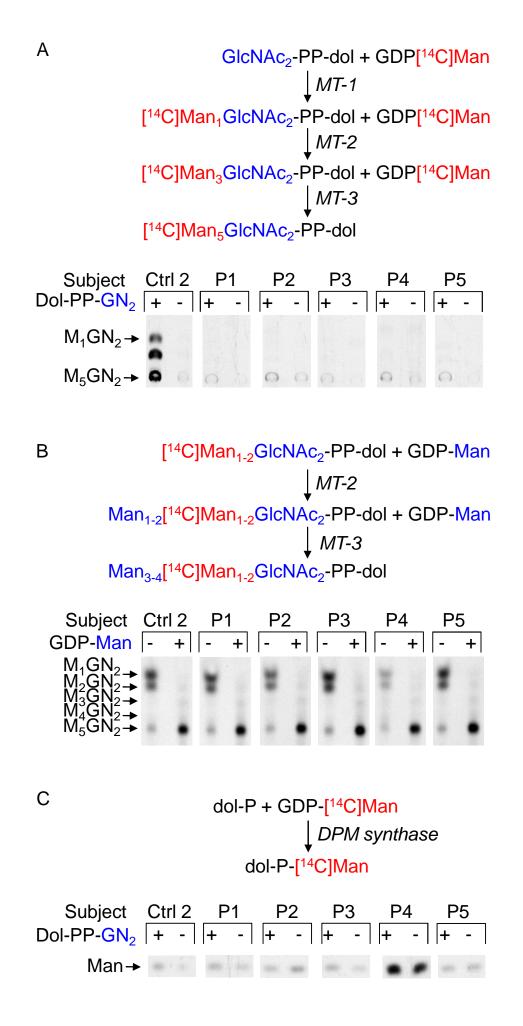

14 In vitro LLO biosynthesis in microsomes derived from fibroblasts of a control subject and 15 patients - A. Increasing amounts of microsomes derived from control subject 2 (Ctrl 2) and the 5 patients (P1-5) were incubated with GDP-[¹⁴C]Man in either the absence (-) or presence 16 (+) of GlcNAc₂-PP-dolichol (GN₂-PP-dol) for 20 minutes. After stopping the reactions by the 17 addition of organic solvents [¹⁴C]LLO was quantitated by scintillation counting. The results 18 19 were obtained from a single experiment. B. The capacity of microsomes to incorporate 20 radioactivity into lipid components in a GlcNAc2-PP-dolichol-dependent manner was 21 calculated from the 20 µg data point shown in A and expressed as a percentage of the control 22 (Ctrl2).


23

24 Figure Legend 4


25 Further evaluation of the mannosyltransferase activities in microsomes derived from cells of 26 patients with CDG I - A. Microsomal MT-1, MT-2 and MT-3 mannosyltransferases generate ¹⁴C]Man₅GlcNAc₂-PP-dolichol using exogenously added GlcNAc₂-PP-dolichol and GDP-27 ¹⁴C]Man. Using lipid fractions derived from the incubations described in Figure 3, LLO were 28 29 subjected to mild acid hydrolysis, and liberated oligosaccharides were resolved by TLC using 30 system B. The abbreviations used are M1GN2, Man1GlcNAc2; M5GN2, Man5GlcNAc2. B. To assay MT-2 and MT-3, a preparation of [¹⁴C]Man-labelled LLO enriched in the MT-1 product 31 32 Man₁GlcNAc₂-PP-dolichol was generated, and incubated with the different microsome 33 preparations in the presence or absence of unlabelled GDP-Man. Oligosaccharides liberated 34 from LLO were resolved using TLC system A. The abbreviations used are $M_{1-5}GN_2$, $Man_{1-5}GN_2$


1 ${}_{5}$ GlcNAc₂. C. Dolichol-P-mannose synthase (*DPM synthase*) generates dolichol-P-2 [14 C]mannose (dol-P-[14 C]Man) from GDP-[14 C]Man. The different microsome preparations 3 were incubated with GDP-[14 C]Man in either the absence or presence of GlcNAc₂-PP-4 dolichol (GN₂-PP-dol) as described for Figure 3. The resulting radiolabeled lipid linked 5 sugars were examined using TLC system B. The region of the chromatogram corresponding 6 to the migration position of mannose (Man) is shown.



А

