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INHOMOGENEOUS AND ANISOTROPIC CONDITIONAL

DENSITY ESTIMATION FROM DEPENDENT DATA

NATHALIE AKAKPO, CLAIRE LACOUR

Abstract. The problem of estimating a conditional density is considered.

Given a collection of partitions, we propose a procedure that selects from

the data the best partition among that collection and then provides the best

piecewise polynomial estimator built on that partition. The observations are

not supposed to be independent but only β-mixing; in particular, our study

includes the estimation of the transition density of a Markov chain. For a

well-chosen collection of possibly irregular partitions, we obtain oracle-type

inequalities and adaptivity results in the minimax sense over a wide range of

possibly anisotropic and inhomogeneous Besov classes. We end with a short

simulation study.

1. Introduction

In this paper, we are concerned with conditional density estimation. Such a
model brings more information than the well-studied regression model; for instance,
it may reveal multimodality. Yet, references about conditional density estimation
are rather scarce, even for nonadaptive procedures. For independent data, we can
cite for instance Györfi and Kohler [GK07] for a histogram based procedure, or
Faugeras [Fau07] for a copula-based kernel estimator. For mixing data, De Gooijer
and Zerom [DGZ03] and Fan and Yim [FY04] propose kernel methods. For Markov
chains, a bibliography about nonadaptive estimation of the transition density is
given in [Lac07]. But, in order to reach the optimal rate of convergence, those
methods require the smoothness of the function to estimate to be known, so as to
choose adequately some tuning parameter.

Adaptive estimators of the conditional density have only recently been pro-
posed. For independent data, Efromovich [Efr07, Efr08] and Brunel, Comte and
Lacour [BCL07] give oracle inequalities and adaptivity results in the minimax
sense. Efromovich [Efr07, Efr08] uses a Fourier decomposition to build a blockwise-
shrinkage Efromovich-Pinsker estimator, whereas Brunel et al. [BCL07] perform
model selection based on a penalized least-squares criterion. Regarding dependent
data, Clémençon [Clé00b] and Lacour [Lac07] study adaptive estimators of the con-
ditional density for Markovian observations, the former via wavelet thresholding,
and the latter via model selection. Besides, the procedures proposed by [Efr07,
Efr08, BCL07, Lac07] are all able to adapt to anisotropy; otherwise said, the con-
ditional density to estimate is allowed to have unknown and different degrees of
smoothness in each direction.

But the smoothness of the function to estimate may also vary spatially. If the
risk of the estimator is measured via some Lq-norm, one way to take into ac-
count that inhomogeneous behaviour is to consider functions whose smoothness is
measured in a Lp-norm, with p < q. Among the aforementioned references, only
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Clémençon [Clé00b] is able to cope with inhomogeneous smoothness. In the simpler
framework of density estimation, without conditioning variables, adaptation to in-
homogeneity has been studied in the following works. Thresholding methods, in a
univariate framework, are proposed by Hall, Kerkyacharian and Picard [HKP98] for
independent data, Clémençon [Clé00a] for Markovian data, and Gannaz and Win-
tenberger [GW10] for a wide class of weakly dependent data. Piecewise polynomial
selection procedures based on a penalized contrast have also been considered, and
consist in selecting from the data a best partition and a best piecewise polynomial
built on that partition. Thus, Comte and Merlevède [CM02] estimate the univariate
density of absolutely regular stationary processes, in discrete or continuous time,
selecting a best partition among the collection of all the partitions of [0, 1] built on
a thin regular grid via a least-squares criterion. Besides, three papers have lately
considered selection procedures inspired from the CART-like algorithm proposed
by Donoho [Don97] in a regression framework. Willett and Nowak [WN07] select
best piecewise polynomials built on partitions into dyadic cubes via a penalized
maximum likelihood contrast. Klemelä [Kle09] and Blanchard, Schäfer, Rozenholc
and Müller [BSRM07] select best histograms based on partitions into dyadic rect-
angles via a penalized criterion based on the L2-distance for the first one, and on
Kullback-Leibler divergence for the second ones. But all these procedures only
reach optimal rates of convergence up to a logarithmic factor, and only [Kle09] is
able to prove adaptivity both to anisotropy and inhomogeneity.

In this paper, we provide an estimator of the conditional density via a piecewise
polynomial selection procedure based on an adequate least-squares criterion. To
deal with the possible dependence of the observations, we mainly use β-mixing co-
efficients and their coupling properties. Thus, our dependence assumptions, while
being satisfied by a wide class of Markov chains, are not restricted to Markovian
assumptions. We first prove nonasymptotic oracle type inequalities fulfilled by any
collection of partitions satisfying some mild structural conditions. We then con-
sider the collection of partitions into dyadic rectangles, as [Kle09] or [BSRM07].
We obtain oracle-type inequalities and adaptivity results in the minimax sense,
without logarithmic factor, over a wide range of Besov smoothness classes that
may contain functions with inhomogeneous and anisotropic smoothness, whether
the data are independent or satisfy suitable dependence assumptions. The adaptiv-
ity of our procedure greatly relies on the approximation result proved in [Aka10].
Moreover, determining in practice the penalized estimator based on that collection
only requires a computational complexity linear in the size of the sample.

This paper is organized as follows. We begin by describing the framework and
the estimation procedure, and we present an evaluation of the risk on one model.
This study allows to understand what bound for the L2-risk we seek to obtain. The
choice of a penalty yielding an oracle-type inequality is the topic of Section 3.1.
Section 3.2 is devoted to the collection of partitions into dyadic rectangles, and
adaptivity results are proved for an adequate penalty. We show in Section 4 that
all these results can be extended to dependent data. In Section 5, the practical
implementation of our estimator is explained and some simulations are presented,
both for independent and dependent data. Most proofs are deferred to Section 6.
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2. Framework and estimation procedure

In this section we define a contrast and we deduce a collection of estimators ŝm.
In order to understand which model m we should choose, we give an evaluation of
the risk for each estimator ŝm. This allows us to define the penalized estimator.

2.1. Framework and notation. Let {Zi}i∈Z = {(Xi, Yi)}i∈Z be a strictly sta-
tionary process, where, for all i ∈ Z, Xi and Yi take values respectively in [0, 1]d1

and [0, 1]d2, with d1 ∈ N
⋆ and d2 ∈ N

⋆. We assume that the variables (Xi)i∈Z admit
a bounded marginal density f with respect to the Lebesgue measure. Given some
integer n ≥ 2, our aim is to estimate, on the basis of the observation of (Z1, . . . , Zn),
the marginal density s of Yi conditionally to Xi. Thus, our parameter of interest
s is the real-valued function of d variables, where d = d1 + d2, such that, for all
x ∈ [0, 1]d1, s(x, .) : [0, 1]d2 → R is the density of Yi conditionnally to Xi = x. In
particular, if (Xi)i∈Z is a homogeneous Markov chain of order 1, and Yi = Xi+1 for
all i ∈ Z, then s is the transition density of the chain (Xi)i∈Z.

Let us introduce some standard notation. For any real-valued function t defined
and bounded on some set D, we set

ι(t) = inf
x∈D

|t(x)| and ‖t‖∞ = sup
x∈D

|t(x)|.

We denote by L2

(

[0, 1]d1 × [0, 1]d2

)

the set of all real-valued functions which are
square integrable with respect to the Lebesgue measure. Since f is bounded, we
can also define on L2

(

[0, 1]d1 × [0, 1]d2

)

the semi-scalar product

〈t, u〉f =

∫

[0,1]d1×[0,1]d2

t(x, y)u(x, y)f(x)dxdy

and the associated semi-norm ‖.‖f .

2.2. Contrast and estimator on one model. In order to estimate the condi-
tional density s, we consider the empirical criterion γ described in [BCL07] and
defined on L2

(

[0, 1]d1 × [0, 1]d2

)

by

γ(t) =
1

n

n
∑

i=1

[

∫

[0,1]d2

t2(Xi, y)dy − 2t(Xi, Yi)

]

.

Due to the nature of the function to estimate, the contrast used here borrows both
from the classical regression and density least-squares contrasts. This contrast
verifies:

Es[γ(t) − γ(s)] = Es

[∫

(t2 − s2)(X1, y)dy − 2(t− s)(X1, Y1)

]

=

∫∫

(t2 − s2)(x, y)f(x)dxdy − 2

∫∫

(t− s)(x, y)s(x, y)f(x)dxdy

=

∫∫

(t2 − 2ts+ s2)(x, y)f(x)dxdy = ‖s− t‖2
f ,

so that s minimizes t 7→ Es[γ(t)] over L2([0, 1]d1 × [0, 1]d2). Thus, a natural way to
build an estimator of s consists in minimizing γ over some subset of L2([0, 1]d1 ×
[0, 1]d2), that we choose here as a space of piecewise polynomial functions with
degree smaller than a given nonnegative integer r. More precisely, for a partition
m of [0, 1]d1 × [0, 1]d2 into rectangles, we denote by Sm the space of all real-valued
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piecewise polynomial functions on [0, 1]d1 × [0, 1]d2 which are polynomial with co-
ordinate degree ≤ r on each rectangle of m. We define a best estimator of s with
values in the model Sm by setting

ŝm = argmin
t∈Sm

γ(t).

An explicit formula for computing ŝm is given in Section 5.

2.3. Risk on one model. In this subsection, we fix some partition m of [0, 1]d1 ×
[0, 1]d2 into rectangles and give some upper-bound for the risk of ŝm when Z1, . . . , Zn

are independent. As for all the theorems stated in the sequel, we evaluate that risk
in the random semi-norm ‖.‖n naturally associated to our problem, and defined,
for all t ∈ L2([0, 1]d1 × [0, 1]d2), by

‖t‖2
n =

1

n

n
∑

i=1

∫

[0,1]d2

t2(Xi, y)dy

(remember that our problem is a mixture of regression in the x-direction and of
density estimation in the y-direction). However, it is also possible to control the
classical L2-norm, using a truncated estimator (see, for instance, Corollary 3.2 in
Section 3.) Besides, for any partition m′ of a unit cube into rectangles, we denote
by |m′| the number of rectangles in m′ and say that the partition m′ is regular if
all its rectangles have the same dimensions. For the risk of the estimator ŝm, we
can prove the following result.

Proposition 2.1. Let m be a partition of [0, 1]d1×[0, 1]d2 built on a regular partition
m⋆

1 ×m⋆
2, where m⋆

1 and m⋆
2 are regular partitions of [0, 1]d1 and [0, 1]d2 into cubes

such that
|m⋆

1| ≤
n

log2(n)
and |m⋆

2| ≤ n.

Let sm be the orthogonal projection of s on Sm for the norm ‖.‖, and Dm denote the
dimension of Sm, so that Dm = (r+1)d|m|. Assume that s and f are bounded, and
that f is also bounded from below by a positive constant. If the variables Z1, . . . , Zn

are independent, then

Es

[

‖s− ŝm‖2
n

]

≤ 2‖s− sm‖2
f + 11‖s‖∞

Dm

n
+
C

n
,

where C only depends on r, d, ι(f), ‖f‖∞, ‖s‖∞.

We recover approximately in the upper-bound stated in Proposition 2.1 the usual
decomposition into a squared bias term, of order ‖s − sm‖2

f , and a variance term

of order ‖s‖∞Dm/n, proportional to the dimension of the model Sm. A major
interest of such a bound is that it allows to understand how to build an optimal
estimator from the minimax point of view. Let us first recall that when s belongs
to classical classes of functions with isotropic smoothness σ (isotropic Besov classes
for instance), a minimax estimator over such a class reaches the estimation rate
n−2σ/(2σ+d). Roughly speaking, when s belongs to a well-chosen class of isotropic
functions with smoothness σ measured in a Lp-norm with p ≥ 2, the bias term

‖s− sm‖2
f is at most of order D

−2σ/d
m for any regular partition m into cubes. If we

knew at least the smoothness parameter σ, we could choose some regular partition
mopt(σ) into cubes realizing a good compromise between the bias and the variance

terms, i.e. such that D
−2σ/d
mopt(σ) and Dmopt(σ)/n are of the same order. We would
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then obtain with ŝmopt(σ) an estimator that reaches the optimal estimation rate

n−2σ/(2σ+d) whatever p ≥ 2. But when s has isotropic smoothness σ measured in
a Lp-norm with p < 2, one can only ensure that the bias term ‖s − sm‖2

f is at

most of order D
−2σ/d
m for some irregular partition m into cubes that does not only

depend on σ, but must be adapted to the inhomogeneity of s over the unit cube
(see for instance Section 3.2 and [Aka10]). Thus, there exists some well-chosen
irregular partition mopt(s) into cubes such that Dmopt(s) is of order nd/(2σ+d) but

that reaches the estimation rate n−2σ/(2σ+d) only at s, and probably not on the
whole class of functions with smoothness σ in a Lp-norm with p < 2. Last, if s has
anisotropic smoothness, similar properties still hold, with partitions into rectangles
- regular or not depending on the homogeneity of s- whose dimensions are adapted
to the anisotropy of s.

2.4. Penalized estimator. We give ourselves a finite collection M of partitions
of [0, 1]d1 × [0, 1]d2 into rectangles. The aim is to choose the best estimator among
the collection {ŝm}m∈M without assumption on the smoothness of s. To do so, we
use the model selection method introduced by [BBM99] which allows us to select
an estimator only from the data, by minimizing a penalized criterion. Thus, we
consider the random selection procedure

m̂ = argmin
m∈M

{γ(ŝm) + pen(m)}

and the penalized estimator

s̃ = ŝm̂,

where pen : M → R
+ is a so-called penalty function that remains to be chosen so

that s̃ performs well. The choice of the collection of partitions M is discussed is
the next section. The practical implementation of the penalized estimator based
on the collection of partitions into dyadic rectangles is described in Section 5.

3. Main result

In this section, we study the risk of the penalized estimator s̃ for independent
data, first with a general collection of partitions, secondly with a relevant choice
of collection that ensures the optimal estimation of a possibly inhomogeneous and
anisotropic function s.

3.1. Oracle inequality. Ideally, we would like to choose a penalty pen such that
s̃ is almost as good as the best estimator in the collection {ŝm}m∈M, in the sense
that

(3.1) Es

[

‖s− s̃‖2
n

]

≤ C min
m∈M

Es

[

‖s− ŝm‖2
n

]

for some positive constant C. Theorem 3.1 below suggests a form of penalty yielding
an inequality akin to

(3.2) Es

[

‖s− s̃‖2
n

]

≤ C min
m∈M

{

‖s− sm‖2
f +

Dm

n

}

.

Yet, as recalled in the previous section, for eachm ∈ M, Es

[

‖s− ŝm‖2
n

]

is expected

to be of order ‖s− sm‖2
f +Dm/n. So, Inequality (3.2) is expected to be almost as

good as Inequality (3.1). In order to deal with a large collection M that may contain
irregular partitions, we only impose a minor structural condition on M. That
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assumption ensures that all the models are included in a biggest model, without
imposing that the models be nested as in [BCL07]. We also assume that s and f
are bounded.

Assumption (P1) All the partitions in the collection M are built on a regular
partition m⋆ of [0, 1]d into cubes such that

|m⋆|2 ≤ n

Assumption (B)

s ≤ ‖s‖∞ <∞, 0 < ι(f) ≤ f ≤ ‖f‖∞ <∞

We establish an oracle type inequality for a very general collection of partitions.
Thus we state the following model selection theorem.

Theorem 3.1. Let M be a collection of partitions satisfying Assumption (P1)
and {Lm}m∈M be a family of reals greater than or equal to 1, that may depend on
n, such that

(3.3)
∑

m∈M

exp(−Lm|m|) ≤ 1.

Assume that (Zi)1≤i≤n are independent and s, f satisfy Assumption (B). If the
penalty satisfies, for all m ∈ M,

pen(m) = κ

(

‖s‖∞ +
(2r + 1)d

ι(f)

)

L2
mDm

n

for some large enough positive absolute constant κ, then

(3.4) Es

[

‖s− s̃‖2
n

]

≤ C1

(

max
m∈M

L2
m

)

min
m∈M

{

‖s− sm‖2
f +

Dm

n

}

.

where C1 is a positive constant that depends on κ, r, d1, d2, ‖s‖∞, ι(f), ‖f‖∞.

Theorem 3.1 is only proved in its general version for dependent data (see Theo-
rem 4.1 in Section 4.3).

The penalty contains unknown terms, but in practice, ‖s‖∞ and ι(f) can be
replaced with an estimator, as in [BM97] (Proposition 4) for instance, and κ is
calibrated via a simulation study. To state a result with the precise replacement, we
choosem•

1 andm•
2 regular partitions of [0, 1]d1 and [0, 1]d2 into cubes such thatm• =

m•
1×m•

2 verifies Assumption (P1). We define f̂m•

1
= argmint∈Fm•

1

n−1
∑n

i=1[‖t‖2−
2t(Xi)], where Fm•

1
is the space of all functions on [0, 1]d1 which are polynomial

with coordinate degree ≤ r on each rectangle of m•
1, and estimate ι(f) by ι̂(f) =

infx∈[0,1]d1 f̂m•

1
(x). We also impose Besov-type smoothness assumptions on f and s.

For σ = (σ1, . . . , σd) ∈ (0, r+ 1)d, R > 0, p > 0, we refer to [Tri06] (Chapter 5) for
a definition of the anisotropic Besov space Bσ

pp′ and the associated norm ‖.|Bσ

pp′‖,
and we introduce the anisotropic Besov balls

(3.5) B(σ, p, R) = {t : [0, 1]d → R s.t. ‖t|Bσ

pp′‖ ≤ R},
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where p′ = ∞ if 0 < p ≤ 1 or p ≥ 2, and p′ = p if 1 < p < 2. We recall that, due
to the continuous embeddings stated for instance in [Tri06], Bσ

p∞ contains all the
spaces Bσ

pp′ , for p′ > 0, so our choice of p′ in the definition of B(σ, p, R) is the less
stringent one for 0 < p ≤ 1 or p ≥ 2. Last, we set σ = min1≤l≤d σl and denote by
H(σ) the harmonic mean of σ1, . . . , σd, i.e.

1

H(σ)
=

1

d

d
∑

l=1

1

σl
.

Corollary 3.1. Assume that s ∈ B(σ, p, R) and f ∈ B(α, p, R1) with

H(σ)

d
>

1

p
+

1

2

H(σ)

σ
,

H(α)

d1
>

(

1

p
− 1

2

)

+

+
H(α)

α
.

Assume that |m•
1| ≥ lnn and, for all m ∈ M,

pen(m) = κ̄

(

‖ŝm•‖∞ +
(2r + 1)d

ι̂(f)

)

L2
mDm

n

for some large enough positive constant κ̄. Then, under the assumptions of Theo-
rem 3.1, for n large enough,

Es

[

‖s− s̃‖2
]

≤ C′
1

(

max
m∈M

L2
m

)

min
m∈M

{

‖s− sm‖2 +
Dm

n

}

.

where C′
1 is a positive constant that depends on κ̄, r, d1, d2, ‖s‖∞, ι(f), ‖f‖∞.

We omit the proof since it exactly follows the proof of Theorem 12 in [Lac07].
The smoothness conditions arise from the control of ‖s− sm•‖∞ and ‖f − fm•

1
‖∞,

for which we use the results of [Aka10] (Lemma 2). It should be noticed that m•

may differ from m⋆. In particular, it may be chosen less fine than m⋆ so as to have
better estimates of ‖s‖∞ and ι(f).

Let us now comment on Inequality (3.4), which is similar to (3.2), up to the
factors C1, that does not depend on n, and maxm∈ML2

m.We have already explained
that we need irregular partitions to estimate inhomogeneous functions. However,
irregular partitions often form a too rich collection. If Lm only depends on Dm,
Condition (3.3) means that LD have to be large enough to balance the number
of models of same dimension D. If the number of model for each dimension is
high, the Lm’s have to be high too. For instance, [BM97] use weights (Lm)m∈M

of order log(n) to ensure condition (3.3), which spoils the rates of convergence.
We describe in the next section an interesting collection of partitions for which
the factor maxm∈M L2

m can be bounded by a constant, although the collection
is rich enough to have good approximation qualities with respect to functions of
inhomogeneous smoothness.

Let us mention that we can define an estimator s̃∗ for which we can control the
risk associated to the norm ‖.‖ instead of ‖.‖n.

Corollary 3.2. Define s̃∗ = s̃1‖s̃‖≤n. Then, under assumptions of Theorem 3.1,

Es

[

‖s− s̃∗‖2
]

≤ C′′
1

(

max
m∈M

L2
m

)

min
m∈M

{

‖s− sm‖2 +
Dm

n

}

.

where C′′
1 is a positive real that depends on κ, r, d1, d2, ‖s‖∞, ι(f), ‖f‖∞.
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The proof exactly follows the proof of Theorem 4 in [Lac07] and then is omitted.
(The idea is the following: when ‖s̃‖ ≤ n then the result is already proved; and
P (‖s̃‖ > n) ≤ n−2

E‖s̃‖2 ≤ 2n−2(‖s‖2 + E‖s − s̃‖2) is low enough to become a
remainder term.) Then all the following results (Theorems 2–5) can be stated for
the L2-norm ‖.‖ replacing s̃ by s̃∗ = s̃1‖s̃‖≤n.

3.2. The penalized estimator based on dyadic partitions. Let us describe
the particular collection of partitions that we use here. We call dyadic rectangle of
[0, 1]d any set of the form I1 × . . .× Id where, for all 1 ≤ l ≤ d,

Il = [0, 2−jl ] or Il = (kl2
−jl , (kl + 1)2−jl ]

with jl ∈ N and kl ∈ {1, . . . , 2jl −1}. Otherwise said, a dyadic rectangle of [0, 1]d is
defined as a product of d dyadic intervals of [0, 1] that may have different lengths.
We consider the collection of partitions of [0, 1]d into dyadic rectangles with side-
length ≥ 2−J⋆ , where J⋆ is a nonnegative integer chosen according to Theorem 3.2
below. We denote by Mrect such a collection of partitions. Let us underline that a
partition of Mrect may be composed of rectangles with different Lebesgue measures,
as illustrated by Figure 1.

Figure 1. A partition of [0, 1]2 into dyadic rectangles.

For such a collection, we obtain as a straightforward consequence of Theorem 3.1
that the estimator s̃ is almost as good as the best estimator in the collection
{ŝm}m∈Mrect .

Theorem 3.2. The notation is that of Theorem 3.1 and Assumption (B) is sup-
posed to be fulfilled. Let

J⋆ = max
{

k ∈ N s.t. 2kd ≤
√
n
}

and let pen be given on Mrect by

pen(m) = κ

(

‖s‖∞ +
(2r + 1)d

ι(f)

)

Dm

n

where κ is some positive absolute constant. If κ is large enough, then

(3.6) Es

[

‖s− s̃‖2
n

]

≤ C2 min
m∈Mrect

{

‖s− sm‖2
f +

Dm

n

}

where C2 is a positive real that depends on κ, r, d1, d2, ‖s‖∞, ι(f), ‖f‖∞.
Proof. Let D ∈ N

⋆. Building a partition of [0, 1]d into D dyadic rectangles amounts
to choosing a vector (l1, . . . , lD−1) ∈ {1, . . . , d}D−1 of cutting directions and growing
a binary tree with root corresponding to [0, 1]d and with D leaves. For instance,
the partition of [0, 1]2 represented in Figure 1 can be described by the binary tree
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structure represented in Figure 2 together with the sequence of cutting directions
(2, 1, 2, 2), where 1 stands for a vertical cut, and 2 stands for a horizontal cut. Since

[0, 1]× [0, 1]

[0, 1] ×
[

0, 1
2

]

(2)

[

0, 1
2

]

×
[

0, 1
2

]

(1)
(

1
2 , 1
]

×
[

0, 1
2

]

(

1
2 , 1
]

×
[

0, 1
4

]

(2)
(

1
2 , 1
]

×
(

1
4 ,

1
2

]

[0, 1]×
(

1
2 , 1
]

[0, 1] ×
(

1
2 ,

3
4

]

(2)

[0, 1]×
(

3
4 , 1
]

Figure 2. Binary tree labeled with the sequence of cutting di-
rections (2, 1, 2, 2) corresponding with the dyadic partition repre-
sented in Figure 1.

the number of binary trees with D leaves is given by the Catalan number

1

D

(

2(D − 1)

D − 1

)

≤ 4D

D

(see for instance [Sta99]), the number of such partitions is at most (4d)D. Therefore,
Condition (3.3) is fulfilled for weights Lm all equal to the same constant, and a
possible choice is

Lm = log(8d), for all m ∈ Mrect.

Inequality (3.6) is then a straightforward consequence of Theorem 3.1. �

We are now able to compute estimation rates for the penalized estimator based on
the collection Mrect over the anisotropic Besov balls defined by (3.5), by combining
Theorem 3.2 with the approximation results of [Aka10] (Proposition 2 and Theorem
2). Let

q(σ, d, p) =
σ

H(σ)

d+ 2H(σ)

2H(σ)

(

H(σ)

d
−
(

1

p
− 1

2

)

+

)

,

where (x)+ stands for the positive part of a real x. Contrary to [Kle09], we have
chosen a parameter J⋆ that does not depend on the unknown smoothness of s,
hence the factor σ/H(σ) in the above definition. That factor, which is inferior or
equal to 1 with equality only in the isotropic case, may be interpreted as an index
measuring the lack of isotropy. We assume that q(σ, d, p) > 1, which is equivalent
to

H(σ)

d
>











1
λ − 1

2 if p ≥ 2

1
2

(

1
p − 1 + 1

λ +

√

(

1
p − 1 + 1

λ

)2

+ 2
(

1
p − 1

2

)

)

if 0 < p < 2,

where λ = σ/H(σ). Thus, if q(σ, d, p) > 1, then H(σ)/d > 1/p, so B(σ, p, R) only
contains continuous functions which are uniformly bounded by C(σ, r, d, p)R.
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Theorem 3.3. The notation is that of Theorems 3.1 and 3.2, and the assumptions
those of Theorem 3.2. Let p > 0 and σ ∈ (0, r + 1)d such that q(σ, d, p) > 1. If
n−1 ≤ R2 ≤ nq(σ,d,p)−1, then there exists some positive real C(σ, r, d, p) that only
depends on σ, r, d, p such that

sup
s∈B(σ,p,R)

Es

[

‖s− s̃‖2
n

]

≤ C2C(σ, r, d, p)‖f‖∞
(

Rn−H(σ)/d
)2d/(d+2H(σ))

.

The rate
(

Rn−H(σ)/d
)2d/(d+2H(σ))

is the minimax one given the lower bounds
proved in [Lac07] for transition density estimation of a Markov chain. We are
able to reach that rate not only for functions with homogeneous smoothness, i.e.
for p ≥ 2, as [Lac07], but also for functions with inhomogeneous smoothness, i.e.
for 0 < p < 2, which is impossible with the collection of regular models consid-
ered in [Lac07]. Besides, let us underline that, among the references cited in the
introduction, only [Kle09] can deal simultaneously with anisotropy and inhomoge-
neous smoothness. Theorem 3.3 improves on [Kle09] by allowing to approximately
reach the minimax risk up to a factor that does not depend on n and considering
smoothness parameters possibly larger than 1.

4. Dependent data

We now show that the previous results can be extended to dependent variables.
The case of a Markov chain is of particular interest: if (Xi)i∈Z is a homogeneous
Markov chain of order 1, and Yi = Xi+1 for all i ∈ Z, then s is the transition
density of the chain (Xi)i∈Z.

4.1. Definitions and notation. Let us introduce the notions of dependence used
in the sequel. For two sub-σ-fields A and B of F , the β-mixing (or absolute regu-
larity) coefficient is defined by

β(A,B) = E

[

sup
B∈B

|P(B|A) − P(B)|
]

,

and the ρ-mixing (or maximal correlation) coefficient by

ρ(A,B) = sup
X,Y

|Cov(X,Y )|
√

Var(X)Var(Y )

where the supremum is taken over all real-valued random variables X and Y that
are respectively A and B-measurable and square integrable. We recall that β and
ρ-mixing are among the weakest forms of mixing conditions, in the sense that both
β and ρ-mixing are implied by φ-mixing (uniform mixing) and imply α-mixing (see
for instance [Dou94]). Besides, in general, ρ-mixing does not imply β-mixing, and
β-mixing does not imply ρ-mixing. In the sequel, the letter θ stands for β or ρ. For
all j ∈ N

⋆, let
θZj = θ (σ(Zi, i ≤ 0), σ(Zi, i ≥ j)) .

The process (Zi)i∈Z is said to be θ-mixing when limj→+∞ θZj = 0. In particular,

(Zi)i∈Z is geometrically θ-mixing with rate b, b > 0, if there exists a positive
constant a such that, for all j ∈ N

⋆, θZj ≤ a exp(−bj). We shall also use the 2-

mixing coefficients θ(σ(Z0), σ(Zj)), that satisfy, for all j ∈ N
⋆,

(4.1) θ(σ(Z0), σ(Zj)) ≤ θZj

and, if (Zi)i∈Z is a Markov chain, θ(σ(Z0), σ(Zj)) = θZj .
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4.2. Dependence assumptions. We consider the following dependence assump-
tions. Except for the last one, they are related to some rate of mixing. In each case,
we also define a real ϑ, that may vary according to the dependence assumption,
and will appear in the penalty proposed in the following section.

Assumption (Dβ) The process (Zi)i∈Z is geometrically β-mixing, with a ≥ 0 and
b > 0 such that, for all j ∈ N

⋆, βZ
j ≤ a exp(−bj). Then we denote ϑ = 1 and δ = 1.

Assumption (Dβρ) Assumptions (Dβ) is satisfied and, in addition, the series

Sρ :=
∑

j∈N
ρZ2j converges. Then we denote ϑ = 250

∏∞
j=0

(

1 + ρZ
⌊2j/3⌋+1

)

and

δ = 0.

Assumption (Dβ2-ρ) Assumptions (Dβ) is satisfied and, in addition, the series
S2-ρ :=

∑

j∈N⋆ ρ(σ(Z0), σ(Zj)) converges. Then we denote ϑ = (1 + 2S2-ρ) and
δ = 0.

Assumption (Dβcond) Assumptions (Dβ) is satisfied and, in addition, for all
j ≥ 2, Zj is independent of Z1 conditionally to Xj. Then we denote ϑ = 1 and
δ = 0.

Note that (Dβρ) is in some sense a weaker assumption than (Dβ2-ρ), since
a logarithmic ρ-mixing is sufficient. In particular, if (Zi)i∈Z is a Markov chain,
(Dβ2-ρ) implies (Dβρ) (according to (4.1) and since (Zi)i∈Z is geometrically
ρ-mixing if and only if it is ρ-mixing (cf. [Bra05], Theorem 3.3)). On the other
hand, Assumption (Dβcond) does not imply ρ-mixing. For instance, if (Xi)i∈Z

is a Markov chain and Yi = Xi+1 for all i ∈ Z, then Assumption (Dβcond) is
satisfied, but (Xi)i∈Z, and therefore (Zi)i∈Z, can be chosen non mixing (cf. [DP05]
for instance).

Let us give sufficient conditions for (Zi)i∈Z to be θ-mixing. First, if (Xi)i∈Z is a
strictly stationary θ-mixing process, and Yi = Xi+1 for all i ∈ Z, then (Zi)i∈Z also
is θ-mixing since, for all j ≥ 2,

θZj = θXj−1.

Next, if (Zi)i∈Z is a strictly stationary Harris ergodic Markov chain (aperiodic,
irreducible, positive Harris recurrent), then (Zi)i∈Z is geometrically β-mixing, i.e.
Assumption (Dβ) is verified, if and only if it is geometrically ergodic (cf. [Bra05],
Theorem 3.7). In the sequel, we will mainly be concerned with mixing assumptions
possibly involving ρ-mixing and β-mixing at the same time. Under adequate hy-
potheses, Markov chains (always assumed to be homogeneous of order 1) provide
examples of such processes:

• if (Zi)i∈Z is a strictly stationary Harris ergodic Markov chain that is also
reversible and geometrically ergodic, then (Zi)i∈Z is both geometrically ρ-
mixing and geometrically β-mixing (cf. [Jon04], Theorem 2);

• if (Zi)i∈Z is a strictly stationary, ergodic and aperiodic Markov chain satis-
fying the Doeblin condition, then (Zi)i∈Z is uniformly ergodic, hence both
geometrically ρ-mixing and geometrically β-mixing (cf. [Bra05], 119–121,
or [MT93], Section 16.2).
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We refer to [DG83, Mok90, DT93, Dou94, AN98] for examples of stationary pro-
cesses that are geometrically β-mixing or both geometrically β and ρ-mixing among
commonly used time series such as nonlinear ARMA or nonlinear ARCH models.

4.3. Main result. All the results of Section 3 can be extended to the case of
dependent data, under slightly more restrictive conditions on the thinest partition.

Assumption (P2) All the partitions in the collection M are built on a regular
partition m⋆ of [0, 1]d into cubes such that

|m⋆|2 ≤ n

log2(n)

By comparison with Theorem 3.1, a logarithmic factor then appears in the
penalty (and then in the rate of estimation) under the sole condition of β-mixing
but this term disappears under Assumption (Dβρ), (Dβ2-ρ) or (Dβcond), hence

the factor logδ(n) with δ ∈ {0, 1}. Let us first present the oracle type inequality.

Theorem 4.1. Let M be a collection of partitions satisfying Assumption (P2)
and {Lm}m∈M be a family of reals, greater than or equal to 1, such that

∑

m∈M

exp(−Lm|m|) ≤ 1.

Assume that (Zi)i∈Z satisfies Assumption (Dβ) and s, f satisfy Assumption (B).
If the penalty satisfies, for all m ∈ M,

pen(m) = κ

(

ϑ(b−1 log(n))δ‖s‖∞ +
(2r + 1)d

b2ι(f)

)

L2
mDm

n

for some large enough positive absolute constant κ (where b, δ and ϑ are defined in
the assumptions of dependence), then

Es

[

‖s− s̃‖2
n

]

≤ C3

(

max
m∈M

L2
m

)

min
m∈M

{

‖s− sm‖2
f + logδ(n)

Dm

n

}

.

where C3 is a positive constant that depends on κ, ϑ, δ, a, b, r, d1, d2, ‖s‖∞,
ι(f), ‖f‖∞.

Under Assumptions (Dβρ), (Dβ2-ρ), the price to pay for avoiding the loga-
rithmic factor despite the dependence of the data is the presence of the term ϑ in
the penalty. For practical purposes, it is necessary to include this term in the con-
stant κ to calibrate. Notice that under Assumption (Dβcond), for instance when
we estimate the transition density of a Markov chain, the logarithmic factor still
disappears and ϑ = 1 so that the penalty is almost as simple as in the independent
case.

Then, for our penalized estimator based on partitions into dyadic rectangles
described in Section 3.2, we can state the following theorem.

Theorem 4.2. The notation is that of Theorems 4.1, Assumption (B) is supposed
to be fulfilled. Let

J⋆ = max
{

k ∈ N s.t. 2kd ≤
√
n/ log(n)

}

.
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Let p > 0 and σ ∈ (0, r + 1)d such that q(σ, d, p) > 1. If logδ(n)/n ≤ R2 ≤
nq(σ,d,p)−1 log(n)δ−2q(σ,d,p), then there exists some positive real C(σ, r, d, p) that
only depends on σ, r, d, p such that

sup
s∈B(σ,p,R)

Es

[

‖s− s̃‖2
n

]

≤ C4C(σ, r, d, p)‖f‖∞
(

R

(

n

logδ(n)

)−H(σ)/d
)2d/(d+2H(σ))

.

Thus we recover the same rate of estimation as with independent data (cf. The-
orem 3.3) up to a logarithmic factor that diappears under Assumptions (Dβρ),
(Dβ2-ρ) or (Dβcond).

4.4. Remarks on the dependence assumptions. We can wonder if weaker as-
sumptions of dependence could be used. Another assumption of dependence is used
for instance by [Bos98] (Theorem 2.1) to prove that, asymptotically, the quadratic
risk of kernel density estimators reaches the minimax rate (see also [CM02]). But
we can prove (see [Aka09]) that this assumption is much than stronger than As-
sumption (Dβ2-ρ), which is enough for obtaining the optimal estimation rate from
the minimax point of view.

It is difficult to bound the risk for s̃ under weaker dependence assumptions but
it is possible to weaken the assumptions to bound the risk E

[

‖s− ŝm‖2
n

]

for one
model. In [Aka09], a version of Proposition 2.1 is proved under assumptions of ge-
ometrical α-mixing. Actually a sufficient condition to ensure that Es

[

‖ŝm − sm‖2
n

]

is of the same order as in the independent case is that for some constant C and all
t ∈ Sm,

(4.2) Var

(

n
∑

i=1

t(Zi)

)

≤ CnVar (t(Z1)) .

Assumptions (Dβρ) and (Dβ2-ρ) are optimal for obtaining such an inequality
in the following sense. Let us assume that (Zi)i∈N is a strictly stationary Harris
ergodic and reversible Markov chain satisfying (4.2) for all real-valued function t
defined on [0, 1]d. Then the chain is variance bounding in the sense of [RR08],
which implies that there is a spectral gap in L2(sf) := {t : [0, 1]d → R s.t. 〈t, sf〉 =
0 and ‖t‖sf < ∞} (Theorem 14 in [RR08]). This leads to the geometrical ergodic-
ity of the chain (Theorem 2.1 in [RR97]), which, given the reversibility assumption,
implies that the chain is ρ-mixing. As a conclusion, a strictly stationary Harris er-
godic and reversible Markov chain (Zi)i∈Z satisfies (4.2) for all real-valued function
t defined on [0, 1]d if and only if it is ρ-mixing.

5. Implementation and simulations

In order to provide useful characterizations for ŝm and m̂ in practice, we need
to introduce some adequate basis of each Sm, for m ∈ M. Let (Qj)j∈N be the
orthogonal family of the Legendre polynomials in L2([−1, 1]). For all j ∈ N, we
recall that Qj satisfies

(5.1) ‖Qj‖∞ = 1 and ‖Qj‖2 =
2

(2j + 1)
.
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For K1 =
∏d1

i=1[ui, vi] rectangle of [0, 1]d1, k1 = (k1(1), . . . , k1(d1)) ∈ {0, . . . , r}d1

and x = (x1, . . . , xd1
) ∈ [0, 1]d1, we set

φK1,k1
(x) =

1
√

µd1
(K1)

d1
∏

i=1

√

2k1(i) + 1Qk1(i)

(

2xi − ui − vi

vi − ui

)

1K1
(x),

where µd1
denotes the Lebesgue measure in R

d1 . Therefore, for K1 rectangle in
[0, 1]d1, (φK1,k1

)k1∈{0,...,r}d1 is a basis of the space of piecewise polynomials functions
with support K1 and coordinate degree ≤ r, which is orthonormal for the norm
‖.‖. For K2 rectangle in [0, 1]d2 and k2 ∈ {0, . . . , r}d2 , we define in the same way
ψK2,k2

on [0, 1]d2. For K rectangle in [0, 1]d, we shall denote by K1 and K2 the
rectangles in [0, 1]d1 and [0, 1]d2 such that K = K1 ×K2. For k ∈ {0, . . . , r}d, we
shall denote by k1 and k2 the multi-indices in {0, . . . , r}d1 and {0, . . . , r}d2 such that
k = (k1, k2). For any rectangle K ∈ [0, 1]d and any multi-index k ∈ {0, . . . , r}d, we
define ΦK,k by

ΦK,k(x, y) = φK1,k1
(x)ψK2,k2

(y)

for z = (x, y) ∈ [0, 1]d1 × [0, 1]d2. Thus, for a partition m of [0, 1]d into rectangles,
the family (ΦK,k)K∈m,k∈{0,...,r}d is a basis of Sm, orthonormal for the norm ‖.‖.

We denote by

ŝm =
∑

K∈m

∑

k∈{0,...,r}d

âK,kΦK,k

the decomposition of ŝm in the basis (ΦK,k)K∈m,k∈{0,...,r}d . For all K ∈ m, we
define the matrices

AK =
(

âK,(k1,k2)

)

(k1,k2)∈{0,...,r}d1×{0,...,r}d2
,

ΥK =

(

1

n

n
∑

i=1

φK1,k1
(Xi)ψK2,k2

(Yi)

)

(k1,k2)∈{0,...,r}d1×{0,...,r}d2

,

and

GK1
=

(

1

n

n
∑

i=1

φK1,k1
(Xi)φK1,l1(Xi)

)

(k1,l1)∈{0,...,r}d1×{0,...,r}d1

.

Since φK1,k1
and φL1,l1 (resp. ψK2,k2

and ψL2,l2) have disjoint supports when
K1 6= L1 (resp. K2 6= L2) and (ψK2,k2

)k2∈{0,...,r}d2 is orthonormal, we obtain after
some computation that, for all K ∈ m, AK is given by

(5.2) GK1
AK = ΥK .

Let us mention that when r = 0, we can write, for all rectangle K (we do not
mention any index k),

ŝm1K =
1

µd2
(K2)

∑n
i=1 1K1

(Xi)

n
∑

i=1

1K(Zi) if some Xi ∈ K1,

and ŝm1K = 0 otherwise, where µd2
denotes the Lebesgue measure in R

d2 .
Thanks to Formula (5.2), one can check that, for all m ∈ Mrect,

γ(ŝm) = −
∑

K∈m

∑

k∈{0,...,r}d

(AK)(k1,k2)(ΥK)(k1,k2).
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We shall consider a penalty pen of the form

(5.3) pen(m) = c‖ŝm•‖∞
Dm

n
,

where c is some positive constant, as in Theorem 4.1. With such a penalty, m̂ is
given by

m̂ = argmin
m∈Mrect

∑

K∈m

L(K)

where, for all rectangle K,

L(K) =
∑

k∈{0,...,r}d

(

−(AK)(k1,k2)(ΥK)(k1,k2) + c
‖ŝm•‖∞

n

)

.

That characterization allows to determine m̂ without having to compute all the
estimators of the collection {ŝm}m∈Mrect . Indeed, we can for instance adapt to
our estimation framework the algorithm proposed by [Don97], which requires a
computational complexity of order 2dJ⋆. Thus, choosing 2dJ⋆ at most of order n,
which allows for a larger choice of J⋆ than prescribed by our theoretical results
(cf. Theorems 3.2 and 4.2), the computational complexity is at most linear in
the number of observations. Let us also mention that the algorithm proposed
by [BSRM07] allows for instance the slightly larger choice J⋆ = ⌊log(n)⌋, that does
not depend on d, while keeping an almost linear computational complexity, that is
of order nd logd+1(n).

We propose a simulation study based on the 4 following examples.
Example 1.

Yi = 0.5Xi + 1 + ǫi, i = 1, . . . , n,

where (Xi)1≤i≤n are i.i.d. Gaussian variables with mean 6 and variance 4/3,
(ǫi)1≤i≤n are i.i.d. reduced and centered Gaussian variables, independent of the
Xi’s.
Example 2.

Yi = sin(Xi) + (cos(Xi) + 3)ǫi, i = 1, . . . , n,

where (Xi)1≤i≤n are i.i.d. uniformly distributed over [−6, 6], (ǫi)1≤i≤n are i.i.d.
reduced and centered Gaussian variables, independent of the Xi’s.
Example 3. Let β(., a, b) be the density of the β distribution with parameters a

and b,

Yi =
1

3
(Xi + 1) +

(

1

9
− 1

23

(

1

2
β(5Xi/3, 4, 4) +

1

20
β((5Xi − 2)/3, 400, 400)

))

ǫi

where (Xi)1≤i≤n are i.i.d. uniformy distributed in [0, 1], (ǫi)1≤i≤n are i.i.d. reduced
and centered Gaussian variables, independent of the Xi’s.
Example 4.

Yi =
1

4
(g(Xi) + 1) +

1

8
ǫi, i = 1, . . . , n

where (Xi)1≤i≤n are i.i.d. uniformy distributed in [0, 1], (ǫi)1≤i≤n are i.i.d. Gauss-
ian reduced and centered, independent of the Xi’s, and g is the density of

3

4
N1 +

1

4
N2

where N1 is Gaussian with mean 1/2 and standard error 1/6, N2 is Gaussian with
mean 3/4 and standard error 1/18, N1 and N2 are independent.
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Each model is of the form

Yi = µ(Xi) + σ(Xi)ǫi,

where ǫi is a reduced and centered Gaussian variable, so the conditional density of
Yi given Xi is given by

s(x, y) = φ((y − µ(x))/σ(x))/σ(x),

where φ is the density of ǫ1. Besides, this allows us to consider Markovian coun-
terparts of Examples 1 to 4, that we will call Example 1 (Markov),. . ., Example 4
(Markov). More precisely, we also estimate the transition density of the Markov
chain (Xi)i∈N⋆ that satisfies

Xi+1 = µ(Xi) + σ(Xi)ǫi,

with X1 that follows the stationary distribution of the chain. Thus, for Example 1
(Markov), X1 has the same distribution as in Example 1, but in the other examples,
the distribution of X1 differs between the independent and the Markovian cases. In
practice, we simulate the chain long enough so that it finally reaches the stationary
regime. We estimate s respectively on [4, 8]2 for Example 1, [−6, 6]2 for Example 2,
and [0, 1]2 for Examples 3 and 4, both for independent and Markovian data. The
four conditional densities are represented on these rectangles in Figure 5. We may
say that the first two examples are rather homogeneous functions, whereas the last
two are rather inhomogeneous.

Figure 3. Level lines of the conditional densities to estimate.

We implement s̃ for r = 0 and choose the following parameters. The supremum
norm of s is estimated by ‖ŝm•‖, where m• is the regular partition of [0, 1]2 into
cubes with sidelength 2J• . We select a best partition among those into dyadic
rectangles with sidelength ≥ 2−J⋆ , with 2J⋆ as close as possible to

√
n. For n =

250, we set J• = 2 and J⋆ = 4, and for n = 1000, we set J• = 3 and J⋆ = 5.
Let us denote by s̃(c) the penalized estimator obtained with the penalty (5.3) for
the penalty constant c. For the sample sizes n = 250 and n = 1000, we give

respectively in Tables 1 and 2 the estimated values of ‖ŝm•‖∞, Es [‖s− s̃(3)‖2
n] and

minc Es

[

‖s− s̃(c)‖2
n

]

where the minimum is obtained by varying c from 0 to 4 by
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Table 1. Results for n = 250 data and 100 simulations.

n = 250 ‖s‖∞ ‖ŝm•‖∞ Es [‖s− s̃(3)‖2
n] minc Es

[

‖s− s̃(c)‖2
n

]

Example 1 0,4 0,75 0,04 0,04
Example 1 (Markov) 0,4 0,54 0,02 0,02

Example 2 0,22 0,15 0,01 0,02
Example 2 (Markov) 0,22 0,16 0,01 0,02

Example 3 6,5 3,25 0,62 0,61
Example 3 (Markov) 6,5 3,73 0,40 0,40

Example 4 3,2 2,49 0,7 0,7
Example 4 (Markov) 3,2 2,77 0,78 0,72

step 0.1. All these quantities have been estimated over 100 simulations. Besides, for
Example 3, we represent in Figure 5 the selected partition for one simulation with
1000 independent data and the penalty constant c = 3. That partitition is both
anisotropic and inhomogeneous and well adapted to the function, which illustrates
the interest of allowing non-regular and non-isotropic partitions in our selection
procedure. Just below, we represent two sections of that conditional density (dark
line) together with the corresponding sections of s̃(3).

Figure 4. Top left: Level lines of the the conditional density s for
Example 4. Top right: selected partition for c = 3 and n = 1000.
Bottom : two sections of s (dark line) together with the corresponding
sections of s̃(3) (light line).

The closeness between the minimal risk minc Es

[

‖s− s̃(c)‖2
n

]

and Es [‖s− s̃(3)‖2
n]

indicates that a penalty constant equal to 3 seems to be a good choice. We observe
that, for each example, the risks obtained for the independent and the Markovian
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Table 2. Results for n = 1000 data and 100 simulations.

n = 1000 ‖s‖∞ ‖ŝm•‖∞ Es [‖s− s̃(3)‖2
n] minc Es

[

‖s− s̃(c)‖2
n

]

Example 1 0,4 0,62 0,02 0,02
Example 1 (Markov) 0,4 0,54 0,02 0,02

Example 2 0,22 0,20 0,01 0,01
Example 2 (Markov) 0,22 0,21 0,01 0,01

Example 3 6,5 5,18 0,38 0,38
Example 3 (Markov) 6,5 6,61 0,26 0,25

Example 4 3,2 3,36 0,39 0,39
Example 4 (Markov) 3,2 3,85 0,41 0,41

cases are also close, which tends to confirm Theorem 4.1, otherwise said that the
penalty under assumption (Dβcond) is not so much affected by the dependency
between the data. For Examples 1 and 2, we can compare ourselves with the results
of Lacour [Lac07] in the Markovian case, obtained via regular model selection. We
obtain either similar results for Example 2 or even better results for Example 1.
Last, let us mention that the performance of s̃, in practice, might still be improved
by a data-driven choice of the penalty constant based on the slope heuristics, as
described in [BMM10] for instance, but this is beyond the scope of the paper.

6. Proofs

6.1. Notation and preliminary lemmas. In all the proofs, the letter C denotes
a real that may change from line to line. The notation C(θ) means that the real C
may depend on θ.

For all t ∈ L2([0, 1]d1 × [0, 1]d2) and all z = (x, y) ∈ [0, 1]d1 × [0, 1]d2, let

(6.1) Γt(z) = t(x, y) −
∫

[0,1]d2

t(x, u)s(x, u)du,

and let ν be the empirical process defined on L2([0, 1]d1 × [0, 1]d2) by

(6.2) ν(t) =
1

n

n
∑

i=1

Γt(Zi).

For all i, Es[Γt(Zi)|Xi] = Es[t(Xi, Yi)|Xi] −
∫

[0,1]d2
t(Xi, u)s(Xi, u)du = 0, so that

ν(t) is centered.
We will use several times the following lemma to bound some variance terms.

Lemma 6.1. Let q ∈ N
⋆. For all t ∈ L2([0, 1]d1 × [0, 1]d2),

(6.3) Vars

(

q
∑

i=1

Γt(Zi)

)

≤ ϑq1+δVars (Γt(Z1))

where δ and ϑ are defined in Section 4.2 for the dependent case, or δ = 0 and ϑ = 1
when the variables Zi are independent. Besides,

Vars (Γt(Z1)) ≤ Es

[

t2(Z1)
]

≤ min{‖s‖∞‖t‖2
f , ‖sf‖∞‖t‖2}.

Proof: First we use a convexity inequality to write, without further assumption,

Vars

(

q
∑

i=1

Γt(Zi)

)

≤ Es

(

q

q
∑

i=1

Γ2
t (Zi)

)

≤ q2Vars (Γt(Z1))
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whereas in the independent case, Vars (
∑q

i=1 Γt(zi)) =
∑q

i=1 Vars (Γt(Z1)) . Now,
under Assumption (Dβρ), Lemma 8.15 in [Bra07] provides

Vars

(

q
∑

i=1

Γt(Zi)

)

≤ C1qVars (Γt(Z1))

with C1 = 250
∏⌊log

2
q⌋

j=0

(

1 + ρZ
⌊2j/3⌋+1

)

. Next, by stationarity,

Vars

(

q
∑

i=1

Γt(zi)

)

= qVars (Γt(Z1)) + 2

q−1
∑

j=1

(q − j)Covs (Γt(Z1),Γt(Zj+1)) .

Under Assumption (Dβ2-ρ), we immediately deduce from the definition of the
ρ-mixing coefficients and the stationarity of (Zi)i∈Z that, for all 1 ≤ j ≤ q − 1,

∣

∣Covs

(

Γt(Z1),Γt(Zj+1)
)∣

∣ ≤ ρ(σ(Z1), σ(Zj+1))Vars (Γt(Z1)) .

Thus,

1

q
Vars

(

q
∑

i=1

Γt(Zi)

)

= Vars

(

Γt(Z1)
)

+ 2

q−1
∑

j=1

(

1 − j

q

)

Covs

(

Γt(Z1),Γt(Zj+1)
)

≤



1 + 2

q−1
∑

j=1

ρ(σ(Z1), σ(Zj+1))



Vars (Γt(Z1)) .

Under Assumption (Dβcond)

Covs (Γt(Z1),Γt(Zj+1)) = Es [Γt(Z1)Es [Γt(Zj+1)|Z1, Xj+1]] = 0,

hence Inequality (6.3) in the last case.
Besides,

Vars [Γt(Z1)] = Vars [t(Z1)] + Es

[

Es

[

(

Es[t(Z1)] − Es[t(Z1)|X1]
)2|X1

]]

≤ Es[t
2(Z1)] =

∫

[0,1]d1

∫

[0,1]d2

t2(x, y)s(x, y)f(x)dxdy.

�

We recall here Bernstein’s Inequality for independent random variables (see [Mas07]
(Section 2.2.3) for a proof).

Lemma 6.2 (Bernstein inequality). Let (Wi)1≤i≤n be an independent and identi-
cally dsitributed sequence, defined on the probability space (Ω,F ,P), with values in
W. Let n ∈ N

⋆ and g be a real-valued and bounded function defined on W. Let
σ2

g = Var(g(W1)). Then, for all x > 0,

P

(∣

∣

∣

∣

∣

n
∑

i=1

(g(Wi) − E[g(Wi)])

∣

∣

∣

∣

∣

≥
√

2nσ2
gx+ ‖g‖∞x/3

)

≤ 2 exp (−x)

6.2. Proof of Proposition 2.1. Since ŝm = argmin
t∈Sm

γ(t), we have γ(ŝm) ≤ γ(sm).

The contrast γ satisfies, for all t, u ∈ L2([0, 1]d1 × [0, 1]d2),

γ(t) − γ(u) = ‖t− s‖2
n − ‖u− s‖2

n − 2ν(t− u),

where ν is defined by (6.2), hence

‖s− ŝm‖2
n ≤ ‖s− sm‖2

n + 2ν(ŝm − sm).



20 NATHALIE AKAKPO, CLAIRE LACOUR

Let

χf (m) = sup
t∈Sm

‖t‖f =1

ν(t),

and let θ be some positive constant, to be chosen later, then

2ν(ŝm − sm) ≤ 2‖ŝm − sm‖fχf (m)

≤ 1

θ
‖ŝm − sm‖2

f + θχ2
f (m).

Let us fix η > 1, to be determined later, and define

(6.4) Ωη(m) =
{

For all t ∈ Sm\{0}, ‖t‖2
f ≤ η‖t‖2

n

}

.

We deduce from the triangle inequality that, on Ωη(m),

2ν(ŝm − sm) ≤ η

θ
‖ŝm − sm‖2

n + θχ2
f (m)

≤ 2η

θ
‖s− ŝm‖2

n +
2η

θ
‖s− sm‖2

n + θχ2
f (m)(6.5)

Consequently, provided θ > 2η,
(

1 − 2η

θ

)

‖s− ŝm‖2
n1Ωη(m) ≤

(

1 +
2η

θ

)

‖s− sm‖2
n + θχ2

f (m),

so that, choosing η = 7/6 and θ = 7,

2

3
Es

[

‖s− ŝm‖2
n1Ωη(m)

]

≤ 4

3
‖s− sm‖2

f + 7Es

[

χ2
f (m)

]

.

Let (Φf
λ)λ∈Λ(m) be a basis of Sm orthonormal for ‖.‖f . Since ν is linear, we deduce

from Schwarz Inequality and its equality case that

χ2
f (m) =

∑

λ∈Λ(m)

ν2
(

Φf
λ

)

,

so

nEs

[

χ2
f (m)

]

=
1

n

∑

λ∈Λ(m)

Var

(

n
∑

i=1

ΓΦf
λ
(Zi)

)

.

Since Z1, . . . , Zn are independent, we deduce from Lemma 6.1 that

(6.6) nEs

[

χ2
f (m)

]

≤ ‖s‖∞Dm,

hence

Es

[

‖s− ŝm‖2
n1Ωη(m)

]

≤ 2‖s− sm‖2
f + 11

‖s‖∞Dm

n
.

In order to bound the risk of ŝm on Ωc
η(m), we use the following two lemmas,

proved just below.

Lemma 6.3. Assume that d1 ∈ N
⋆ and that s is bounded. Let m be a partition of

[0, 1]d1 × [0, 1]d2 into rectangles built on a regular partition m⋆
1 ×m⋆

2, where m⋆
1 and

m⋆
2 are regular partitions of [0, 1]d1 and [0, 1]d2 into cubes. Then

‖s− ŝm‖2
n ≤ 2‖s‖2

∞ + 2(r + 1)d2(2r + 1)d2 |m⋆
2|.
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Lemma 6.4. Let m⋆ = m⋆
1×m⋆

2, where m⋆
1 and m⋆

2 are regular partitions of [0, 1]d1

and [0, 1]d2 into cubes. Let η > 1 and Ωη(m⋆) be defined by (6.4). Then there exists
an absolute constant C such that

Ps(Ω
c
η(m⋆)) ≤ C(r + 1)2d1 |m⋆

1| exp

(

− ι2(f)(1 − 1/η)2n

3‖f‖∞C(r, d1)|m⋆
1|

)

.

Since m is built on m⋆ = m⋆
1 ×m⋆

2, Ωη(m⋆) ⊂ Ωη(m). Given the conditions on m⋆
1

and m⋆
2, we then obtain

Es

[

‖s− ŝm‖2
n1Ωc

η(m)

]

≤ 2
(

‖s‖2
∞ + (r + 1)d2(2r + 1)d2 |m⋆

2|
)

Ps(Ω
c
η(m⋆))

≤ C(r, d1, s, f)/n,

where C(r, d1, s, f) is a nonnegative real that only depends on r, d1, ‖s‖∞, ι(f)
and ‖f‖∞.

Let us end with the proofs of Lemmas 6.3 and 6.4.
Proof of Lemma 6.3: We shall use the notation

• ‖.‖Rn defined for v = {vi}1≤i≤n ∈ R
n by ‖v‖Rn =

∑n
i=1 v

2
i /n;

• for t ∈ L2([0, 1]d1 × [0, 1]d2) and y ∈ [0, 1]d2, tX(y) = {t(Xi, y)}1≤i≤n ∈ R
n;

• VX

m(y) = {tX(y), t ∈ Sm} and PVX
m(y) the orthogonal projection of R

n on

VX

m(y).

For all y ∈ [0, 1]d2, let us also define the R
n-vector

v̂m(y) =







∑

J∈m2

∑

j∈{0,...,r}d2

ψJ,j(Yi)ψJ,j(y)







1≤i≤n

.

As [Lac07] (Proposition 2.1), we can prove that ŝXm(y) = PVX
m(y) (v̂m(y)) . Using the

triangle inequality and the shrinking property of PVX
m(y), we get

‖s− ŝm‖2
n =

∫

[0,1]d2

‖sX(y) − ŝXm(y)‖2
Rndy

≤ 2

∫

[0,1]d2

‖sX(y)‖2
Rndy + 2

∫

[0,1]d2

‖v̂m(y)‖2
Rndy.

¿From the orthonormality of {ψJ,j}J∈m2,j∈{0,...,r}d2 , we deduce that

∫

[0,1]d2

‖v̂m(y)‖2
Rndy =

1

n

n
∑

i=1

∑

J∈m2

∑

j∈{0,...,r}d2

ψ2
J,j(Yi).

Now, using (5.1),

‖ψJ,j‖2
∞ =

∏d2

i=1(2k2(i) + 1)

µd2
(J)

≤ (2r + 1)d2

µd2
(J)

.

Then, by grouping the ψJ,j having the same support, we get
∥

∥

∥

∥

∥

∥

∑

J∈m2

∑

j∈{0,...,r}d2

ψ2
J,j

∥

∥

∥

∥

∥

∥

∞

≤ max
J∈m2

∥

∥

∥

∥

∥

∥

∑

j∈{0,...,r}d2

ψ2
J,j

∥

∥

∥

∥

∥

∥

∞

≤ (2r+1)d2(r+1)d2/ min
J∈m2

µd2
(J),

hence Lemma 6.3. �



22 NATHALIE AKAKPO, CLAIRE LACOUR

Proof of Lemma 6.4: The proof follows almost the same lines as the proof
of Proposition 8 in [Lac07]. Let ν′ be the centered empirical process defined for
u ∈ L2([0, 1]d1 × [0, 1]d2) by

ν′(u) =
1

n

n
∑

i=1

(

∫

[0,1]d2

u(Xi, y)dy −
∫

[0,1]d1×[0,1]d2

u(x, y)f(x)dxdy

)

.

Since ‖t‖2
n = ν′(t2) + ‖t‖2

f for all t ∈ L2([0, 1]d1 × [0, 1]d2), ν′ is linear and η > 1,
we get

Ωc
η(m⋆) ⊂

{

sup
t∈Sm⋆ /‖t‖f=1

|ν′(t2)| > 1 − 1/η

}

.

By construction of (ΦK,k)K∈m⋆,k∈{0,...,r}d , for all K,L ∈ m⋆ and k, l ∈ {0, . . . , r}d,
and all i ∈ {1, . . . , n},

∫

[0,1]d2

ΦK,k(Xi, y)ΦL,l(Xi, y)dy = φK1,k1
(Xi)φL1,l1(Xi)〈ψK2,k2

, ψL2,l2〉

= 1K1=L1
1(K2,k2)=(L2,l2)φK1,k1

φL1,l1(Xi).(6.7)

Let t ∈ Sm⋆\{0}, and for K1 ∈ m⋆
1 and k1 ∈ {0, . . . , r}d1 , let

aK1,k1
=

√

∑

K2∈m⋆
2

∑

k2∈{0,...,r}d2

〈t,ΦK1×K2,(k1,k2)〉2/‖t‖.

It follows from (6.7) and Schwarz inequality that

|ν′(t2)| ≤ ‖t‖2
∑

K1∈m1

∑

k1,l1∈{0,...,r}d1

aK1,k1
aK1,l1 |ν′′(φK1,k1

φK1,l1)|

where ν′′ is the centered empirical process defined on L2([0, 1]d1) by

ν′′(u) =
1

n

n
∑

i=1

(

u(Xi) −
∫

[0,1]d1

u(x)f(x)dx

)

.

Consequently

sup
t∈Sm/‖t‖f =1

|ν′(t2)| ≤ ι−1(f)max
a∈A

∑

K1∈m1

∑

k1,l1∈{0,...,r}d1

aK1,k1
aK1,l1 |ν′′(φK1,k1

φK1,l1)|,

whereA =
{

a = (aK1,k1
)K1∈m1,k1∈{0,...,r}d1 s.t.

∑

K1∈m1

∑

k1∈{0,...,r}d1
a2

K1,k1
= 1
}

.

Let us introduceB = (BK1,k1,l1)K1∈m1,k1,l1∈{0,...,r}d1 and V = (VK1,k1,l1)K1∈m1,k1,l1∈{0,...,r}d1

defined respectively by

BK1,k1,l1 = ‖φK1,k1
φK1,l1‖∞ and VK1,k1,l1 = ‖φK1,k1

φK1,l1‖.
Let us set

ρ̄(B) = sup
a∈A

∑

K1∈m1

∑

k1,l1∈{0,...,r}d1

|aK1,k1
||aK1,l1 |BK1,k1,l1 ,

define ρ̄(V ) in the same way, and set L(φ) = max{ρ̄2(V ), ρ̄(B)}. Then, Schwarz
Inequality and the properties of the family (φK1,k1

)K1∈m1,k1∈{0,...,r}d1 recalled in
Section 6.1 provide

L(φ) ≤ C(r, d1)|m⋆
1|.
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Let

x =
ι2(f)(1 − 1/η)2

3‖f‖∞L(φ)

and

∆ =
⋂

K1∈m⋆
1
,k1,l1∈{0,...,r}d1

{

|ν′′(φK1,k1
φK1,l1)| <

√

2‖f‖∞xVK1,k1,l1 +
1

3
BK1,k1,l1x

}

.

One can easily check that, on ∆, supt∈Sm⋆/‖t‖f =1 |ν′(t2)| ≤ 1−1/η, so that Ωc
η(m) ⊂

∆c. Lemma 6.4 then follows from Lemma 6.2. �

6.3. Proof of Theorem 4.1. Let us fix m ∈ M. We also fix η ≥ 1 and θ1 > 0, to
be determined at the end of the proof. By definition of m̂ and ŝm,

γ(s̃) + pen(m̂) ≤ γ(ŝm) + pen(m)

≤ γ(sm) + pen(m).(6.8)

Using the same arguments as in the proof of Proposition 2.1, we deduce from (6.8)
that

‖s− s̃‖2
n ≤ ‖s− sm‖2

n + pen(m) + 2ν(s̃− sm) − pen(m̂).

As s̃− sm ∈ Sm + Sm̂ ⊂ Sm⋆ , we obtain in the same way as Inequality (6.5) that,
on the set Ωη(m⋆) defined as in (6.4),

2ν(s̃− sm) ≤ 2η

θ1
‖s− s̃‖2

n +
2η

θ1
‖s− sm‖2

n + θ1χ
2
f (m, m̂)

with

χf (m,m′) = sup
t∈Sm+Sm′

‖t‖f=1

|ν(t)|.

Consequently, provided θ1 > 2η,
(

1 − 2η

θ1

)

‖s− s̃‖2
n1Ωη(m⋆) ≤

(

1 +
2η

θ1

)

‖s− sm‖2
n1Ωη(m⋆) + pen(m)

+θ1χ
2
f (m, m̂) − pen(m̂).(6.9)

To pursue the proof, we have to control the term χ2
f (m, m̂). Since the data are

β-mixing, we can introduce blockwise independent data. More precisely, let qn =
⌈3b−1 log(n)⌉ (where b is defined in Assumption (Dβ)) and let (dn, rn) be the
unique couple of nonnegative integers such that n = dnqn + rn and 0 ≤ rn < qn.
For the sake of simplicity, we assume in the sequel that rn = 0 and dn = 2pn ∈ N

⋆,
but the other cases can be treated in a similar way. For l = 0, . . . , pn − 1, let us set

Al = {Zi}2lqn+1≤i≤(2l+1)qn
and Bl = {Zi}(2l+1)qn+1≤i≤(2l+2)qn

.

As recalled for instance in [Vie97] (proof of Proposition 5.1), we can build, for
l = 0, . . . , pn − 1,

A•
l = {Z•

i }2lqn+1≤i≤(2l+1)qn
and B•

l = {Z•
i }(2l+1)qn+1≤i≤(2l+2)qn

such that, for all l = 0, . . . , pn − 1,

• Al, A
•
l , Bl and B•

l have the same distribution;
• Ps(Al 6= A•

l ) ≤ βZ
qn

and Ps(Bl 6= B•
l ) ≤ βZ

qn
;

• (A•
l )0≤l≤pn−1 are independent random variables, and so are (B•

l )0≤l≤pn−1.
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We set

Ω• =
n
⋂

i=1

{Z•
i = Zi}.

The proof of Theorem 4.1 heavily relies on the following concentration inequality
satisfied by the random variables χ2

f (m,m′), for m,m′ partition built on m⋆. The
proof of that proposition is deferred to Section 6.4.

Proposition 6.1. Under the assumptions of Theorem 4.1, there exists a positive
constant C such that

∑

m′∈M

Es

[

[χ2
f (m,m′) − pen(m) − pen(m′)]+1Ω•

]

≤ C
logδ(n)

n
,

where [x]+ denotes the positive part of a real x and C depends on ϑ, ‖s‖∞, r, d, ι(f), b.

We shall first bound the quadratic risk of s̃ on Ωη(m⋆) ∩ Ω•. Combining (6.9)
and Proposition 6.1
(

1 − 2η

θ1

)

‖s− s̃‖2
n1Ωη(m⋆)∩Ω•

≤
(

1 +
2η

θ1

)

‖s− sm‖2
n1Ωη(m⋆) + 2pen(m)

+θ1[χ
2
f (m, m̂) − pen(m) − pen(m̂)]+1Ω•

hence
(

1 − 2η

θ1

)

Es‖s− s̃‖2
n1Ωη(m⋆)∩Ω•

≤
(

1 +
2η

θ1

)

Es‖s− sm‖2
n + 2pen(m)

+ θ1C
logδ(n)

n
.(6.10)

Let us now bound the quadratic risk of s̃ on Ωc
η(m⋆) ∪ Ωc

•. A straightforward
upper-bound for the Ps-measure of Ωc

η(m⋆) ∪ Ωc
• is

Ps(Ω
c
η(m⋆) ∪ Ωc

•) ≤ Ps(Ω
c
•) + Ps(Ω

c
η(m⋆) ∩ Ω•).

One easily deduces from one of the properties of the A•
l ’s and B•

l ’s that

(6.11) Ps(Ω
c
•) ≤ 2pnβ

Z
qn

=
n

qn
βZ

qn
.

In order to bound Ps(Ω
c
η(m⋆)∩Ω•), we follow the proof of Lemma 6.4. Thus there

exists some constant C(r, d1) that only depends on d1 and r such that
(6.12)

Ps(Ω
c
η(m⋆) ∩ Ω•) ≤ 4(r + 1)2d1 |m⋆

1| exp

(

−C(r, d1)
ι2(f)(1 − 1/η)2

‖f‖∞
n

qn|m⋆
1|

)

.

where m⋆
1 and m⋆

2 are the partition of [0, 1]d1 and [0, 1]d2 such that m⋆ = m⋆
1 ×m⋆

2.
Combining Inequalities (6.11) and (6.12) with Lemma 6.3 then provides for

Es

[

‖s− s̃‖2
n1Ωc

η(m⋆)∪Ωc
•
∪Ωc

T

]

the upper-bound

C(r, d1, d2)|m⋆
2|
(

n

qn
βZ

qn
+ |m⋆

1| exp

(

−C(η, r, d1, ι(f), ‖f‖∞)
n

qn|m⋆
1|

))

.(6.13)

Last, let us choose

η = 7/6, θ1 = 7.
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Under Assumption (P2) on m⋆
1 and m⋆

2, we deduce from (6.10) and (6.13) that

Es

[

‖s− s̃‖2
n

]

≤3
{

‖s− sm‖2
f + pen(m)

}

+ C(ϑ, ‖s‖∞, r, d1, d2, ι(f), ‖f‖∞, b, a)
logδ(n)

n
.

Theorem 4.1 then follows by taking the minimum over m ∈ M.
Notice that when the data are independent, we can take ϑ = 1, qn = 1, βqn =

0 and δ = 0. Then Proposition 6.1 and the rest of the proof are valid under
Assumption (P1) .

6.4. Proof of Proposition 6.1. We recall that Γ is given by (6.1) and we define
on L2([0, 1]d1 × [0, 1]d2), for all m,m′ ∈ M and j = 1, 2,

ν•(j)(t) =
1

n

pn−1
∑

l=0

(2l+j)qn
∑

i=(2l+j−1)qn+1

Γt(Z
•
i ) and χ•

f,(j)(m,m
′) = sup

t∈Sm+Sm′

‖t‖f =1

ν•(j)(t).

We set

V =
√

ϑqδ
n‖s‖∞/2 and B = 2qn

√

(2r + 1)dDm⋆

ι(f)
.

Since A•
0, . . . , A

•
pn−1 are independent and identically distributed on Ω•, we deduce

from Lemma 6.1 that

sup
t∈Sm+Sm′

‖t‖f =1

pn−1
∑

l=0

Vars





1

n

(2l+1)qn
∑

i=2lqn+1

Γt(Z
•
i )1Ω•



 ≤ V 2

n

and also, by using the same arguments as for (6.6), that

E
2
s

[

χ•
f,(1)(m,m

′)1Ω•

]

≤ V 2(Dm +Dm′)

n
.

If t ∈ Sm+Sm′ and ‖t‖f = 1, then by developing t in the basis (ΦK,k)K∈m⋆,k∈{0,...,r}d

and using Schwarz Inequality, we get

‖t‖2
∞ ≤ max

K∈m⋆





∑

k∈{0,...,r}d

|〈t,ΦK,k〉|‖ΦK,k‖∞





2

≤ max
K∈m⋆





∑

k∈{0,...,r}d

〈t,ΦK,k〉2








∑

k∈{0,...,r}d

‖ΦK,k‖2
∞





≤ ‖t‖2(r + 1)d(2r + 1)d|m⋆|

≤
‖t‖2

f

ι(f)
(r + 1)d(2r + 1)d|m⋆| =

(2r + 1)dDm⋆

ι(f)
,

hence

1

n

∣

∣

∣

∣

∣

∣

(2l+1)qn
∑

i=2lqn+1

Γt(Z
•
i )1Ω•

∣

∣

∣

∣

∣

∣

≤ B

n
.

As ν = ν• = ν•(1) + ν•(2) on Ω•, we have

χf (m,m′)1Ω•
≤ χ•

f,(1)(m,m
′)1Ω•

+ χ•
f,(2)(m,m

′)1Ω•
,
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and, from the hypotheses on (A•
l )0≤l≤pn−1 and (B•

l )0≤l≤pn−1, χ
•
f,(1)(m,m

′)1Ω•
and

χ•
f,(2)(m,m

′)1Ω•
are identically distributed. Thus, denoting by ε some positive con-

stant, applying Talagrand’s inequality (as stated for instance in [Mas07], Inequality
(5.50)) to each χ•

f,(j)(m,m
′)1Ω•

, we deduce that, for all x > 0, there exists an event

Ωm,m′(x) such that Ps(Ω
c
m,m′(x)) ≤ 2 exp(−x) and over which

√
nχf (m,m′)1Ω•

≤ 2

(

5

2
V
√

Dm +Dm′ + V
√

2x+B
x√
n

)

.

Let u > 0, then on Ωc
m,m′(|m′|Lm′ + u),

√
nχf (m,m′)1Ω•

≤ 2

(

5

2
V
√

Dm +Dm′ + V
√

2Dm′Lm′ +B
|m′|Lm′√

n

)

+ 2

(

V
√

2u+B
u√
n

)

Since qn = ⌈3b−1 log(n)⌉ ≤ 6b−1 log(n) and |m⋆| ≤
√
n/ log(n) ,

B|m′| ≤ B
√

|m⋆|
√

|m′| ≤ 12

√

n(2r + 1)dDm′

b2ι(f)
.

Therefore, still on Ωc
m,m′(|m′|Lm′ + u),

√
nχf (m,m′)1Ω•

≤ 2

(

5

2
V
√

Dm +Dm′ + V
√

2Dm′Lm′ + 12

√

(2r + 1)dDm′

b2ι(f)
Lm′

)

+ 4 max

{

V
√

2u,B
u√
n

}

so that

nχ2
f (m,m′)1Ω•

≤ 8

(

5

2
V
√

Dm +Dm′ + V
√

2Dm′Lm′ + 12

√

(2r + 1)dDm′

b2ι(f)
Lm′

)2

+ 32 max

{

2V 2u,B2u
2

n

}

.

As Lm′ ≥ 1 for all m′ ∈ M, choosing pen such that for all m′ ∈ M

pen(m′)1Ω•
≥ 32

Dm′L2
m′

n

(

((5/2 +
√

2)2/2)ϑqδ
n‖s‖∞ + 1442 (2r + 1)d

b2ι(f)

)

,

we obtain

Ps

(

(χ2
f (m,m′) − pen(m) − pen(m′))1Ω•

≥ 32 max

{

2V 2 u

n
,B2 u

2

n2

})

≤ 2e−|m′|Lm′−u.

Last, we recall that Fubini’s Theorem yields, for any random variable Z,

E ([Z]+) =

∫ ∞

0

P([Z]+ ≥ z)dz =

∫ ∞

0

P(Z ≥ z)dz.

Therefore, we obtain by integrating the previous inequality

Es

[

[χ2
f (m,m′) − pen(m) − pen(m′)]+1Ω•

]

≤ 32

n
e−|m′|Lm′

(

2V 2 + 4B2n−1
)
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and since
∑

m′∈M e−|m′|Lm′ ≤ 1, we conclude that

∑

m′∈M

Es

[

[χ2
f (m,m′) − pen(m) − pen(m′)]+1Ω•

]

≤ C(ϑ, ‖s‖∞, r, d, ι(f), b) logδ(n)

n
.

6.5. Proof of Theorems 3.3 and 4.2. It is sufficient to use the following theorem,
proved in [Aka10] (Proposition 2 and Theorem 2).

Theorem 6.1. Let J ∈ N, R > 0, σ ∈ (0, r + 1)d and p > 0 such that

H(σ)/d > max{1/p− 1/2, 0}.
Assume that s ∈ B(σ, p, R). Then, for all k ∈ N, there exists some partition mk of
[0, 1]d that only contains dyadic rectangles with edge-length at least 2−Jσ/σl in the
l-th direction, l = 1, . . . , d, such that

|mk| ≤ C(d, p,σ)2kd

and

‖s− smk
‖2 ≤ C(d, p, r,σ)R2

(

2−2Jd(H(σ)/d+1/2−1/p)σ/H(σ) + 2−2kH(σ)
)

.

Under the assumptions of Theorem 3.3, we set δ = µ = 0, whereas under the
assumptions of Theorem 4.2, δ is given in Section 4.2 and µ = 1. Let us fix R, σ,
p > 0 satisfying the assumptions of Theorems 3.3 or 4.2, and s ∈ B(σ, p, R). Since,
σ ≤ σl for all l = 1, . . . , d, Theorem 6.1 applied with J = J⋆ provides partitions
(mk)k∈N that all belong to Mrect. Thus, with τ = H(σ)/d − (1/p− 1/2)+, we
obtain

min
m∈Mrect

{

‖s− sm‖2 + logδ(n)
|m|
n

}

≤ inf
k∈N

{

‖s− smk
‖2 + logδ(n)

|mk|
n

}

≤ C(d, p, r,σ)

(

R22−2J⋆dτσ/H(σ) + inf
k∈N

{

R22−2kH(σ) + logδ(n)
2kd

n

})

.

With k⋆ = max{k ∈ N s.t. 2kd logδ(n)/n ≤ R22−2kH(σ)}, which is well-defined for

R2 ≥ logδ(n)/n, we obtain

min
m∈Mrect

{

‖s− sm‖2 + logδ(n)
|m|
n

}

≤ C(d, p, r,σ)

(

R22−2J⋆dτσ/H(σ) +
(

R(n log−δ(n))−H(σ)/d
)2d/(d+2H(σ))

)

.

Last, since 2dJ⋆ ≤ √
n/ logµ(n), it is enough to chooseR2 ≤ nq(σ,d,p)−1(log(n))δ−2µq(σ,d,p)

so that the first term in the upper-bound is smaller than the second. �
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autorégressif général d’ordre 1. Stochastic Process. Appl., 15(3):271–293,
1983.

[DGZ03] J. G. De Gooijer and D. Zerom. On conditional density estimation.
Statist. Neerlandica, 57(2):159–176, 2003.

[Don97] D. L. Donoho. CART and best-ortho-basis: a connection. Ann. Statist.,
25(5):1870–1911, 1997.

[Dou94] P. Doukhan. Mixing, volume 85 of Lecture Notes in Statistics. Springer-
Verlag, New York, 1994. Properties and examples.



INHOMOGENEOUS AND ANISOTROPIC CONDITIONAL DENSITY ESTIMATION FROM DEPENDENT DATA29

[DP05] J. Dedecker and C. Prieur. New dependence coefficients. Examples and
applications to statistics. Probab. Theory Related Fields, 132(2):203–
236, 2005.

[DT93] P. Doukhan and A. B. Tsybakov. Nonparametric recurrent estimation
in nonlinear ARX models. Problemy Peredachi Informatsii, 29(4):24–34,
1993.

[Efr07] S. Efromovich. Conditional density estimation in a regression setting.
Ann. Statist., 35(6):2504–2535, 2007.

[Efr08] S. Efromovich. Oracle inequality for conditional density estimation and
an actuarial example. Annals of the Institute of Statistical Mathematics,
pages 1–27, 2008.

[Fau07] O. P. Faugeras. A product type non-parametric estimator of the con-
ditional density by quantile transform and copula representation. www.
Arxiv preprint math.ST/0709.3192 v1, 2007.

[FY04] J. Fan and T. H. Yim. A crossvalidation method for estimating condi-
tional densities. Biometrika, 91(4):819–834, 2004.

[GK07] L. Györfi and M. Kohler. Nonparametric estimation of conditional dis-
tributions. IEEE Trans. Inform. Theory, 53(5):1872–1879, 2007.

[GW10] I. Gannaz and O. Wintenberger. Adaptive density estimation under
weak dependence. ESAIM Probab. Statist., 14:151–172, 2010.

[HKP98] P. Hall, G. Kerkyacharian, and D. Picard. Block threshold rules for
curve estimation using kernel and wavelet methods. Ann. Statist.,
26(3):922–942, 1998.

[Jon04] G. L. Jones. On the Markov chain central limit theorem. Probab. Surv.,
1:299–320 (electronic), 2004.
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