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We experimentally investigate the Bragg reflection of light at one-dimensionally ordered atomic
structures by using cold atoms trapped in a laser standing wave. By a fine tuning of the periodicity,
we reach the regime of multiple reflection due to the refractive index contrast between layers, yielding
an unprecedented high reflectance efficiency of 80 %. This result is explained by the occurrence of
a photonic band gap in such systems, in accordance with previous predictions.

PACS numbers: 37.10.Jk,42.25.Fx,42.70.Qs

Cold atomic vapors can be used as suitable optical me-
dia for a number of applications or fundamental studies,
in particular in the fields of nonlinear and quantum op-
tics, but also as complex optical media to study exotic
wave transport phenomena, for instance radiation trap-
ping [1, 2], coherent backscattering [3] or random lasing
[4, 5]. In these examples, an essential property is the dis-
order inherent to atomic vapors that are simply confined
in a magneto-optical trap (MOT).
On the contrary, ordered clouds of cold atoms, which

can be produced by trapping atoms in optical lattices,
should exhibit different light transport properties. The
appearance of photonic band gaps has indeed been pre-
dicted in one-dimensional lattices [6, 7] and recently
in three-dimensional, diamond (non-Bravais) lattices [8].
The realization of photonic band gaps in ordered cold-
atom samples would open the way to study new regimes
of light transport in atomic vapors, where correlations
and long-range order play a dominant role.
Previous investigations of photonic properties of opti-

cal lattices have reported the observation of Bragg scat-
tering. A first series of experiments used three dimen-
sional quasiresonant lattices [9–11], with a lattice geom-
etry which does not create photonic band gaps [8]. Very
low efficiencies (below 1%) were reported. A second series
of experiments investigated the 1D case [12–14], where a
band gap is expected, but the maximum reflection effi-
ciency was only 5% in total power, 30% once corrected
from the partial overlap between the probe beam and the
atomic sample [14]. The limitations came mainly from
the probing angle, which limited the interaction length
with the lattice, and losses, i.e. out-of-axis scattering,
due to the imaginary part of the atomic polarizability
near resonance (for convenience, we also use the word
“absorption”).
In this Letter, we report the observation of an efficient

Bragg reflection at a one-dimensional lattice, reaching
the regime of multiple reflections due to the refractive
index contrast between layers and an 80% efficiency in
total power. This high efficiency is obtained by, 1) us-
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ing a small-diameter probe beam and a small probing
angle to optimize the overlap with the atomic grating,
2) adjusting the periodicity of the lattice so that the
Bragg condition is fulfilled off the atomic resonance, thus
strongly reducing the losses. Our experimental observa-
tions are explained by the appearance of a photonic band
gap, which we show to be robust against the system im-
perfections (finite size, varying density).

The experiment starts with a vapor-loaded MOT of
87Rb containing about 6 × 108 atoms. A dipole trap
is generated by a home-made titanium-sapphire laser,
whose available power is 1.3 W and whose wavelength
λdip is tunable. The beam is focussed on a waist (1/e2

radius) wdip = 220µm at the MOT position. A 1D op-
tical lattice is made by retroreflecting the beam, thus
generating a structure whose periodicity is λdip/2.

After stages of compression and molasses, the MOT is
switched off and a waiting time of a few ms allows the
untrapped atoms to fall down. Then, we can characterize
the trapped sample with absorption imaging or acquire
transmission and reflection spectra. Typical numbers for
the trapped atoms are N = 5 × 107 atoms distributed
over a length L ∼ 3 mm. The temperature, T ∼ 100µK,
is related to the potential depth U0 by a constant factor
η = U0/kBT ∼ 3.5. The transverse extension of the cloud
is then σ⊥ = wdip/(2

√
η) ≃ 60µm and the size of each

layer along the lattice axis z is σz = λdip/(2π
√
2η) (rms

radii in the harmonic approximation).

To acquire spectra, we shine a weak and small (waist
w0 = 35µm), linearly-polarized probe beam onto the lat-
tice under an angle of incidence θ ≃ 2◦. The angle is
small enough so that the probe interacts with the lattice
over its entire length and that the dimensional effects
reported in [13] are suppressed. The transmitted and
reflected beams are then recorded with avalanche photo-
diodes. The probe frequency ω is swept in the vicinity
of the atomic resonance ω0 (F = 2 → F ′ = 3 closed
transition of the D2 line, λ0 = 780.24 nm, linewidth
Γ/2π = 6.1 MHz) by using an acousto-optical modulator
in double pass configuration. The presented data are the
result of an average of typically 100 cycles (the duration
of each cycle is ∼ 1 s).

Reflection occurs in the vicinity of a Bragg condition:
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FIG. 1: (Color online). (a) Refractive index n as a function of the normalized detuning δ/Γ for an averaged density ρ =
7 × 1011 cm−3. The dashed lines represent the Bragg condition Eq. (1) with ∆λdip = 0.24 nm. (b) Experimental reflection
spectra for different ∆λdip. (c) Measured maximal reflectance as a function of ∆λdip for two different atom numbers, N = 2×107

(squares) and N = 6× 107 (dots). The spectra of (b) are taken from the latter. (d) Simulated reflection spectra.

the difference between the incident probe wavevector and
the reflected wavevector must equal the lattice vector,
i.e. 2n(δ)k0 cos θ = Klat, where k0 = 2π/λ0 is the probe
wavevector in vacuum, n is the real part of the average

refractive index of the medium, δ = ω − ω0 is the probe
detuning from the atomic resonance, and Klat = 4π/λdip

is the lattice vector [15].
Experimentally, we keep the angle constant and adjust

the Bragg condition by tuning the wavelength of the lat-
tice beam. It is thus meaningful to rewrite the Bragg
condition in the following form,

n(δ)− 1 = −∆λdip

λdip

, (1)

where ∆λdip = λdip − λdip0 is the shift from the “geo-
metric” (with n = 1) Bragg condition λdip0 = λ0/ cos θ.
With θ = 2◦, we have λdip0 ≃ 780.7 nm. Then, for a
given lattice wavelength, the Bragg condition is fulfilled
for probe detunings δ given by Eq. (1), see Fig. 1(a).
There are in general two such frequencies, but one is al-
most on resonance, where absorption prevents any effi-
cient reflection. The other Bragg frequency (δB in Fig.
1(a)) may be farther from resonance and can be tuned in
order to search for an optimum.
Such an experiment is reported on Fig. 1(b), which

shows a set of spectra for different ∆λdip. As expected
from Eq. (1), the spectra display a strong asymmetry,
which evolves as the lattice wavelength is changed, the
maximal efficiency going from one side of the resonance
to the other side while ∆λdip changes its sign. One

can also clearly observe an optimum value of ∆λdip

for reaching high efficiencies, namely Rmax ≃ 80% for
∆λdip ≃ 0.24 nm with our best atom number [Fig. 1(c)].
Note that for each ∆λdip, we adjust the power accord-
ingly to keep constant the potential depth and subse-
quently the atom number and temperature.
The existence of an optimum can easily be understood

by considering the limiting cases. When ∆λdip is very
small, the Bragg condition is fulfilled where the refractive
index is almost one, in virtue of Eq. (1), very far from
resonance, leading to a very small index contrast in the
periodic structure and thus to an inefficient reflection.
In the opposite limit, when ∆λdip is large, the Bragg
condition is fulfilled near δ = ±Γ/2, where absorption,
due to the imaginary part of the atomic polarizability, is
large and plays a detrimental role. Ultimately, if ∆λdip

is too large for the given averaged atomic density ρ, the
Bragg condition cannot be fulfilled at all. The optimum
∆λdip depends on the average density ρ: a larger density
allows us to increase ∆λdip, and thus the index contrast,
without shifting the Bragg frequency towards resonance,
i.e. without increasing absorption. This is illustrated in
Fig. 1(c), which shows that the optimum ∆λdip is larger
with more atoms.
We have also studied the reflection spectrum as a func-

tion of the atom number for a given ∆λdip. In order to
vary the atom number while keeping the lattice length
constant, we have changed the waiting time in the lat-
tice, before the spectra acquisition, from 5 ms to 400 ms,
thus varying atom losses. The result is reported in Fig.
2. As expected from Eq. (1), we observe a shift farther
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FIG. 2: (Color online). Spectra for different atom numbers N
in the lattice (constant length, varying density) with ∆λdip =
0.15 nm. Inset: Maximum reflectance as a function of N .

from resonance together with a broadening for increasing
densities. The evolution of the maximum reflectivity as
a function of the atom number reveals that we almost
reach saturation.

With such a high efficiency, it is natural to ask whether
a photonic band gap (PBG) occurs in our system and is
responsible for the high reflectance. It is well-known that
periodic 1D systems give rise to PBGs for any nonzero
index modulation [16], so that no distinction is usually
made between a 1D PBG and a Bragg reflector. How-
ever this is true only for infinite, lossless and perfectly
periodic media. As already noted, the atomic polariz-
ability is complex so that our system has losses, and it
is of course finite. Moreover, the lattice is not perfectly
homogeneous but has a smooth density variation, so that
the periodicity is not perfect. The situation is thus more
intricate and deserves a careful analysis.

We can get a first insight with orders-of-magnitude es-
timations. A Bragg reflector made of repeated pairs of
dielectric layers gives rise, in the stop band, to an evanes-
cent wave whose penetration length is given by Lew =
λ0/(4∆n), where ∆n is the refractive index difference
between the two materials [17]. By approximating the
gaussian atomic distribution in each well by a single layer
of constant density with the same rms width and using
Eq. (1), the index contrast is ∆n = π

√

η/6×∆λdip/λdip.
In our experiment, the maximum reflection is obtained
for ∆λdip ∼ 0.24 nm and we have η ∼ 3.5, which gives
a penetration length Lew ∼ 0.26 mm, sensibly smaller
than our optical lattice (L ∼ 3 mm), so that we are in-
deed in the multiple reflection regime. The effect of losses
can also be evaluated by comparing the corresponding
attenuation length Lloss to Lew. Given our estimated
averaged density ρ ∼ 7 × 1011 cm−3 and the detuning
δB determined by the Bragg condition (1), we estimate
Lloss = 1/ρσsc(δB), where σsc is the scattering cross-
section, which gives Lloss ∼ 3.8 mm, also much larger
than Lew. Thus, this simple calculation confirms that our
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FIG. 3: (Color online). Modeling of our system. (a, b) Real
(a) and imaginary (b) parts of the effective wavevector keff in
the medium as a function of the probe detuning δ. The axis
are reversed so that the graphs look like standard dispersion
relations ω(k). (c) Normalized local density of states. (d)
Reflection spectrum. In all plots, the gray line corresponds to
a homogeneous, non-periodic medium of the same density, the
dashed line to an infinite lattice and the solid line simulates
the actual distribution of our system.

system fulfills the conditions Lew ≪ L,Lloss, which are
necessary for the appearance of a band gap. A number of
effects are however not taken into account, in particular
the actual density distribution along the lattice, so that
a more precise modeling is still valuable.
We use the transfer matrix method to simulate the

wave propagation in our system, and we refer to [6, 7, 14]
for detailed descriptions in similar contexts. From the
transfer matrix of one single period, which takes into ac-
count the gaussian atomic distribution in each well [14],
we draw the dispersion relation of the medium (effec-
tive wavevector keff vs ω), valid in the limit of an in-
finitely long lattice (Bloch theorem). These are shown in
Fig. 3(a,b), for the typical parameters of the experiment
ρ = 7 × 1011 cm−3, η = 3.5 and ∆λdip = 0.24 nm. The
imaginary part of keff is composed of one lorentzian of
width Γ centered on resonance, which corresponds to ab-
sorption, and a supplementary part, leading to an evanes-
cent wave, corresponding to a band gap [Fig. 3(b)]. In
the same frequency range, the real part of keff displays
a reduced variation with ω [Fig. 3(a)], corresponding to
a reduced density of states (DOS) D = d(Re(keff))/dω.
The last formula is however not always valid, especially
in anomalous dispersive media, and we use the method of
[18] to compute the normalized local DOS in the middle
of the lattice. By using the complex reflection coefficients
r1, r2 of the two surrounding, finite or infinite [6] semi-
lattices, we obtain

D = Re

[

2 + r1 + r2
1− r1r2

− 1

]

. (2)
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The result, shown in Fig. 3(c), exhibits very clearly the
band gap, with a strong reduction of the normalized local
DOS, which reaches at minimum 6% for an infinite lat-
tice. The corresponding reflection spectrum reaches 85%
[Fig.3(d)]. In both cases, the limitation (for achieving
high reflectance or low DOS) is the remaining absorp-
tion.
To take into account the limited length of the sam-

ple and its actual, smooth density distribution along the
lattice axis, that we characterized by absorption imag-
ing, we compute the reflection spectra through the whole
structure by multiplying elementary transfer matrices
computed with the corresponding local density. The local
DOS then exhibits a smaller reduction, reaching at min-
imum 23%, but the maximum reflectance is almost as
large as in the infinite limit, reaching 82% [Fig. 3(c,d)].
Finally, to simulate our experimental spectra precisely,

we must also take into account the trapping-induced in-
homogeneous light shift and the finite size effects of the
transverse directions. Indeed, we only considered so far
infinitely extended layers, which is a crude approxima-
tion, the atom cloud having an rms width of 60µm. The
probe beam, having also a finite size, probes a distribu-
tion of local density, which induces an inhomogeneous
broadening of the spectra. There is in fact a tradeoff for
the probe beam size: a small beam allows us to probe a
well-defined and maximum density, but since the reflec-
tion is very sensitive to the angle of incidence, the probe
divergence induces also an inhomogeneous broadening.
Experimentally, we have tried different probe sizes and
obtained the maximum reflectance with w0 = 35µm. To
simulate these effects we averaged many spectra over the
corresponding angle and density distribution. We obtain
the spectra of Fig. 1(d), in good agreement with the ex-
periment [19].

To summarize, we have studied experimentally the
Bragg reflection of light at a one-dimensional atomic
quasi-periodic structure in the regime of multiple reflec-
tion, demonstrating a high efficiency, thanks to a fine
tuning of the lattice periodicity. Then, motivated by the
modeling of our system, we have investigated the effects
of the finite size and of the smooth density variation along
the lattice on the appearance of a band gap and its qual-
ity. These imperfections, inherent to cold-atom systems,
do not destroy the band gap and, even if the DOS reduc-
tion is not dramatic, it is enough to substantially modify
the transport properties of light, as demonstrated by the
observed high reflectance.
Our experiment is thus a first step towards a complex

engineering of light transport properties in atomic va-
pors. The extension to more evolved lattice geometries,
for example with bichromatic lattices [20] and to three di-
mensions [8] has been proposed recently. This last case is
of course the most appealing since a 3D band gap would
profoundly modify the atom-light interaction [21, 22].
Another fascinating possibility is to tailor the atomic po-
larizability to remove its absorptive part, for example by
using electromagnetically-induced transparency, as pro-
posed in [23], or other schemes to enhance the refractive
index [24, 25]. Finally, photonic band gaps could play
a role in the quest for Anderson localization of light in
atomic gas since the constraints on the amount of disor-
der are loosened near a photonic band edge [26]. More
generally, the crossover regime, between order and disor-
der, or correlated disorder, is a rich subject (see e.g. [27]
and references therein for the 1D case).
We thank J.-F. Schaff and N. Mercadier for the

computer-control program. We acknowledge support
from the DFG and the Alexander von Humboldt foun-
dation.
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