
An alternative to Lyapunov Exponent as Damage

Sensitive Feature

Antoine Clément

Stéphane Laurens
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Abstract.
When using Lyapunov exponents as damage sensitive feature (DSF) in vibration

based structural health monitoring, the computation time represents an important
issue for real time applications. To overcome this problem, a new feature, the Jacobian
Feature Vector (JFV), is proposed based on the same algorithm but allowing faster
computation. Whereas for Lyapunov exponents calculation, the trajectories in the
state space are followed for more than a thousand time steps, the new feature is formed
by the Jacobian matrix of the dynamics after few time steps. The new feature and the
Lyapunov exponents are tested on two case studies : a mass/spring/damper model and
a laboratory three story structure. Both the DSF are showing a good performance in
detecting damage for the numerical study, even if the Lyapunov exponents present a
slightly better ability. Regarding the experimental data, Lyapunov exponents failed to
detect damage while the JFV is clearly able to reveal structural changes. Therefore, the
JFV offers a robust alternative to Lyapunov exponents allowing to save computation
time.
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Introduction

Structural Health Monitoring (SHM) consists in studying information which is generated

by the structure to be investigated. The paradigm of non linear dynamical systems offers

some interesting abilities for this purpose. From a general point of view, the scientific

objective is focused on the detection of novelty in monitoring data. Among the various

features available to describe dynamical systems, the Lyapunov Exponents (LE) are

often proposed to detect changes in the system behavior.

A dynamical system can be represented by the evolution of its trajectory in its state

space. Based on this representation, it is possible to calculate several invariants which

characterize the dynamical system. Among them, Lyapunov exponents express the rate

of divergence (or convergence) of trajectories initially close. If the system changes, due

for example to an evolution of its parameters , the invariant property guaranties that

the Lyapunov Exponents will deviate as well.

In the field of SHM, it is necessary to propose features that are sensitive to structural

changes so that damage can be detected. The discrimination of damaged state is done

by comparison with a reference baseline, generated under undamaged condition. The

use of feature based on state space representation for time series analysis is limited in

SHM. However, several studies explore the potential of this approach.

A first possibility is to excite the structure with a chaotic signal and to analyse the

response in the state space. This method is used in several studies [1, 2] working on

laboratory test structures, with different original features based on attractor geometry

changes. Nichols et al [3] show that it is possible to apply the same paradigm on

a structure using ambient vibrations. A comparison of several metrics calculated on

trajectory evolution for chaotic and broadband excitations has been carried out by

Olson et al [4].

The sensibility of Lyapunov exponents to damage has also been studied. They are

used in the work reported by Ghafari et al [5] in which the chaotic vibrations of rolling

element bearings are investigated. Bearing failure is detected by the calculation of the

largest Lyapunov Exponent.

Some studies have also proven the ability of Lyapunov Exponent to detect damage

even in a non chaotic system. Livingston et al [6] simulate cracks in a bridge FEM

model excited by a traffic load model. The largest Lyapunov exponent is calculated

along the bridge deck and is able to detect and locate the cracks. An application in a

real structure have been carried out by Casciati et Casciati [7] on a monumental arch

(masonry specimen) before and after the repair of several major cracks. Two excitations

are considered : hammer impact, and ambient vibrations. The method combines all the

sensors to form the state space. It shows a good ability in detecting damage and even

in locating cracks, as long as major non-stationarities are removed.

The last cited studies focus on the largest Lyapunov exponent or only the positives

ones, but none of them uses the full spectrum. The main reasons are linked to the

difficulty to estimate the negative Lyapunov exponents and to the high computation
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time. Though, when the aim is to find a Damage Sensitive Feature (DSF), even if the

negative exponents estimations do not reflect exactly the real physical ones, they still

may contain some information concerning the evolution of the system that can be useful

in a comparative purpose.

This paper proposes a novel DSF based on Lyapunov exponent calculation

algorithm : the Jacobian Feature Vector (JFV). It has to overcome the limitation of

calculation time and has to minimize the loss of information about the dynamical system.

After an introduction to the theoretical background leading to the definition of the JFV

and LE, their practical calculation is presented. A comparison of the two DSF is then

conducted on two case studies : 4 dof mass/spring/damper numerical model, and a

laboratory structure. At last, a discussion on the performance of the DSF is proposed.

1. Theoretical background and DSF definition

The definition of the new DSF is closely related to the meaning of the LE.

Lyapunov exponents are linked to the predictability of the dynamical system

studied. Viewed in the state space, let δ(0) << 1 be the distance between two nearby

trajectories. After m time steps (m >> 1), the distance will be

δ(m) ≈ δ(0)eλm (1)

with λ the maximum Lyapunov exponent [8]. If the time is infinite, the ergodic theorem

of Oseledec [9] proves the existence and uniqueness of λ, whatever the initial point

chosen. The Eq.1 illustrates the fact that if a small perturbation is imposed to the

system, the rate of amplification of this perturbation is the Lyapunov exponent. If λ

is positive, the trajectories will diverge making the system unpredictable after some

time. This kind of behavior characterizes chaotic systems, which are sensitive to small

perturbation.

The calculation of the integer spectrum is done by following two initially close

trajectories by the linearized dynamics [10].

Let X(k) ∈ Rn be a point moving in a n-dimensional space at discrete time

k = 1, 2, ..., N . The evolution of X(k) defines the trajectory and satisfies

X(k + 1) = F (X(k)) (2)

with F the dynamical system operator. If a nearby trajectory Y (k) ∈ Rn is taken and

noting δXi = X(k + i) − Y (k + i), the first-order Taylor expansion of F around X(k)

leads to

δX1 = X(k + 1)− Y (k + 1)

= F (X(k))− F (Y (k))

= J (X(k)) [X(k)− Y (k)] + o ‖X(k)− Y (k)‖
= J (X(k)) δX0 + o ‖δX0‖ (3)

with J , the Jacobian matrix of F . When the trajectories are followed for L steps

ahead, the product of L Jacobian matrices needs to be calculated and it is noted JL(Xk)
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(Eq. 4).

δXL = J(Xk) · J(Xk+1) · ... · J(Xk+L−1) · δX0

=

[
L−1∏
j=0

J(Xk+j)

]
· δX0

= JL(Xk) · δX0 (4)

The Oseledec matrix, JL(Xk).
[
JL(Xk)

]T
, has eigenvalues noted Λi, i = 1...n. Then

the Lyapunov exponents are

λi = lim
L→∞

1

2L
ln(Λi) (5)

This equation (Eq. 5) implies that each trajectory needs to be followed for a very

long time leading to :

• a very long computing time

• the hiding of every short irregularities of the trajectories.

These irregularities are the markers of damage induced, for example, by shocks in a

loosened bolt, or by opening and closing of cracks. One is interested in detecting

this local changes for SHM purpose. To highlight these irregularities, local Lyapunov

exponents can be computed by following trajectories but only for a short time [11]. This

approach has been more used to study the predictability of chaotic system than for SHM

applications. But these irregularities should be visible directly on the Jacobian matrices

since, in both cases (global or local), Lyapunov exponents represent the eigenvalues of

the product of Jacobian matrices (Eq.5).

To preserve the potential sensitivity of local Lyapunov exponents and to provide

a more simple approach, Jacobian matrix for short time evolution can be directly used

to detect local distortions in trajectories. The components of the matrix are forming a

new feature vector which will be referred to as the Jacobian Feature Vector (JFV).

2. Practical implementation

In experimental structural analysis, only a few degree of freedom of the system can be

measured corresponding to each sensor location. Each measure is presented in the form

of a time series. This section describes the algorithm applied on a single time series to

obtain the Lyapunov spectrum and the JFV. The first step is to transform a scalar time

series into a multi-dimensional time series to reconstruct the state space.

State Space Reconstruction

Based on the measure of an unique scalar time series (x) = {x(1), x(2), . . . , x(N)},
Takens proves that it is possible to qualitatively reconstruct the attractor in a n-

dimensional state space by using delayed coordinates method [12]. This supposes

that one single degree of freedom encloses enough information about the others.
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Theoretically, the delay, τ , could be any entire number. In practice, it is common

to choose τ long enough, to limit the redundancy between coordinates, and not too

much, to keep some correlation. Once this choice is made, the state space vectors are

formed, for k = 1, ..., n− τ(n− 1), as follows:

X(k) = {x(k), x(k + τ), ..., x(k + (n− 1)τ)} (6)

Two methods for evaluating the optimal time delay τ are commonly used, the first

minimum of the mutual information function and the first zero of the autocorrelation

function [13] . Then, one needs to find the proper embedding dimension, n, in which the

attractor is completely unfolded. Brown et al suggest the method of false neighbors [14]

which counts the number of neighbors which do not remains neighbors as the dimension

increases. The stabilization of this number indicates that the embedding dimension is

large enough.

Once n and τ are selected, the time series is transformed into a collection of state

space vectors according to Eq.6.

JFV and Lyapunov exponents Calculation

To evaluate the Lyapunov spectrum, the method described by Brown et al [14] is used.

The first step consists in calculating the Jacobian matrix along a trajectory. For this

purpose, a fiducial point X(k) is chosen, and its r nearest neighbors , noted Xr
neigh(k),

are selected. Difference vectors are formed according to Eq. 8.

Xr
neigh(k) = {X(i), i ∈ [1; N ] | ‖X(k)−X(i)‖ ≤ ε ∈ R} (7)

δXr
neigh(k) =

{
X(k)−X(i) | X(i) ∈ Xr

neigh(k)
}

(8)

To estimate the Taylor expansion of F , the best polynomial mapping, noted T (X),

between each of the r perturbation vectors at time k and its evolutions at time k + T2

(Eq.9) is calculated by a least-square method. Then, the Jacobian matrix associated to

the linear part of T (X) is extracted.

δX i
neigh(k + T2) = T

(
δX i

neigh(k)
)

(9)

with i = 0, . . . , r

The original approach uses a linear mapping, but the polynomial one is more suitable

to estimate the negative exponents accurately [15].

The Jacobian matrix is estimated for LT2 time steps, giving J(Xk+i T2), i = 1, ..., L.

Since the JVF has to reveal a local information, it is formed by the last Jacobian

matrix for very few time steps. The L values from 1 to 5 time steps are tested (Eq.10).

JFV = J(Xk+i T2)(:) i ≤ 5 (10)

On the other hand, to find the Lyapunov spectrum, the eigenvalues of the product

of J(Xk+i T2) for i = 1, ..., L need to be calculated (Eq.4). L has to be at least 2000 to
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ensure the convergence of the limit (Eq.5). Since this product is very ill-conditioned, a

QR decomposition method is recommended [16].

J(Xk+(i+1)T2).Q(i) = Q(i + 1).R(i + 1) (11)

with i = 0, . . . , L− 1

Since Q(i) is an orthogonal matrix and R(i) an upper triangular one, the product of

Eq. 4 is decomposed as

JL(Xk) = Q(L)
L∏

j=1

R(j) (12)

Finally, the Lyapunov exponents are expressed as

λi =
1

dt L T2

L∑
j=L0

ln (Rii(j)) i = 1, ..., n (13)

with dt the sampling period (in seconds) of the original scalar time series. The sum

should start at L0 6= 0 to omit the first transient values.

For both Lyapunov exponents and JFV, the algorithm is repeated for several fiducial

points across the attractor and the average of each DSF is taken.

3. SHM and Novelty Detection

For the long term monitoring of structures, damage can only be detected by comparison

with a reference normal state acquired from various conditions [17]. For each condition,

time series are collected thanks to vibration measurements and compressed into feature

vectors such JFV and LE. To compare a new feature vector to the baseline vectors

collected at the reference state, the Mahalanobis distance is an appropriate approach

[18]. It gives the distance between a point and a set of points, taking into account

the way the axis are populated. In statistics, it is commonly used to detect abnormal

points in a data set. The advantage is that it provides a scalar feature from multivariate

data. The Mahalanobis distance of a new feature vector DSFi (which can be either the

Lyapunov exponents or the JVF) to a reference baseline characterized by a mean vector

DSF and a covariance matrix CDSF is

D2
i =

(
DSFi −DSF

)T
(CDSF )−1 (

DSFi −DSF
)
. (14)

To quantify the efficiency of the features proposed for damage detection, the number

of misclassified points is calculated. The database, composed of time series collected

at the undamaged state, and time series collected for various damage levels, is split in

three parts :

• the reference baseline, composed of half of the undamaged database. It is used

as reference to form the covariance matrix (CDSF ) and mean vector (DSF ) for

Mahalanobis distance calculation.
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Figure 1. Mass/spring/damper model

• the classification base, composed of a quarter of the undamaged database. This

base allows the calculation of a threshold which will be used to classify unknown

new vectors. This threshold is based on the standard deviation of Mahalanobis

distances of the classification base vectors to the reference base. In this study

the threshold is set to 3 standard deviations. If a new vector has a Mahalanobis

distance to the reference base higher than the threshold, it is classified as damaged

state. Assuming the normal distribution of the feature tested, this implies about

1% of false alarm accepted.

• the test base, composed of the last quarter of the undamaged database and all

the damaged time series. It is used to perform a blind-test aimed at checking the

efficiency of each DSF. In this study, since each vector is known, the efficiency of

the DSF will be quantified by the number of misclassified vectors, including :

– undamaged state classified as damaged (False Alarm)

– damaged state classified as undamaged (Non-Detection)

4. Case Studies

Case Study 1

The first case study (CS1) is a 4 dof mass/spring/damper numerical model (Fig. 1). The

physic constants are selected to be realistic with building structures : k = 2.4e8 N.m−1,

c = 1.02e6 N.m−1.s and m = 70000 kg. The system can be expressed by the equation

M ẍ + Cẋ + Kx = f(t) (15)

where M , C and K represent mass, damping and stiffness 4 × 4 matrices,

respectively. f(t) is the excitation vector which applies a white noise at the free end

of the model. Equation 15 is solved by a fourth order Runge-Kutta method sampled

at 60Hz. The displacement x1, resampled at 30Hz, is used for damage detection. An

example of time series calculated is visible in Fig.2.

Damage is simulated by a decrease in the first spring stiffness, but only when it is

in extension (Eq.16) to represent the effect of the closing and opening of a crack.

k1 =

{
k if x1 ≥ 0

(1− α)k if x1 < 0
(16)

As presented in Tab.1, the database is composed of 120 undamaged time series and 90

damaged time series with an increasing level of damage.
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Figure 2. Time series obtained with the model.

Table 1. Composition of the database

Number of
time series

α

120 0
10 0.1
10 0.2
10 0.3
10 0.4
10 0.5
10 0.6
10 0.7
10 0.8
10 0.9

Case Study 2

For the second case study (CS2), vibration signals of a three story bookshelf structure

are considered (Fig.3). These experiments are a part of several case studies carried out

by the Los Alamos National Laboratory (LANL) and provided freely for the scientific

community. All the informations about the structure and the test set up are available

on LANL website [19].

It is composed of Unitrust columns and aluminum floor plates. Support brackets

for the columns are bolted to the plates and hold the Unitrust columns. The global

geometry is detailed in Fig.4.

A shaker is attached at corner D (Fig.4) in order to excite both torsional and

translational vibration modes. Twenty-four accelerometers are positioned on the

structure, all in the same direction. The excitation is white noise with several

bandwidths from 800 to 3200 Hz, and different input levels from 3,5 to 7 Volts. For

each setup, the response is sampled at 1600 Hz and consists of 8192 points.

For the purpose of testing the sensitivity to damage, only one sensor is considered.

It is located at the corner C, on the first floor plate. This is close to the location of the

induced damage.

Damage is simulated by changes in the corner C first floor joint. Tab.2 summarizes
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Figure 3. Photo of the test structure (LANL)[19]

Figure 4. Front (left figure) and top dimensions (right figure) of the test structure
(LANL)[19]

the different damage cases. The database consists of 150 time series related to the

undamaged state, and 60 time series in the damaged state.

Parameters investigated

In the algorithm described previously, several parameters need to be specified. The first

ones are the reconstruction parameters. They are set based on the analysis of baseline

series chosen randomly.

The first minimum of the mutual information function and the first zero of the

autocorrelation function indicate that a delay of 2 for case study 1, and 6 for case

study 2, are good choices. However, if T2 is equal to τ , the two vectors mapped by the

polynomial fitting are almost identical leading to identity matrix as Jacobian. Since the
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Table 2. Damage cases : modification of the bolts between the bracket and the plate
(LANL)[19]

Damage Case Description
Bolt Torque

[N.m]
Number of time
series collected

0 Undamaged 6.77 150
1 Decrease tightening torque 1.128 15
2 Decrease tightening torque 0.564 15
3 hand tighten — 10
4 Bolts removed — 10
5 Bracket removed — 10

maximum value investigated is T2 = 5, the choice of the delay is imposed by T2 for CS1.

Finally, τ is set to 6 for both case studies.

The false neighbors method indicates that a dimension of 7 for CS1 and CS2 is a

good compromise between the stabilization of the number of false neighbors and a small

dimension which keeps the calculation time low (Fig.5).

It is important to note that there is no need to have the same embedding parameters

for the two case studies.

Figure 5. Baseline series #5 : Number of false neighbors functions vs embedding
dimension both case studies

For Lyapunov spectrum determination, a preliminary study has shown that the

number of transient mapping steps does not exceed 500 and that they are stable

after 1500 other ones. These results lead to the choice of L = 2000 and L0 = 500.

Each neighborhood is composed of Npara to 2Npara points, with Npara the number of

parameters of the polynomial mapping function to be fitted (depending on the order). At

last, 40 fiducial points are followed in each attractor for Lyapunov exponents calculation.

For the JFV, since the averaging over the whole attractor is not done according to a

large L, the number of fiducial points will be 100.

The order of the polynomial mapping and the mapping steps (T2) are supposed to

be influencing parameters. Therefore, several values are tested. However, the order have

to be smaller than 4 to limit the number of points in each neighborhood (329 points

for order 4). A similar problem appears with T2 in Lyapunov exponents determination,

it can not be higher than 3 since the time series are composed of 8192 points and the

10
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Table 3. Parameters values for DSF calculation

Feature T2 L Order

Lyapunov exponents
1 2000 1,2,3
2 2000 1,2

JFV

2 2 1,2,3
1,2,3 1 1
1,2,3,4,5 2 1
2 1,2,3,4,5 1

Table 4. Parameters values and percentage of misclassified points in the test-base for
Lyapunov exponents

T2 Order % of Misclassified points
CS1 CS2

1 1 15 41
1 2 23 53
1 3 24 62
2 1 25 61
2 2 31 60

trajectories are followed for 2000 mapping steps. In the case of the JFV, the number of

mapping steps before extracting the Jacobian matrix is investigated. Tab. 3 summarizes

the values of the parameters involved in the study, leading to 16 parameter setups.

5. Results and discussion

Lyapunov Exponents

The efficiency of Lyapunov Exponents as DSF is very different between the two case

studies. For CS2, the percentage of misclassified points varies from 41% to 62% (Tab.4)

including no false alarms, but a large amont of non-detection (Fig.6b). On the other

hand, for CS1, LE are capable of detecting damage from 30%-40% of stiffness reduction,

depending on the set of parameters. The poor results obtained in CS2 is caused by the

dispersion of the LE values observed on experimental data. This dispersion makes

difficult the separation between damaged and undamaged states (Fig.7b).

To determine accurate Lyapunov exponents of chaotic systems, the use of a high

order polynomial mapping is preferred. But Tab.4 shows that increasing the order of

the mapping leads to more misclassified points. When the polynomial order increases, it

is observed that the variations of the different exponents tend to be uniform, leading to

a decrease in the sensitivity since each exponent carries the same information (Fig.7).

Higher order also produces several positive exponents. Since Lyapunov exponents of

noise are theoretically infinite, it probably means that the random part of the time series

is modeled by the mapping. The results are not improved by doubling the mapping step.

11



PREPRINT 5 RESULTS AND DISCUSSION

Figure 6. Lyapunov Exponents Mahalanobis distance of the test base for T2 = 1
and linear mapping. The dashed line represents the classification threshold. a) CS1 ;
b) CS2 ;

Jacobian Feature Vector

The number of misclassified time series for the different sets of parameters is presented

in Tab.5. Even if some observations will be formulated regarding the influence of the

parameter setup, the classification ability is comparable from one setup to another.

For CS1, the worst case counts 51% of misclassified points and 21% for the best

one, whereas for CS2 the worst case is 16% which is far better. The change in spring

stiffness is not detected before 40% of reduction, whereas all damage cases are correctly

classified for CS2 (Fig.8). This difference is explained by the progressivity of damage

introduction in CS1 which make the early detection more challenging.

Looking at the results in details reveals some trends in the parameters influence.

Tab.5 shows that increasing the order does not reduce the number of misclassified points.

On contrary, it increases for CS2, even if it remains small. The explanation is probably

the same as for the Lyapunov exponents. For damage detection, the first order appears

more relevant.

The number of misclassified points as T2 increases does not present a clear trend.

When L = 1 (setups #4− 5− 6), large T2 improves the sensitivity for CS1, but not for

CS2. Whereas with L = 2 (setups #7 to 11), results remain stable, except for T2 = 3

(setup #9) which will be explained later. This proves that mapping step has no direct

effect on the sensitivity to damage, and that it has to be considered in interaction with

L.

Change in the value of L, implies irregular variations in the efficiency of the JFV as

presented in Tab.5. For both CS1 and CS2, there are no trends as L increases. However

12
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Figure 7. Lyapunov spectrum for the undamaged time series (#1 to #150 for CS1
and #1 to #120 for CS2) and the damaged time series. Left figure display LE for CS1
and right for CS2. a1) and b1) order= 1 ; a2) and b2) order= 2 ; a3) and b3) order= 3
;

the number of misclassified time series is abnormally higher for several L values :

• L = 1 (setups #4-5-6 and 12) whatever the value of T2

• L = 2 and T2 = 3 (setup #9)

• L = 3 and T2 = 2 (setup #14)

• L = 4 and T2 = 2 (setup #15).

In order to understand why, for these particular cases, the sensitivity of the

JFV is reduced, one has to consider how the different vectors of the state space are

reconstructed. The optimal reconstruction delay selected is six time step (τ = 6). The

Fig.9 shows the ten first vectors reconstructed from the time series (x) = {x1, x2, ..., xN}.
In the case T2 = 2, L = 4, the Jacobian matrix used in the JFV is calculated between

the vectors X7 and X9 which differ only by one coordinate from initial vector X1 and

vector X3. Therefore this case is equivalent to the case L = 1 which presents a reduced

sensibility. By the same token, the case T2 = 2, L = 3 uses a mapping between X5 and

X7. It is close to a mapping between X1 and X5 formulated with L = 1 and T2 = 4.

13
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Table 5. Parameters values and percentage of misclassified points in the test-base for
JFV

Set up number T2 L Order % Misclassified points
CS1 CS2

1)
2 2

1 27 0
2) 2 34 1
3) 3 34 5
4) 1

1 1
51 14

5) 2 43 13
6) 3 36 16
7) 1

2 1

30 0
8) 2 25 0
9) 3 42 9
10) 4 28 1
11) 5 46 1
12)

2

1

1

46 13
13) 2 32 0
14) 3 49 4
15) 4 30 11
16) 5 21 0

Figure 8. JFV Mahalanobis distance of the test base for the worst and
best classification results. The dashed line represents the classification threshold.
a) setup #1 CS1 Best ; b) setup #1 CS2 Best ; c) setup #4 CS1 Worst ; d) setup #4
CS2 Worst.

The same explanation holds for the case T2 = 3 and L = 2. The Jacobian matrix of the

first mapping step (L = 1) is less sensitive to damage than the other ones because the

initial neighbors are much more close than after few time steps. If the points are spread

in a larger area in the attractor, the Jacobian matrix is more able to capture changes

14
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in the dynamics.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
x7 x8 x9 x10 x11 x12 x13 x14 x15 x16
x13 x14 x15 x16 x17 x18 x19 x20 x21 x22
x19 x20 x21 x22 x23 x24 x25 x26 x27 x29
x25 x26 x27 x28 x29 x30 x31 x32 x33 x34
x31 x32 x33 x34 x35 x36 x37 x38 x39 x40
x37 x38 x39 x40 x41 x42 x43 x44 x45 x46

Figure 9. Ten first reconstructed vectors.

Discussion

The sensitivity of the JFV depends on the set of parameters chosen. As explained

previously, for an optimal sensibility, it is important to avoid the inclusion of the initial

neighborhood (and its reconstruction multiples) in the Jacobian calculation for the JFV.

This condition is verified if

T2 · L 6= τ and (17)

T2 · L 6= τ − L with L > 1 (18)

Keeping T2 as small as possible will contribute to reduce the processing time. In this

study, this is achieved with (Fig.8a et Fig.8c) :

• linear mapping

• trajectories followed for two mapping steps (L = 2)

• mapping steps formed by one or two time steps (T2 = 1, 2).

Once these conditions are verified, the JFV is able to detect damage quite effectively.

For the CS1, in which data are obtained with a numerical model, the efficiency of the LE

is slightly better than the JFV since 30% of stiffness reduction is detected by LE, against

40% by the JFV. However, on real data, LE hardly detect the damage introduced on

the bookshelf structure, whereas all cases are correctly identified by JFV. It is likely

that time series in CS2 contain some noise due to experimental conditions which is not

present in the simulated data. It seems that JFV is more robust to noise than LE.

Moreover, to calculate the Lyapunov spectrum of a time series with an IntelR© Xeon

3GHz processor, the CPU time varies from 170s to 3700s depending the polynomial

order, whereas it is only between 0.2s to 6s for the new JFV.

The study shows that the proposed feature is an interesting alternative to Lyapunov

exponents for SHM purpose, regarding both sensitivity to damage and computation

time.

6. Conclusion

Using the full Lyapunov spectrum as damage sensitive feature is very time consuming.

To overcome this issue, the Jacobian Feature Vector (JFV), a new damage sensitive
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feature based on the Jacobian matrix of reconstructed dynamics in the state space, is

proposed. Instead of following the trajectories for several thousand time steps, as needed

for Lyapunov Exponents (LE) calculation, the JFV involves the Jacobian matrix at the

early time steps. Both JFV and LE are compared to detect damage on a simulated

mass/spring model and a laboratory bookshelf structure. Unlike LE, the JVF is able

to detect the damage introduced in the two case studies with an appropriate set of

parameters. This indicates that the proposed approach is more robust than LE. Future

investigations will be focused on :

• the verification of the sensibility to damage with variable signal-to-noise ratios

• other case studies

• the comparison of the JFV approach to common SHM paradigms (modal analysis,

autoregressive models etc.).
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